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Abstract

Recent years have seen a flurry of activities in designing provably efficient nonconvex procedures for
solving statistical estimation problems. Due to the highly nonconvex nature of the empirical loss, state-
of-the-art procedures often require proper regularization (e.g. trimming, regularized cost, projection) in
order to guarantee fast convergence. For vanilla procedures such as gradient descent, however, prior
theory either recommends highly conservative learning rates to avoid overshooting, or completely lacks
performance guarantees.

This paper uncovers a striking phenomenon in nonconvex optimization: even in the absence of explicit
regularization, gradient descent enforces proper regularization implicitly under various statistical models.
In fact, gradient descent follows a trajectory staying within a basin that enjoys nice geometry, consisting
of points incoherent with the sampling mechanism. This “implicit regularization” feature allows gra-
dient descent to proceed in a far more aggressive fashion without overshooting, which in turn results
in substantial computational savings. Focusing on three fundamental statistical estimation problems,
i.e. phase retrieval, low-rank matrix completion, and blind deconvolution, we establish that gradient
descent achieves near-optimal statistical and computational guarantees without explicit regularization.
In particular, by marrying statistical modeling with generic optimization theory, we develop a general
recipe for analyzing the trajectories of iterative algorithms via a leave-one-out perturbation argument. As
a byproduct, for noisy matrix completion, we demonstrate that gradient descent achieves near-optimal
error control — measured entrywise and by the spectral norm — which might be of independent interest.
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1 Introduction

1.1 Nonlinear systems and empirical loss minimization

A wide spectrum of science and engineering applications calls for solutions to a nonlinear system of equations.
Imagine we have collected a set of data points y = {y, }1<j<m, generated by a nonlinear sensing system,

yp & Aj(@*), 1<j<m,

where x* is the unknown object of interest, and the A;’s are certain nonlinear maps known a priori. Can
we reconstruct the underlying object «* in a faithful yet efficient manner? Problems of this kind abound in
information and statistical science, prominent examples including low-rank matrix recovery [KMO10a/CR09|,
robust principal component analysis [CSPW11,[CLMW11]|, phase retrieval [CSV13||JEH15|, neural networks
[SIL19L|ZSIT17], to name just a few.

In principle, it is possible to attempt reconstruction by searching for a solution that minimizes the
empirical loss, namely,

minimize, f(x) = Z ‘yj — Aj(w)|2- (1)
j=1

Unfortunately, this empirical loss minimization problem is, in many cases, nonconvex, making it NP-hard in
general. This issue of non-convexity comes up in, for example, several representative problems that epitomize
the structures of nonlinear systems encountered in practiceﬂ

e Phase retrieval / solving quadratic systems of equations. Imagine we are asked to recover an
unknown object £* € R™, but are only given the square modulus of certain linear measurements about the
object, with all sign / phase information of the measurements missing. This arises, for example, in X-ray
crystallography [CESV13|, and in latent-variable models where the hidden variables are captured by the
missing signs [CYC14]. To fix ideas, assume we would like to solve for * € R™ in the following quadratic
system of m equations

y=(aja*)’.  1<j<m,

where {a;}1<j<m are the known design vectors. One strategy is thus to solve the following problem
e . 1 = T 212
minimizegegn  f(x) = — Z {yj — (aj x) } . (2)

4m
j=1

e Low-rank matrix completion. In many scenarios such as collaborative filtering, we wish to make
predictions about all entries of an (approximately) low-rank matrix M* € R"*™ (e.g. a matrix consisting
of users’ ratings about many movies), yet only a highly incomplete subset of the entries are revealed to
us |[CRO9]. For clarity of presentation, assume M* to be rank-r (r < n) and positive semidefinite (PSD),
ie. M* = X*X*T with X* € R"*", and suppose we have only seen the entries

Vig =M = (X*X*")jk, (,k) €

)

within some index subset 2 of cardinality m. These entries can be viewed as nonlinear measurements
about the low-rank factor X*. The task of completing the true matrix M* can then be cast as solving

L n? 2
minimize x cgnx- f(X) = o Z (Yj,k - e;l—XXTek) ) (3)
(3,k)EQ

where the e;’s stand for the canonical basis vectors in R".

1Here, we choose different pre-constants in front of the empirical loss in order to be consistent with the literature of the
respective problems. In addition, we only introduce the problem in the noiseless case for simplicity of presentation.



e Blind deconvolution / solving bilinear systems of equations. Imagine we are interested in esti-
mating two signals of interest h*, x* € CK, but only get to collect a few bilinear measurements about
them. This problem arises from mathematical modeling of blind deconvolution [ARR14,[LLSW18]|, which
frequently arises in astronomy, imaging, communications, etc. The goal is to recover two signals from their
convolution. Put more formally, suppose we have acquired m bilinear measurements taking the following
form

yj = b;‘h*w*Haj, 1<j<m,

where a;,b; € CK are distinct design vectors (e.g. Fourier and/or random design vectors) known a priori,
and b;' denotes the conjugate transpose of b;. In order to reconstruct the underlying signals, one asks for
solutions to the following problem

m
minimizey, yecx  f(h,x) = Z |yj - b;'ha:Haj|2.
j=1

1.2 Nonconvex optimization via regularized gradient descent

First-order methods have been a popular heuristic in practice for solving nonconvex problems including .
For instance, a widely adopted procedure is gradient descent, which follows the update rule

't =2t -, Vf(x'), t>0, (4)

where 7, is the learning rate (or step size) and & is some proper initial guess. Given that it only performs
a single gradient calculation V f(-) per iteration (which typically can be completed within near-linear time),
this paradigm emerges as a candidate for solving large-scale problems. The concern is: whether ! converges
to the global solution and, if so, how long it takes for convergence, especially since is highly nonconvex.

Fortunately, despite the worst-case hardness, appealing convergence properties have been discovered in
various statistical estimation problems; the blessing being that the statistical models help rule out ill-behaved
instances. For the average case, the empirical loss often enjoys benign geometry, in a local region (or at least
along certain directions) surrounding the global optimum. In light of this, an effective nonconvex iterative
method typically consists of two stages:

1. a carefully-designed initialization scheme (e.g. spectral method);
2. an iterative refinement procedure (e.g. gradient descent).

This strategy has recently spurred a great deal of interest, owing to its promise of achieving computational
efficiency and statistical accuracy at once for a growing list of problems (e.g. [KMO10a,[JNS13||CW15/[SL16,
CLS15[/CC17,LLSW18|[LLB17]). However, rather than directly applying gradient descent , existing theory
often suggests enforcing proper regularization. Such explicit regularization enables improved computational
convergence by properly “stabilizing” the search directions. The following regularization schemes, among
others, have been suggested to obtain or improve computational guarantees. We refer to these algorithms
collectively as Regularized Gradient Descent.

o Trimming / truncation, which discards/truncates a subset of the gradient components when forming the
descent direction. For instance, when solving quadratic systems of equations, one can modify the gradient
descent update rule as

ettt =zt T (vf(xt)) ’ (5)
where 7 is an operator that effectively drops samples bearing too much influence on the search direc-
tion. This strategy |CC17,|ZCL16,[WGE17| has been shown to enable exact recovery with linear-time
computational complexity and optimal sample complexity.

e Regularized loss, which attempts to optimize a regularized empirical risk
't =" —n, (Vf(z") + VR(z")), (6)

where R(x) stands for an additional penalty term in the empirical loss. For example, in low-rank matrix
completion R(-) imposes penalty based on the ¢ row norm [KMO10al|SL16| as well as the Frobenius
norm [SL16| of the decision matrix, while in blind deconvolution, it penalizes the ¢ norm as well as
certain component-wise incoherence measure of the decision vectors [LLSW18,[HH17,LS17].



Table 1: Prior theory for gradient descent (with spectral initialization)

\ Vanilla gradient descent \ Regularized gradient descent
sample iteration step sample iteration type of
complexity | complexity | size | complexity | complexity regularization
Phase trimming
. 1 log & L log &
retrieval nlogn 1108 ¢ n " 08¢ |CC17,/ZCL16|
7 N1 regularized loss
Matrix n r10g ¢ [SL16]
. n/a n/a n/a —
completion 2 2 1log L projection
& [CW15l[ZL16]
Blind 1 regularized loss &
deconvolution n/a n/a n/a | Kpolylogm mlog ¢ projection [LLSW18|

e Projection, which projects the iterates onto certain sets based on prior knowledge, that is,
't =P (' —n,Vf(2h)), (7)

where P is a certain projection operator used to enforce, for example, incoherence properties. This strategy
has been employed in both low-rank matrix completion [CW15ZL16| and blind deconvolution [LLSW18].

Equipped with such regularization procedures, existing works uncover appealing computational and sta-
tistical properties under various statistical models. Table [I] summarizes the performance guarantees derived
in the prior literature; for simplicity, only orderwise results are provided.

Remark 1. There is another role of regularization commonly studied in the literature, which exploits prior
knowledge about the structure of the unknown object, such as sparsity to prevent overfitting and improve
statistical generalization ability. This is, however, not the focal point of this paper, since we are primarily
pursuing solutions to without imposing additional structures.

1.3 Regularization-free procedures?

The regularized gradient descent algorithms, while exhibiting appealing performance, usually introduce more
algorithmic parameters that need to be carefully tuned based on the assumed statistical models. In contrast,
vanilla gradient descent (cf. ) — which is perhaps the very first method that comes into mind and
requires minimal tuning parameters — is far less understood (cf. Table [I)). Take matrix completion and
blind deconvolution as examples: to the best of our knowledge, there is currently no theoretical guarantee
derived for vanilla gradient descent.

The situation is better for phase retrieval: the local convergence of vanilla gradient descent, also known
as Wirtinger flow (WF), has been investigated in [CLS15,[SWW17|. Under i.i.d. Gaussian design and with
near-optimal sample complexity, WF (combined with spectral initialization) provably achieves e-accuracy
(in a relative sense) within O(nlog(1/¢)) iterations. Nevertheless, the computational guarantee is signifi-
cantly outperformed by the regularized version (called truncated Wirtinger flow |CC17]), which only requires
O( log (1/¢) ) iterations to converge with similar per-iteration cost. On closer inspection, the high computa-
tional cost of WF is largely due to the vanishingly small step size n, = O(1/(n||z*||3)) — and hence slow
movement — suggested by the theory [CLS15|. While this is already the largest possible step size allowed
in the theory published in [CLS15|, it is considerably more conservative than the choice n, = O(1/||z*||3)
theoretically justified for the regularized version |CC17,ZCL16|.

The lack of understanding and suboptimal results about vanilla gradient descent raise a very natural
question: are regularization-free iterative algorithms inherently suboptimal when solving nonconvex statistical
estimation problems of this kind?

1.4 Numerical surprise of unregularized gradient descent

To answer the preceding question, it is perhaps best to first collect some numerical evidence. In what
follows, we test the performance of vanilla gradient descent for phase retrieval, matrix completion, and blind
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Figure 1: (a) Relative f5 error of &' (modulo the global phase) vs. iteration count for phase retrieval
under i.i.d. Gaussian design, where m = 10n and 7; = 0.1. (b) Relative error of X*X*" (measured by
Il s [N 5 [|]lo) vs. iteration count for matrix completion, where n = 1000, » = 10, p = 0.1, and 7, = 0.2.
(c) Relative error of h'z'H (measured by |-||) vs. iteration count for blind deconvolution, where m = 10K
and n; = 0.5.

deconvolution, using a constant step size. For all of these experiments, the initial guess is obtained by means
of the standard spectral method. Our numerical findings are as follows:

e Phase retrieval. For each n, set m = 10n, take * € R™ to be a random vector with unit norm, and

generate the design vectors a; RN (0,1,), 1 < j < m. Figure a) illustrates the relative ¢s error
min{||z? — x*|2, [|£* + z*||]2}/||z*||2 (modulo the unrecoverable global phase) vs. the iteration count. The
results are shown for n = 20, 100, 200, 1000, with the step size taken to be n; = 0.1 in all settings.

o Matriz completion. Generate a random PSD matrix M* € R™*" with dimension n = 1000, rank r = 10,
and all nonzero eigenvalues equal to one. Each entry of M™* is observed independently with probability
p = 0.1. Figure b) plots the relative error ||| X*X*T — M*|||/[|M*||| vs. the iteration count, where ||-[|
can either be the Frobenius norm ||-||p, the spectral norm || - ||, or the entrywise £, norm || - |[|. Here, we
pick the step size as n; = 0.2.

e Blind deconvolution. For each K € {20,100,200,1000} and m = 10K, generate the design vectors
a; Bid. (0, %IK) + iN(0, %IK) for1 <j<m independently and the b;’s are drawn from a par-
tial Discrete Fourier Transform (DFT) matrix (to be described in Section [3.3). The underlying sig-
nals h*,x* € CK are produced as random vectors with unit norm. Figure [I{c) plots the relative error

|ttt — h*2*H || /||h*x*H||r vs. the iteration count, with the step size taken to be 1, = 0.5 in all settings.

In all of these numerical experiments, vanilla gradient descent enjoys remarkable linear convergence, always
yielding an accuracy of 10~ (in a relative sense) within around 200 iterations. In particular, for the phase
retrieval problem, the step size is taken to be 1, = 0.1 although we vary the problem size from n = 20 to
n = 1000. The consequence is that the convergence rates experience little changes when the problem sizes
vary. In comparison, the theory published in [CLS15| seems overly pessimistic, as it suggests a diminishing
step size inversely proportional to n and, as a result, an iteration complexity that worsens as the problem
size grows.

In addition, it has been empirically observed in prior literature |[CC17,[ZZLC17,[LLSW1§| that vanilla
gradient descent performs comparably with the regularized counterpart for phase retrieval and blind decon-
volution. To complete the picture, we further conduct experiments on matrix completion. In particular, we
follow the experimental setup for matrix completion used above. We vary p from 0.01 to 0.1 with 51 logarith-
mically spaced points. For each p, we apply vanilla gradient descent, projected gradient descent [CW15| and
gradient descent with additional regularization terms [SL16| with step size n = 0.2 to 50 randomly generated
instances. Successful recovery is declared if || X*X!'T — M*|p/||M*|[r < 1072 in 10* iterations. Figure
reports the success rate vs. the sampling rate. As can be seen, the phase transition of vanilla GD and that

2Here and throughout, i represents the imaginary unit.



recovery rate

vanilla GD
—*—projected GD
—*—regularized GD

Figure 2: Success rate vs. sampling rate p over 50 Monte Carlo trials for matrix completion with n = 1000
and r = 10.

of GD with regularized cost are almost identical, whereas projected GD performs slightly better than the
other two.

In short, the above empirical results are surprisingly positive yet puzzling. Why was the computational
efficiency of vanilla gradient descent unexplained or substantially underestimated in prior theory?

1.5 This paper

The main contribution of this paper is towards demystifying the “unreasonable” effectiveness of regularization-
free nonconvex iterative methods. As asserted in previous work, regularized gradient descent succeeds by
properly enforcing/promoting certain incoherence conditions throughout the execution of the algorithm. In
contrast, we discover that

Vanilla gradient descent automatically forces the iterates to stay incoherent with the measurement
mechanism, thus implicitly regqularizing the search directions.

This “implicit regularization” phenomenon is of fundamental importance, suggesting that vanilla gradient
descent proceeds as if it were properly regularized. This explains the remarkably favorable performance of
unregularized gradient descent in practice. Focusing on the three representative problems mentioned in
Section [1.1] our theory guarantees both statistical and computational efficiency of vanilla gradient descent
under random designs and spectral initialization. With near-optimal sample complexity, to attain e-accuracy,

e Phase retrieval (informal): vanilla gradient descent converges in O( log n log %) iterations;
e Matrix completion (informal): vanilla gradient descent converges in O( log %) iterations;
¢ Blind deconvolution (informal): vanilla gradient descent converges in O(log %) iterations.

In words, gradient descent provably achieves (nearly) linear convergence in all of these examples. Throughout
this paper, an algorithm is said to converge (nearly) linearly to =* in the noiseless case if the iterates {x'}
obey

dist(x'™! &%) < (1 — ¢) dist(z, 2*), vt >0

for some 0 < ¢ < 1 that is (almost) independent of the problem size. Here, dist(-,-) can be any appropriate
discrepancy measure.

As a byproduct of our theory, gradient descent also provably controls the entrywise empirical risk uni-
formly across all iterations; for instance, this implies that vanilla gradient descent controls entrywise estima-
tion error for the matrix completion task. Precise statements of these results are deferred to Section [3] and
are briefly summarized in Table [2|



Table 2: Prior theory vs. our theory for vanilla gradient descent (with spectral initialization)

Prior theory \ Our theory
sample iteration step sample iteration step
complexity | complexity | size complexity complexity size
Phase retrieval nlogn nlog(1/e) | 1/n nlogn lognlog(1/e) | 1/logn
Matrix completion n/a n/a n/a | nripolylogn log (1/¢) 1
Blind deconvolution n/a n/a n/a | Kpolylogm log (1/¢) 1

Notably, our study of implicit regularization suggests that the behavior of nonconver optimization algo-
rithms for statistical estimation needs to be examined in the context of statistical models, which induces an
objective function as a finite sum. Our proof is accomplished via a leave-one-out perturbation argument,
which is inherently tied to statistical models and leverages homogeneity across samples. Altogether, this
allows us to localize benign landscapes for optimization and characterize finer dynamics not accounted for
in generic gradient descent theory.

1.6 Notations

Before continuing, we introduce several notations used throughout the paper. First of all, boldfaced symbols
are reserved for vectors and matrices. For any vector v, we use ||v]|2 to denote its Euclidean norm. For
any matrix A, we use 0;(A) and A;(A) to denote its jth largest singular value and eigenvalue, respectively,
and let A;. and A.; denote its jth row and jth column, respectively. In addition, |A[|, ||Allr, [|All2,00,
and ||Al|s stand for the spectral norm (i.e. the largest singular value), the Frobenius norm, the ¢5 /¢, norm
(i.e. the largest 5 norm of the rows), and the entrywise o, norm (the largest magnitude of all entries) of a
matrix A. Also, AT, A" and A denote the transpose, the conjugate transpose, and the entrywise conjugate
of A, respectively. I, denotes the identity matrix with dimension n x n. The notation O™*" represents
the set of all n x r orthonormal matrices. The notation [n] refers to the set {1,--- ,n}. Also, we use Re(x)
to denote the real part of a complex number x. Throughout the paper, we use the terms “samples” and
“measurements” interchangeably.

Additionally, the standard notation f(n) = O (g(n)) or f(n) < g(n) means that there exists a constant ¢ >
0 such that |f(n)| < ¢|g(n)|, f(n) 2 g(n) means that there exists a constant ¢ > 0 such that |f(n)| > c|g(n)],
and f(n) < g(n) means that there exist constants c¢1,ca > 0 such that ¢1]|g(n)| < |f(n)| < e2]g(n)]. Also,
f(n) > g(n) means that there exists some large enough constant ¢ > 0 such that |f(n)| > c¢|g(n)|. Similarly,
f(n) < g(n) means that there exists some sufficiently small constant ¢ > 0 such that |f(n)| < c¢|g(n)|.

2 Implicit regularization — a case study

To reveal reasons behind the effectiveness of vanilla gradient descent, we first examine existing theory of
gradient descent and identify the geometric properties that enable linear convergence. We then develop an
understanding as to why prior theory is conservative, and describe the phenomenon of implicit regularization
that helps explain the effectiveness of vanilla gradient descent. To facilitate discussion, we will use the
problem of solving random quadratic systems (phase retrieval) and Wirtinger flow as a case study, but our
diagnosis applies more generally, as will be seen in later sections.

2.1 Gradient descent theory revisited

In the convex optimization literature, there are two standard conditions about the objective function —
strong convexity and smoothness — that allow for linear convergence of gradient descent.

Definition 1 (Strong convexity). A twice continuously differentiable function f : R™ — R is said to be
a-strongly convex for a > 0 if
V2f(z) = al,, Ve € R™.



Definition 2 (Smoothness). A twice continuously differentiable function f : R™ — R is said to be S-smooth

for B >0 if
|V2f(=)|| < B,  VaeR"

It is well known that for an unconstrained optimization problem, if the objective function f is both a-
strongly convex and -smooth, then vanilla gradient descent enjoys o error contraction [Bub15, Theorem
3.12], namely,

2

t+1 _ % _
HZB Z ”2 S (1 5/044—1

t
)Hwt—w*HQ, and ||of —x*[|2 < <1 ) H:co—w*||2, t>0, (8)

%
Bla+1

as long as the step size is chosen as n, = 2/(a+ ). Here, * denotes the global minimum. This immediately
reveals the iteration complexity for gradient descent: the number of iterations taken to attain e-accuracy (in

a relative sense) is bounded by
1
(0] (B log ) .
o €

In other words, the iteration complexity is dictated by and scales linearly with the condition number — the
ratio 8/« of smoothness to strong convexity parameters.

Moving beyond convex optimization, one can easily extend the above theory to nonconvex problems with
local strong convexity and smoothness. More precisely, suppose the objective function f satisfies

Vf@)=al and  ||V?f(z)||<p
over a local ¢, ball surrounding the global minimum a*:
Bs(x) = {z | |& — "2 < o]« |2 }- 9)
Then the contraction result continues to hold, as long as the algorithm is seeded with an initial point
that falls inside Bs(x).

2.2 Local geometry for solving random quadratic systems

To invoke generic gradient descent theory, it is critical to characterize the local strong convexity and smooth-
ness properties of the loss function. Take the problem of solving random quadratic systems (phase retrieval)

as an example. Consider the i.i.d. Gaussian design in which a; i N(0,I,), 1 < j < m, and suppose
without loss of generality that the underlying signal obeys ||xz*|l2 = 1. It is well known that x* is the
unique minimizer — up to global phase — of under this statistical model, provided that the ratio m/n
of equations to unknowns is sufficiently large. The Hessian of the loss function f(x) is given by

Vif(x) = %Z [3 (ajTac)2 - yj] ajajT. (10)

e Population-level analysis. Consider the case with an infinite number of equations or samples, i.e. m — oo,
where V2 f(x) converges to its expectation. Simple calculation yields that

E[V?f(z)] =3 (|31, +2zx") — (I, + 2z*z*").
It it straightforward to verify that for any sufficiently small constant § > 0, one has the crude bound
I, = E[V*f(z)] < 10I,, v € Bs(x) : ||z —a*||, < d=*|,,

meaning that f is 1-strongly convex and 10-smooth within a local ball around x*. As a consequence, when
we have infinite samples and an initial guess ° such that ||z — z*[|2 < §||=* || ,» vanilla gradient descent
with a constant step size converges to the global minimum within logarithmic iterations.

10



o Finite-sample regime with m < nlogn. Now that f exhibits favorable landscape in the population level,
one thus hopes that the fluctuation can be well-controlled so that the nice geometry carries over to the
finite-sample regime. In the regime where m =< nlogn (which is the regime considered in [CLS15]), the
local strong convexity is still preserved, in the sense that

V(@) = (1/2) - L,  Va: |z -z, <d|="|,

occurs with high probability, provided that § > 0 is sufficiently small (see [Sol14[SWW17]| and Lemma [I]).
The smoothness parameter, however, is not well-controlled. In fact, it can be as large as (up to logarithmic
factors)ﬂ

V2 f(@)| < n

even when we restrict attention to the local /5 ball @D with § > 0 being a fixed small constant. This
means that the condition number 3/« (defined in Section may scale as O(n), leading to the step size
recommendation

n = l/nv
and, as a consequence, a high iteration complexity O(n log(1/ e)) This underpins the analysis in |[CLS15|.

In summary, the geometric properties of the loss function — even in the local /5 ball centering around the
global minimum — is not as favorable as one anticipates, in particular in view of its population counterpart. A
direct application of generic gradient descent theory leads to an overly conservative step size and a pessimistic
convergence rate, unless the number of samples is enormously larger than the number of unknowns.

Remark 2. Notably, due to Gaussian designs, the phase retrieval problem enjoys more favorable geometry
compared to other nonconvex problems. In matrix completion and blind deconvolution, the Hessian matrices
are rank-deficient even at the population level. In such cases, the above discussions need to be adjusted, e.g.
strong convexity is only possible when we restrict attention to certain directions.

2.3 Which region enjoys nicer geometry?

Interestingly, our theory identifies a local region surrounding x* with a large diameter that enjoys much nicer
geometry. This region does not mimic an ¢5 ball, but rather, the intersection of an ¢ ball and a polytope.
We term it the region of incoherence and contraction (RIC). For phase retrieval, the RIC includes all points
x € R" obeying

Jo—otl, <alorll,  and (112
max |ajT(a: —z*)| < \/1ogn|’m*||2, (11b)

1<j<m

where § > 0 is some small numerical constant. As will be formalized in Lemma[I] with high probability the
Hessian matrix satisfies

(1/2) - I, = V?f(z) = O(logn) - I,

simultaneously for « in the RIC. In words, the Hessian matrix is nearly well-conditioned (with the condition
number bounded by O(logn)), as long as (i) the iterate is not very far from the global minimizer (cf. (11a)),
and (i) the iterate remains incoherent] with respect to the sensing vectors (cf. (IIb)). Another way to
interpret the incoherence condition (11b)) is that the empirical risk needs to be well-controlled uniformly
across all samples. See Figure a) for an illustration of the above region.

The following observation is thus immediate: one can safely adopt a far more aggressive step size (as
large as n; = O(1/logn)) to achieve acceleration, as long as the iterates stay within the RIC. This, however,
fails to be guaranteed by generic gradient descent theory. To be more precise, if the current iterate ! falls
within the desired region, then in view of 7 we can ensure {5 error contraction after one iteration, namely,

&t =27l < 2t — 2|

3To demonstrate this, take € = x* + (§/|la1]]2) - @1 in 7 one can easily verify that, with high probability, HV2f(a:)|| >
|3(a;rsc)2 - y1} ||a1af||/m —0O(1) 2 6°n2/m =< 6n/logn.

4If x is aligned with (and hence very coherent with) one vector aj, then with high probability one has |a;r (& —a%)| 2
|aij\ < y/n||z||2, which is significantly larger than \/log n||z||2.

11
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Figure 3: (a) The shaded region is an illustration of the incoherence region, which satisfies |a;'— (x—a*)| <
VIogn for all points = in the region. (b) When z° resides in the desired region, we know that x! remains
within the £, ball but might fall out of the incoherence region (the shaded region). Once z! leaves the
incoherence region, we lose control and may overshoot. (c¢) Our theory reveals that with high probability,

all iterates will stay within the incoherence region, enabling fast convergence.

and hence z!*! stays within the local /5 ball and hence satisfies (11a)). However, it is not immediately
obvious that ™! would still stay incoherent with the sensing vectors and satisfy (I1Db). If '*! leaves the
RIC, it no longer enjoys the benign local geometry of the loss function, and the algorithm has to slow down
in order to avoid overshooting. See Figure (b) for a visual illustration. In fact, in almost all regularized
gradient descent algorithms mentioned in Section one of the main purposes of the proposed regularization
procedures is to enforce such incoherence constraints.

2.4 Implicit regularization
However, is regularization really necessary for the iterates to stay within the RIC? To answer this question,
maxj|a;mt| man|a;r(mt—m*)|

Toela T, (resp. —Vloanle . ) vs. the
iteration count in a typical Monte Carlo trial, generated in the same way as for Figure a). Interestingly,
the incoherence measure remains bounded by 2 for all iterations ¢ > 1. This important observation suggests
that one may adopt a substantially more aggressive step size throughout the whole algorithm.

we plot in Figure (a) (resp. Figure (b)) the incoherence measure
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#@M (in (a)) and IS&%H;*M | (in (b)) of the gradient
iterates vs. iteration count for the phase retrieval problem. The results are shown for n € {20, 100, 200, 1000}

and m = 10n, with the step size taken to be n; = 0.1. The problem instances are generated in the same way
as in Figure [Ia).

Figure 4: The incoherence measure

The main objective of this paper is thus to provide a theoretical validation of the above empirical obser-
vation. As we will demonstrate shortly, with high probability all iterates along the execution of the algorithm
(as well as the spectral initialization) are provably constrained within the RIC, implying fast convergence of
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Figure 5: Tllustration of the leave-one-out sequence w.r.t. a;. (a) The sequence {x"(")},5¢ is constructed
without using the {th sample. (b) Since the auxiliary sequence {a:t’(l)} is constructed without using a;, the
leave-one-out iterates stay within the incoherence region w.r.t. a; with high probability. Meanwhile, {x'}
and {x>(V} are expected to remain close as their construction differ only in a single sample.

vanilla gradient descent (cf. Figure [3{(c)). The fact that the iterates stay incoherent with the measurement
mechanism automatically, without explicit enforcement, is termed “implicit regularization”.

2.5 A glimpse of the analysis: a leave-one-out trick

In order to rigorously establish for all iterates, the current paper develops a powerful mechanism based
on the leave-one-out perturbation argument, a trick rooted and widely used in probability and random
matrix theory. Note that the iterate =’ is statistically dependent with the design vectors {a;}. Under such
circumstances, one often resorts to generic bounds like the Cauchy-Schwarz inequality, which would not yield
a desirable estimate. To address this issue, we introduce a sequence of auxiliary iterates {mt’(l)} for each
1 <1 < m (for analytical purposes only), obtained by running vanilla gradient descent using all but the Ith
sample. As one can expect, such auxiliary trajectories serve as extremely good surrogates of {x!} in the
sense that

. 1<i<m, t>0, (12)

since their constructions only differ by a single sample. Most importantly, since > is independent with
the Ith design vector, it is much easier to control its incoherence w.r.t. a; to the desired level:

‘alT (a:t’(l) - m*)] < V/logn Ha:*H2 (13)

Combining and then leads to (11bf). See Figure [5| for a graphical illustration of this argument.
Notably, this technique is very general and applicable to many other problems. We invite the readers to
Section [l for more details.

3 Main results

This section formalizes the implicit regularization phenomenon underlying unregularized gradient descent,
and presents its consequences, namely near-optimal statistical and computational guarantees for phase re-
trieval, matrix completion, and blind deconvolution. Note that the discrepancy measure dist (-, ) may vary
from problem to problem.

3.1 Phase retrieval

Suppose the m quadratic equations
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are collected using random design vectors, namely, a; RNV (0,1,,), and the nonconvex problem to solve is

f: [(a;mf — yj] ’ . (15)

4

5=

minimizegzegn  f(x) :=

The Wirtinger flow (WF) algorithm, first introduced in [CLS15|, is a combination of spectral initialization
and vanilla gradient descent; see Algorithm

Algorithm 1 Wirtinger flow / gradient descent for phase retrieval

Input: {a;}1<j<m and {y;}1<j<m.
Spectral initialization: Let \; (Y') and 2" be the leading eigenvalue and eigenvector of

1 & T
Y = E z;yjajaj y (16)
j=

respectively, and set ° = \/\; (Y) /3 2°.

Gradient updates: for t =0,1,2,..., 7 —1 do

't =" —n,Vf (2. (17)

Recognizing that the global phase / sign is unrecoverable from quadratic measurements, we introduce the
£y distance modulo the global phase as follows

dist(x, *) := min {||x — *||2, || + "2} . (18)
Our finding is summarized in the following theorem.

Theorem 1. Let x* € R™ be a fized vector. Suppose a; i N(0,1,) for each 1 < j <m and m > conlogn
for some sufficiently large constant co > 0. Assume the step size obeys iy =1 = c1/ (logn - ||@o||3) for any
sufficiently small constant ¢y > 0. Then there exist some absolute constants 0 < e < 1 and ca > 0 such that
with probability at least 1 — O (mnif’), Algorithm satisfies that for all t > 0,

dist(a', 2*) < e(1 —nllz*(|3/2)" |z*|2, (19a)
max ’a;r(:ct —a¥)| < co/logn|z*||2. (19b)

1<j<m
Theorem [l| reveals a few intriguing properties of Algorithm

e Implicit regularization: Theorem [l| asserts that the incoherence properties are satisfied throughout
the execution of the algorithm (see (19b))), which formally justifies the implicit regularization feature we
hypothesized.

e Near-constant step size: Consider the case where ||*||2 = 1. Theorem [l] establishes near-linear
convergence of WF with a substantially more aggressive step size n < 1/logn. Compared with the choice
n < 1/n admissible in [CLS15, Theorem 3.3], Theorem [I| allows WF /GD to attain e-accuracy within
O(lognlog(1/e)) iterations. The resulting computational complexity of the algorithm is

1
(0] (mn log nlog ) ,
€

which significantly improves upon the result O(mn?log (1/€)) derived in |[CLS15]. As a side note, if the
sample size further increases to m = nlog2 n, then a constant step size n < 1 is also feasible, resulting
in an iteration complexity log(1/e). This follows since with high probability, the entire trajectory resides
within a more refined incoherence region max; |a;r (' — x*)| < ||z*||2. We omit the details here.
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e Incoherence of spectral initialization: We have also demonstrated in Theorem [I| that the initial
guess x° falls within the RIC and is hence nearly orthogonal to all design vectors. This provides a finer
characterization of spectral initialization, in comparison to prior theory that focuses primarily on the #5
accuracy |NJS13||CLS15|. We expect our leave-one-out analysis to accommodate other variants of spectral
initialization studied in the literature |[CC17,/CLM™16,[WGE17,LL17, MM17].

Remark 3. As it turns out, a carefully designed initialization is not pivotal in enabling fast convergence.
In fact, randomly initialized gradient descent provably attains e-accuracy in O(logn + log %) iterations;
see [CCFM18| for details.

3.2 Low-rank matrix completion
Let M* € R™*" be a positive semidefinite matrixE] with rank r, and suppose its eigendecomposition is
M* =U*>*U*", (20)

where U* € R™*" consists of orthonormal columns, and 3* is an 7 X r diagonal matrix with eigenvalues in
a descending order, i.e. opax = 01 > -+ > 0 = omin > 0. Throughout this paper, we assume the condition

number K := Opax/0Omin is bounded by a fixed constant, independent of the problem size (i.e. n and 7).
Denoting X* = U*(X*)"/? allows us to factorize M* as

M* = X*X*T. (21)

Consider a random sampling model such that each entry of M™ is observed independently with probability
O<p<lyie forl1<j<k<n,

M*, + E;, with probability p,
V=9 2k (22)
0, else,
where the entries of E = [Ej,zchgjgkgn are independent sub-Gaussian noise with sub-Gaussian norm o

(see [Verl2, Definition 5.7]). We denote by 2 the set of locations being sampled, and Pq(Y") represents the
projection of Y onto the set of matrices supported in 2. We note here that the sampling rate p, if not
known, can be faithfully estimated by the sample proportion |Q|/n?.

To fix ideas, we consider the following nonconvex optimization problem

1
minimize x cgnxr [ (X) := y Z (e;XXTek. - ij)2 (23)
(J,k)eQ

The vanilla gradient descent algorithm (with spectral initialization) is summarized in Algorithm

Algorithm 2 Vanilla gradient descent for matrix completion (with spectral initialization)
Input: Y = [Yjvk]lgj,kgn’ r, p.
Spectral initialization: Let US°U°T be the rank-r eigendecomposition of

1 1
MO .= E’PQ(Y) = };'PQ (M* + E)7

and set X0 =U?° (20)1/2.

Gradient updates: for t =0,1,2,...,7 —1 do

Xt =X"—nVf(X"). (24)

Before proceeding to the main theorem, we first introduce a standard incoherence parameter required for
matrix completion |[CRO09].

5Here, we assume M* to be positive semidefinite to simplify the presentation, but note that our analysis easily extends to
asymmetric low-rank matrices.
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Definition 3 (Incoherence for matrix completion). A rank-r matric M* with eigendecomposition M* =
U*S*U*" is said to be p-incoherent if

1 fir
0 < o £ 1071 = /22 5)

In addition, recognizing that X* is identifiable only up to orthogonal transformation, we define the
optimal transform from the tth iterate X* to X* as

H' = argmin ||XtR— X~
ReOrxr

I (26)

where O"*" is the set of r X r orthonormal matrices. With these definitions in place, we have the following
theorem.

Theorem 2. Let M* be a rank r, p-incoherent PSD matriz, and its condition number k is a fixed constant.
Suppose the sample size satisfies n’p > Cpr3nlog® n for some sufficiently large constant C' > 0, and the
noise satisfies

Jmln (27)

\/ w3 prlog® n

With probability at least 1 — O (n’S), the iterates of Algorithm@ satisfy

HXtI/-I\t HF (C4p,ur ! —I—C 7 )HX* (28a)

X F - X, (cspm/ \/”“g”) X, o 251

| X'H! — X*|| < (cgp urﬁ +Owo_min \/7) | x| (28¢)

for all0 <t < T = O(n®), where Cy, Cy, Cs, Cs, Co and C1o are some absolute positive constants and
1 — (omin/5) - n < p < 1, provided that 0 < ny = n < 2/ (25k0max)-

Theorem [2] provides the first theoretical guarantee of unregularized gradient descent for matrix comple-
tion, demonstrating near-optimal statistical accuracy and computational complexity.

e Implicit regularization: In Theorem [2| we bound the ¢5/¢, error of the iterates in a uniform manner
via . Note that HX — X*Hgm = max; ||e;»'— (X — X*) H2, which implies the iterates remain incoherent
with the sensing vectors throughout and have small incoherence parameters (cf. ) In comparison, prior
works either include a penalty term on {”e;—rX”Q}lSan [KMO10aSL16| and/or || X ||r [SL16] to encourage
an incoherent and/or low-norm solution, or add an extra projection operation to enforce incoherence
|[CW15|[ZL16]. Our results demonstrate that such explicit regularization is unnecessary.

e Constant step size: Without loss of generality we may assume that oyax = ||M*|| = O(1), which can
be done by choosing proper scaling of M*. Hence we have a constant step size n; < 1. Actually it is more
convenient to consider the scale invariant parameter p: Theorem [2] guarantees linear convergence of the
vanilla gradient descent at a constant rate p. Remarkably, the convergence occurs with respect to three
different unitarily invariant norms: the Frobenius norm || - ||r, the £3/¢s norm || - ||2.00, and the spectral
norm | - ||. As far as we know, the latter two are established for the first time. Note that our result even
improves upon that for regularized gradient descent; see Table

e Near-optimal sample complexity: When the rank » = O(1), vanilla gradient descent succeeds under
a near-optimal sample complexity n?p > npoly log n, which is statistically optimal up to some logarithmic
factor.
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e Near-minimal Euclidean error: In view of (28al), as ¢ increases, the Euclidean error of vanilla GD

converges to
o . o n
X =X 5 [ (29

which coincides with the theoretical guarantee in [CW15, Corollary 1] and matches the minimax lower
bound established in [NW12,[KLT11].

e Near-optimal entrywise error: The ¢3/{, error bound (28b]) immediately yields entrywise control of
the empirical risk. Specifically, as soon as t is sufficiently large (so that the first term in (28b)) is negligible),
we have

XX T | < | XUE(XE - X) |+ |(XE - X)X
<|XTH [l JIXTH = X, o+ [ XOH - X, X

HQ,oo

< 0 nlogn

~
Urnln

*
M7 »

where the last line follows from as well as the facts that ||thI\’5—X*||27oo <1 X*||2,00 and || M*]|oo =
| X*||3 o- Compared with the Euclidean loss , this implies that when r = O(1), the entrywise error
of X*X*T is uniformly spread out across all entries. As far as we know, this is the first result that reveals
near-optimal entrywise error control for noisy matrix completion using nonconvex optimization, without
resorting to sample splitting.

Remark 4. Theorem [2| remains valid if the total number T of iterations obeys T' = n®M). In the noiseless
case where 0 = 0, the theory allows arbitrarily large 7.

Finally, we report the empirical statistical accuracy of vanilla gradient descent in the presence of noise.

Figure [6] displays the squared relative error of vanilla gradient descent as a function of the signal-to-noise
ratio (SNR), where the SNR is defined to be

* \2
Ygmen M) M
> (kyea Var (Ejk) n2g2 ’

and the relative error is measured in terms of the square of the metrics as in as well as the squared
entrywise prediction error. Both the relative error and the SNR are shown on a dB scale (i.e. 10log;,(SNR)
and 10log;,(squared relative error) are plotted). As one can see from the plot, the squared relative error
scales inversely proportional to the SNR, which is consistent with our theoryﬁ

SNR :=

(30)

3.3 Blind deconvolution
Suppose we have collected m bilinear measurements
y; = b'h*aa;, 1<j<m, (31)

where a; follows a complex Gaussian distribution, i.e. a; oy (O, %IK) +iN (0, %IK) for 1 < j <m, and
B:=[by, - 7bm]H € C™*K is formed by the first K columns of a unitary discrete Fourier transform (DFT)
matrix F' € C™*™ obeying FF" = I,,, (see Appendix for a brief introduction to DFT matrices). This
setup models blind deconvolution, where the two signals under convolution belong to known low-dimensional
subspaces of dimension K |ARR14ﬂ In particular, the partial DFT matrix B plays an important role in
image blind deblurring. In this subsection, we consider solving the following nonconvex optimization problem
m
minimizep, zecx  f (b, ) = Z ’b;'h:cHaj -y
j=1

K (32)

SNote that when M* is well-conditioned and when r = O(1), one can easily check that SNR =~ (||M*|2)/ (n?02) =<
o2, /(n?0?), and our theory says that the squared relative error bound is proportional to o2/02 ;.
For simplicity, we have set the dimensions of the two subspaces equal, and it is straightforward to extend our results to the

case of unequal subspace dimensions.
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Figure 6: Squared relative error of the estimate X (measured by ||-||g, |||, ||]|2.o modulo global transfor-

mation) and M=XX" (measured by |[|-||,) vs. SNR for noisy matrix completion, where n = 500, r = 10,
p = 0.1, and 1; = 0.2. Here X denotes the estimate returned by Algorithm [2| after convergence.

The (Wirtinger) gradient descent algorithm (with spectral initialization) is summarized in Algorithm here,
Vif(h,xz) and Vg f(h,xz) stand for the Wirtinger gradient and are given in and (78], respectively;
see |[CLS15, Section 6] for a brief introduction to Wirtinger calculus.

It is self-evident that h* and x* are only identifiable up to global scaling, that is, for any nonzero o € C,

1
h* ™ = Zh* (ax)".

Q

In light of this, we will measure the discrepancy between
z:= {h] € C*¥ and z* = [h*} € C?K (33)
T T

via the following function

1
dist (z,z*) := min \/Hah — h*

2
— |2 34
min 2+Haw x5 (34)

Algorithm 3 Vanilla gradient descent for blind deconvolution (with spectral initialization)

Input: {aj}1§j§m , {bj}lgjgm and {yj}}gjgm'
Spectral initialization: Let o;(M), h" and 2° be the leading singular value, left and right singular
vectors of

m
M = Zyjbja?,

j=1

respectively. Set h® = /o1 (M) h° and x° = /o, (M) z°.

Gradient updates: for t =0,1,2,...,7 —1 do
ht+1 _ ht o qu“% vhf(ht, ZBt) (35)
wt+1 :Bt 1 me(ht, J:t) .

Before proceeding, we need to introduce the incoherence parameter [ARR14,LLSW18|, which is crucial
for blind deconvolution, whose role is similar to the incoherence parameter (cf. Definition [3) in matrix
completion.
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Definition 4 (Incoherence for blind deconvolution). Let the incoherence parameter v of h* be the smallest
number such that u
H
lgagilbj h*| < i [R5 - (36)
The incoherence parameter describes the spectral flatness of the signal h*. With this definition in place,
we have the following theorem, where for identifiability we assume that ||h*||, = ||z*|,.

Theorem 3. Suppose the number of measurements obeys m > Cu2K log” m for some sufficiently large
constant C' > 0, and suppose the step size n > 0 is taken to be some sufficiently small constant. Then there
exist constants cy,ca, Cy,C3,Cy > 0 such that with probability exceeding 1 — cym™> — cyme™ 2K | the iterates
in Algorithm [3 satisfy

b1
dist (2, 2*) < C (1—i) * 37
it (,2) <G (1= 35) o 1l (37
1
H
@?fn‘al (a'z" —2*)| < C3bgT [E| P (37b)
max B Lht| < G log?m B (37¢)
1<i<m| Lot | T tm 2

for allt > 0. Here, we denote o' as the alignment parameter,

2

a' = arg min + ||ox’ — a:*”; (38)
2

aeC

1
—h' — h*
«

Theorem [3] provides the first theoretical guarantee of unregularized gradient descent for blind deconvo-
lution at a near-optimal statistical and computational complexity. A few remarks are in order.

e Implicit regularization: Theorem [3| reveals that the unregularized gradient descent iterates remain
incoherent with the sampling mechanism (see and ) Recall that prior works operate upon a
regularized cost function with an additional penalty term that regularizes the global scaling {||h||2, ||z]|2}
and the incoherence {|b?h|}1§j§m [LLSW18l|[HH17,|LS17]. In comparison, our theorem implies that it is
unnecessary to regularize either the incoherence or the scaling ambiguity, which is somewhat surprising.
This justifies the use of regularization-free (Wirtinger) gradient descent for blind deconvolution.

e Constant step size: Compared to the step size n; < 1/m suggested in [LLSW18| for regularized gradient
descent, our theory admits a substantially more aggressive step size (i.e. 7 =< 1) even without regular-
ization. Similar to phase retrieval, the computational efficiency is boosted by a factor of m, attaining
e-accuracy within O (log(1/¢)) iterations (vs. O (mlog(1/e)) iterations in prior theory).

e Near-optimal sample complexity: It is demonstrated that vanilla gradient descent succeeds at a
near-optimal sample complexity up to logarithmic factors, although our requirement is slightly worse
than [LLSW18| which uses explicit regularization. Notably, even under the sample complexity herein, the
iteration complexity given in [LLSW18] is still O (m/poly log(m)).

e Incoherence of spectral initialization: As in phase retrieval, Theorem [3] demonstrates that the es-
timates returned by the spectral method are incoherent with respect to both {a;} and {b;}. In con-
trast, [LLSW18] recommends a projection operation (via a linear program) to enforce incoherence of the
initial estimates, which is dispensable according to our theory.

e Contraction in [-||p: It is easy to check that the Frobenius norm error satisfies Hhta:tH - h*w*HHF S
dist (2%, 2*), and therefore Theorem [3| corroborates the empirical results shown in Figure (c)

4 Related work

Solving nonlinear systems of equations has received much attention in the past decade. Rather than directly
attacking the nonconvex formulation, convex relaxation lifts the object of interest into a higher dimensional
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space and then attempts recovery via semidefinite programming (e.g. [RFP10L/CSV13}|CR09,,ARR14]). This
has enjoyed great success in both theory and practice. Despite appealing statistical guarantees, semidefinite
programming is in general prohibitively expensive when processing large-scale datasets.

Nonconvex approaches, on the other end, have been under extensive study in the last few years, due to
their computational advantages. There is a growing list of statistical estimation problems for which noncon-
vex approaches are guaranteed to find global optimal solutions, including but not limited to phase retrieval
[NJS13,|CLS15,/CC17], low-rank matrix sensing and completion |TBST16, BNS16,|CW15}ZL15, GLM16],
blind deconvolution and self-calibration [LLSW18|[L.S17[LLB17,[LLJB17|, dictionary learning [SQW17|, ten-
sor decomposition [GM17], joint alignment [CC18|, learning shallow neural networks [SJL19,ZSJ*17], robust
subspace learning [NNS™14,[MZL19,|LM14, CJN17|. In several problems [SQW16,SQW17,|GM17,|GLM16,
LWL 16}|LT16,[MBM18,MZL19,DDP17|, it is further suggested that the optimization landscape is benign
under sufficiently large sample complexity, in the sense that all local minima are globally optimal, and
hence nonconvex iterative algorithms become promising in solving such problems. See for a recent
overview. Below we review the three problems studied in this paper in more details. Some state-of-the-art
results are summarized in Table [Il

e Phase retrieval. Candeés et al. proposed PhaseLift to solve the quadratic systems of equations
based on convex programming. Specifically, it lifts the decision variable x* into a rank-one matrix
X* = a*x*" and translates the quadratic constraints of x* in into linear constraints of X*. By
dropping the rank constraint, the problem becomes convex [CSV13|/CL14,/CCG15|/CZ15}/Trol5a]. An-
other convex program PhaseMax [GS18,[BR17,[HV16,[DTL17| operates in the natural parameter space
via linear programming, provided that an anchor vector is available. On the other hand, alternat-
ing minimization with sample splitting has been shown to enjoy much better computational
guarantee. In contrast, Wirtinger Flow provides the first global convergence result for non-
convex methods without sample splitting, whose statistical and computational guarantees are later im-
proved by |CC17| via an adaptive truncation strategy. Several other variants of WF are also pro-
posed |CLM™16,[KO16,[Sol19], among which an amplitude-based loss function has been investigated
[WGEL17,ZZLC17, WZGT18,|[WGSC17]. In particular, demonstrates that the amplitude-based
loss function has a better curvature, and vanilla gradient descent can indeed converge with a constant
step size at the order-wise optimal sample complexity. A small sample of other nonconvex phase retrieval
methods include [SBE14}[SR15}/CL16l/CFL15,DR18}|GX16}[Weil5BEB17, TV17|[CLW17|QZEW17], which
are beyond the scope of this paper.

e Matriz completion. Nuclear norm minimization was studied in as a convex relaxation paradigm to
solve the matrix completion problem. Under certain incoherence conditions imposed upon the ground truth
matrix, exact recovery is guaranteed under near-optimal sample complexity [CT10,Groll,Rec11}|Chelb
DR16]. Concurrently, several works [KMO10al[KMO10b|LB10,lJNS13,[HW14, HMLZ15,[ZWL15,|JN15
TW16), JKN16, WCCL16,ZWL15| tackled the matrix completion problem via nonconvex approaches. In
particular, the seminal work by Keshavan et al. [KMO10a, KMO10b| pioneered the two-stage approach
that is widely adopted by later works. Sun and Luo [SL16| demonstrated the convergence of gradient
descent type methods for noiseless matrix completion with a regularized nonconvex loss function. Instead
of penalizing the loss function, employed projection to enforce the incoherence condition
throughout the execution of the algorithm. To the best of our knowledge, no rigorous guarantees have
been established for matrix completion without explicit regularization. A notable exception is [JKN16|,
which uses unregularized stochastic gradient descent for matrix completion in the online setting. However,
the analysis is performed with fresh samples in each iteration. Our work closes the gap and makes the first
contribution towards understanding implicit regularization in gradient descent without sample splitting.
In addition, entrywise eigenvector perturbation has been studied by [JN15,AFWZ17,|CCF18| in order to
analyze the spectral algorithms for matrix completion, which helps us establish theoretical guarantees for
the spectral initialization step. Finally, it has recently been shown that the analysis of nonconvex gradient
descent in turn yields near-optimal statistical guarantees for convex relaxation in the context of noisy
matrix completion; see [CCFT19).

e Blind deconvolution. In |[ARR14|, Ahmed et al. first proposed to invoke similar lifting ideas for blind
deconvolution, which translates the bilinear measurements into a system of linear measurements of
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a rank-one matrix X* = h*ax*". Near-optimal performance guarantees have been established for convex
relaxation [ARR14]. Under the same model, Li et al. [LLSW18] proposed a regularized gradient descent
algorithm that directly optimizes the nonconvex loss function with a few regularization terms that
account for scaling ambiguity and incoherence. In [HH17|, a Riemannian steepest descent method is
developed that removes the regularization for scaling ambiguity, although they still need to regularize
for incoherence. In [AAH17|, a linear program is proposed but requires exact knowledge of the signs of
the signals. Blind deconvolution has also been studied for other models — interested readers may refer
to |Chil6,LS17,LLJB17,LS15, LTR16,ZLK 17, WC16].

On the other hand, our analysis framework is based on a leave-one-out perturbation argument. This tech-
nique has been widely used to analyze high-dimensional problems with random designs, including but not
limited to robust M-estimation [EKBBT13|[EK15|, statistical inference for sparse regression [JM™ 18], likeli-
hood ratio test in logistic regression [SCC17|, phase synchronization [ZB18|/AFWZ17|, ranking from pairwise
comparisons [CEMW17|, community recovery [AFWZ17|, and covariance sketching [LMCC18]|. In particular,
this technique results in tight performance guarantees for the generalized power method [ZB18], the spec-
tral method [AFWZ17,|CFMW17|, and convex programming approaches |[EK15,|ZB18,|SCC17,|CFMW17|,
however it has not been applied to analyze nonconvex optimization algorithms.

Finally, we note that the notion of implicit regularization — broadly defined — arises in settings far
beyond the models and algorithms considered herein. For instance, it has been conjectured that in matrix
factorization, over-parameterized stochastic gradient descent effectively enforces certain norm constraints,
allowing it to converge to a minimal-norm solution as long as it starts from the origin |[GWB™17]. The
stochastic gradient methods have also been shown to implicitly enforce Tikhonov regularization in several
statistical learning settings [LCR16]. More broadly, this phenomenon seems crucial in enabling efficient
training of deep neural networks |[ZBHT17,|SHS17].

5 A general recipe for trajectory analysis

In this section, we sketch a general recipe for establishing performance guarantees of gradient descent, which
conveys the key idea for proving the main results of this paper. The main challenge is to demonstrate
that appropriate incoherence conditions are preserved throughout the trajectory of the algorithm. This
requires exploiting statistical independence of the samples in a careful manner, in conjunction with generic
optimization theory. Central to our approach is a leave-one-out perturbation argument, which allows to
decouple the statistical dependency while controlling the component-wise incoherence measures.

General Recipe (a leave-one-out analysis)

Step 1: characterize restricted strong convexity and smoothness of f, and identify the region
of incoherence and contraction (RIC).

Step 2: introduce leave-one-out sequences {X*"1} and {H*®} for each I, where {X*1)}
(resp. {H*®}) is independent of any sample involving ¢; (resp. ;);

Step 3: establish the incoherence condition for {X*} and {H'} via induction. Suppose the
iterates satisfy the claimed conditions in the ¢th iteration:

(a) show, via restricted strong convexity, that the true iterates (X'™, H'™!) and the
leave-one-out version (X5 H*+1L(1)) are exceedingly close;

(b) use statistical independence to show that X*+1() — X* (resp. H'tHW) — H*) is
incoherent w.r.t. ¢ (resp. 1), namely, ||¢H( XL — X*)|l5 and | (HHHO —
H™)||2 are both well-controlled;

(¢) combine the bounds to establish the desired incoherence condition concerning
mae [ $f! (X1 — X*) > and max [ (H' — HY)|l>.
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5.1 General model

Consider the following problem where the samples are collected in a bilinear /quadratic form as
y =i H* X e, 1<j<m, (39)

where the objects of interest H*, X* € C™*" or R™*" might be vectors or tall matrices taking either real
or complex values. The design vectors {¢;} and {¢;} are in either C" or R", and can be either random or
deterministic. This model is quite general and entails all three examples in this paper as special cases:

o Phase retrieval: H* = X* = x* € R", and ¢; = ¢; = a;;
o Matriz completion: H* = X* € R"*" and v¥;,¢; € {e1,--- ,en};
o Blind deconvolution: H* = h* € CK, X* = ¢* € CK, ¢; = a;, and ¢Y; = b;.

For this setting, the empirical loss function is given by
. L~ on H 2
1(2) = S X) = 25 @ HX"S, —y|
=

where we denote Z = (H, X). To minimize f(Z), we proceed with vanilla gradient descent
Z"W =27"'—yVf(Z"), Vvt>0

following a standard spectral initialization, where 7 is the step size. As a remark, for complex-valued
problems, the gradient (resp. Hessian) should be understood as the Wirtinger gradient (resp. Hessian).

It is clear from that Z* = (H*, X™*) can only be recovered up to certain global ambiguity. For
clarity of presentation, we assume in this section that such ambiguity has already been taken care of via
proper global transformation.

5.2 Outline of the recipe

We are now positioned to outline the general recipe, which entails the following steps.

e Step 1: characterizing local geometry in the RIC. Our first step is to characterize a region R —
which we term as the region of incoherence and contraction (RIC) — such that the Hessian matrix V2 f(Z)
obeys strong convexity and smoothness,

0 <ol <V2f(Z) =< pBI, VZEeR, (40)

or at least along certain directions (i.e. restricted strong convexity and smoothness), where §/a scales
slowly (or even remains bounded) with the problem size. As revealed by optimization theory, this geometric
property immediately implies linear convergence with the contraction rate 1 — O(«/3) for a properly
chosen step size 7, as long as all iterates stay within the RIC.

A natural question then arises: what does the RIC R look like? As it turns out, the RIC typically contains
all points such that the ¢5 error ||Z — Z*||r is not too large and

(incoherence) max Hd)?(X - X" H2 and max H'Lb]H(H - H") H2 are well-controlled. (41)
j J

In the three examples, the above incoherence condition translates to:

— Phase retrieval: max; |a;»'— (x — :c*)’ is well-controlled;

— Matrix completion: ||X - X* is well-controlled;

||2,<>o

— Blind deconvolution: max; |a] (€ — *)| and max; |b] (b — h*)| are well-controlled.
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e Step 2: introducing the leave-one-out sequences. To justify that no iterates leave the RIC, we rely
on the construction of auxiliary sequences. Specifically, for each [, produce an auxiliary sequence {Zt’(l) =
(X0 /H5W)Y such that X+ (resp. H>(Y) is independent of any sample involving ¢; (resp. ;). As an
example, suppose that the ¢;’s and the 1;’s are independently and randomly generated. Then for each [,
one can consider a leave-one-out loss function

1 2
102) = 3 [l HX g, —y,
J:g#l
that discards the Ith sample. One further generates {Z t’(l)} by running vanilla gradient descent w.r.t. this

auxiliary loss function, with a spectral initialization that similarly discards the [th sample. Note that this
procedure is only introduced to facilitate analysis and is never implemented in practice.

e Step 3: establishing the incoherence condition. We are now ready to establish the incoherence
condition with the assistance of the auxiliary sequences. Usually the proof proceeds by induction, where
our goal is to show that the next iterate remains within the RIC, given that the current one does.

— Step 3(a): proximity between the original and the leave-one-out iterates. As one can antici-
pate, {Z'} and {Z*®} remain “glued” to each other along the whole trajectory, since their constructions
differ by only a single sample. In fact, as long as the initial estimates stay sufficiently close, their gaps
will never explode. To intuitively see why, use the fact Vf(Z?) ~ V1 (Z?") to discover that

Zt-‘rl _ Zt-‘rl,(l) — Zt _ nvf(zt) _ (Zt,(l) _ nvf(l) (Zt,(l)))
~ Zt _ Zt,(l) o nv2f(zt)(zt o Zt’(l)),
which together with the strong convexity condition implies ¢5 contraction

HZt-‘rl _ Zt+1,(1)HF ~ H(I _ nVQf(Zt)) (Zt _ Zt,(l))HF < HZt _ Zt,(l)HZ_

Indeed, (restricted) strong convexity is crucial in controlling the size of leave-one-out perturbations.

— Step 3(b): incoherence condition of the leave-one-out iterates. The fact that Z!*! and
Z*1(0) are exceedingly close motivates us to control the incoherence of Z*t1:() — Z* instead, for
1 <1 < m. By construction, X*t1.® (resp. Ht“’(l)) is statistically independent of any sample involv-
ing the design vector ¢; (resp. 1), a fact that typically leads to a more friendly analysis for controlling
lf! (10 = X*) ||, and [Jop7! (HTHO — H)],.

— Step 3(c): combining the bounds. With these results in place, apply the triangle inequality to
obtain

o (X4 = X, < [[ullaf| X = X EO 4 ol (X0 = X,

where the first term is controlled in Step 3(a) and the second term is controlled in Step 3(b). The term
||’l/)lH (H 1 _H *) ||2 can be bounded similarly. By choosing the bounds properly, this establishes the
incoherence condition for all 1 <[ < m as desired.

6 Analysis for phase retrieval

In this section, we instantiate the general recipe presented in Section[5]to phase retrieval and prove Theoreml[I]
Similar to the Section 7.1 in [CLS15|, we are going to use n; = ¢1/(logn - ||£*||3) instead of ¢1/(logn - ||zol|3)
as the step size for analysis. This is because with high probability, ||z¢||2 and ||x*||2 are rather close in the
relative sense. Without loss of generality, we assume throughout this section that ||:c*|| ,=1land

dist(z°, z*) = Haco —x¥2 < l® + z*|2. (42)

In addition, the gradient and the Hessian of f(-) for this problem (see ) are given respectively by

V@) = =3 [(@2) - 5] (a] ) (43)

Jj=1
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V(@)= =3 [3(a]e) ~ 1) aja. (1)

j=1

which are useful throughout the proof.

6.1 Step 1: characterizing local geometry in the RIC
6.1.1 Local geometry

We start by characterizing the region that enjoys both strong convexity and the desired level of smoothness.
This is supplied in the following lemma, which plays a crucial role in the subsequent analysis.

Lemma 1 (Restricted strong convexity and smoothness for phase retrieval). Fiz any sufficiently small
constant C1 > 0 and any sufficiently large constant Cy > 0, and suppose the sample complexity obeys
m > conlogn for some sufficiently large constant co > 0. With probability at least 1 — O(mn~10),

Vif(x) = (1/2) I
holds simultaneously for all x € R™ satisfying ||z — x*||, < 2C1; and
V2f (z) < (5Cy (10 + Cy) logn) - I,

holds simultaneously for all x € R™ obeying

| — 2|, <20y, (45a)
max |a x —x*)| < Cav/logn. (45b)
<<
Proof. See Appendix [A]] O

In words, Lemma [1| reveals that the Hessian matrix is positive definite and (almost) well-conditioned,
if one restricts attention to the set of points that are (i) not far away from the truth (cf. (45a))) and (ii)
incoherent with respect to the measurement vectors {a;}, ., (cf. (45b)).

6.1.2 Error contraction

As we point out before, the nice local geometry enables £5 contraction, which we formalize below.

Lemma 2. There exists an event that does not depend on t and has probability 1 — O(mn=1°), such that
when it happens and T obeys the conditions ([45]), one has

x HQ (1—=n/2) Hw -z ||2 (46)
provided that the step size satisfies 0 < n < 1/[56C5 (10 4+ Cs) logn].

Hmt-i-l

Proof. This proof applies the standard argument when establishing the ¢ error contraction of gradient
descent for strongly convex and smooth functions. See Appendix [A-2] O

With the help of Lemma [2 we can turn the proof of Theorem [I] into ensuring that the trajectory
{#'}o<i<,, lies in the RIC specified by .ﬁ This is formally stated in the next lemma.

Lemma 3. Suppose for all 0 < t < Ty := n, the trajectory {x'} falls within the region of incoherence and
contraction (termed the RIC), namely,

|l =], < €y, (47a)
max |al (z' — x*)| < Cyy/logn, (47b)

1<Ii<m

then the claims in Theorem |1| hold true. Here and throughout this section, C1,Cy > 0 are two absolute
constants as specified in Lemmal[d]

Proof. See Appendix [A73] O
8Here, we deliberately change 2C; in (45al) to C; in the definition of the RIC (47a]) to ensure the correctness of the analysis.
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6.2 Step 2: introducing the leave-one-out sequences

In comparison to the £5 error bound that captures the overall loss, the incoherence hypothesis (47bf) —
which concerns sample-wise control of the empirical risk — is more complicated to establish. This is partly
due to the statistical dependence between ' and the sampling vectors {a;}. As described in the general
recipe, the key idea is the introduction of a leave-one-out version of the WF iterates, which removes a single
measurement from consideration.

To be precise, for each 1 <[ < m, we define the leave-one-out empirical loss function as

0@ = 1= 3 [(a] @)~ (45)

and the auxiliary trajectory {:ct’(l) }t>0 is constructed by running WF w.r.t. f) (). In addition, the spectral

initialization %® is computed based on the rescaled leading eigenvector of the leave-one-out data matrix
1
0 ._ T
YO .= - Z yja;a; . (49)
J:j#l

Clearly, the entire sequence {wt>(l) } +>0 18 independent of the Ith sampling vector a;. This auxiliary procedure
is formally described in Algorithm [

Algorithm 4 The [th leave-one-out sequence for phase retrieval

Input: {a;}i<j<m 1 and {y;}i<j<m jzi-
Spectral initialization: let \; (Y(l)) and () be the leading eigenvalue and eigenvector of

1

l

y® — E yja;a; ,
Jii#l

respectively, and set

o _ JYyM Y O) a0, it @0 —a, <[|Z0 + 2],
—/A1 (YD) /3200 else.

Gradient updates: for t =0,1,2,...,7 —1 do

210 = g0 O (g0, (50)

6.3 Step 3: establishing the incoherence condition by induction

As revealed by Lemma it suffices to prove that the iterates {x'}o<:<7, satisfies (47) with high probability.
Our proof will be inductive in nature. For the sake of clarity, we list all the induction hypotheses:

2" — 2], < &, (51a)

1
nax. H:Bt - :c’fv(l)H2 < Csy/ ngLn (51b)
max |a] (z' —a*)| < C2y/logn. (51c)

1<j<m

Here C3 > 0 is some universal constant. For any ¢ > 0, define &, to be the event where the conditions in (51)
hold for the ¢-th iteration. According to Lemma there exists some event £ with probability 1 — O(mn~10)
such that on & N € one has

| E—— a:*||2 < (. (52)
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This subsection is devoted to establishing (51b)) and (51c) for the (¢ + 1)th iteration, assuming that
holds true up to the tth iteration. We defer the justification of the base case (i.e. initialization at ¢ = 0) to
Section

e Step 3(a): proximity between the original and the leave-one-out iterates. The leave-one-out
sequence {z"(V'} behaves similarly to the true WF iterates {z'} while maintaining statistical independence
with a;, a key fact that allows us to control the incoherence of Ith leave-one-out sequence w.r.t. a;. We
will formally quantify the gap between x!*! and x!**(®) in the following lemma, which establishes the

induction in (51b)).

Lemma 4. Suppose that the sample size obeys m > Cnlogn for some sufficiently large constant C > 0
and that the stepsize obeys 0 < n < 1/[6C2(10 + C3)logn]. Then on some event E111 C & obeying
P(&NEF1 ) = O(mn~10), one has

max Hmt-&-l _wt+1,(l)H <Gy /logn. (53)
1<i<m 2 n

Proof. The proof relies heavily on the restricted strong convexity (see Lemma (1) and is deferred to Ap-

pendix [A7] O]

e Step 3(b): incoherence of the leave-one-out iterates. By construction, x!*»®) is statistically
independent of the sampling vector a;. One can thus invoke the standard Gaussian concentration results
and the union bound to derive that on an event & 412 C & obeying P(& N&fy, 5) = O(mn~10),

< 5\/lognHwt+1’(l) — x*H2
< 5yogn ([lat 0 — 2, + o~ 2]],)

(i) 1
< 5v/logn <03 AL cl>

n
< Cyy/logn (54)

holds for some constant Cy > 6C7 > 0 and n sufficiently large. Here, (i) comes from the triangle inequality,
and (ii) arises from the proximity bound and the condition .

max |a;, (:):Hl’(l) —x*)
1<i<m

e Step 3(c): combining the bounds. We are now prepared to establish (51c|) for the (¢ + 1)th iteration.
Specifically,

max ‘al—r (2! — 2*)| < max a] (' — :ctH’(l))’ + max |a; (a:”l’(l) —x")

1<I<m = 1<i<m 1<i<m
(1)
< max [lallz[|z" " — zttt 0 H2 + Cy/logn
1<i<m

(ii) I
< Vb6n - Cs Ogn+04\/logn§02\/1ogn, (55)

n

where (i) follows from the Cauchy-Schwarz inequality and , the inequality (ii) is a consequence of
and , and the last inequality holds as long as Cs/(C3 + Cy) is sufficiently large. From the deduction
above we easily get P(&, N EF, 1) = O(mn~1Y).

Using mathematical induction and the union bound, we establish for all ¢ < T = n with high probability.
This in turn concludes the proof of Theorem (1}, as long as the hypotheses are valid for the base case.
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6.4 The base case: spectral initialization

In the end, we return to verify the induction hypotheses for the base case (¢ = 0), i.e. the spectral initialization
obeys . The following lemma justifies (51a)) by choosing ¢ sufficiently small.

Lemma 5. Fiz any small constant § > 0, and suppose m > conlogn for some large constant ¢y > 0.
Consider the two vectors z° and x° as defined in Algorithm 1, and suppose without loss of generality that
@ holds. Then with probability exceeding 1 — O(n=1%), one has

1Y —E[Y]|| <4, (56)
|20 — x*||o < 26 and Hio — :B*H2 < V26. (57)
Proof. This result follows directly from the Davis-Kahan sin® theorem. See Appendix [AZ5] O

We then move on to justifying (51b)), the proximity between the original and leave-one-out iterates for
t=0.

Lemma 6. Suppose m > conlogn for some large constant co > 0. Then with probability at least 1 — O(mn~10),
one has

logn
0_ 00| « g
éllegnnm x H2 < (s - (58)
Proof. This is also a consequence of the Davis-Kahan sin® theorem. See Appendix O

The final claim (51c)) can be proved using the same argument as in deriving 7 and hence is omitted.

7 Analysis for matrix completion

In this section, we instantiate the general recipe presented in Section [f] to matrix completion and prove
Theorem Before continuing, we first gather a few useful facts regarding the loss function in . The
gradient of it is given by
1
Vi(X)= 5730 [XXT - (M*+E)| X. (59)

We define the expected gradient (with respect to the sampling set ) to be
VF(X)=[XX"T-(M*+E)| X

and also the (expected) gradient without noise to be
1
V felean (X) = EPQ (XX"-M*")X and VFyn(X)=(XX"-M")X. (60)

In addition, we need the Hessian V? f.jean (X)), which is represented by an nr x nr matrix. Simple calculations
reveal that for any V' € R"*",

vee (V) V2 feiean (X)) vec (V) = % [P (VXT + XVT)|2 + % (Po(XXT —M*),VVT), — (61)

where vec(V) € R denotes the vectorization of V.
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7.1 Step 1: characterizing local geometry in the RIC
7.1.1 Local geometry

The first step is to characterize the region where the empirical loss function enjoys restricted strong convexity
and smoothness in an appropriate sense. This is formally stated in the following lemma.

Lemma 7 (Restricted strong convexity and smoothness for matrix completion). Suppose that the sample
size obeys n*p > Ck?urnlogn for some sufficiently large constant C > 0. Then with probability at least
1-0 (n‘lo), the Hessian V2 felean(X) as defined in obeys

Omin 5
vee (V)T V2 fogean (X)) vec (V) > 5 IVIg  and  ||V*fuean (X)]| < 5 T (62)
for all X and V =Y Hy — Z, with Hy := argmingcorx- |Y R — Z||, satisfying:
[ X = X[y, 00 < €l X7 [l5,00 5 (63a)
1Z - X < 81X, (63b)

where € < 1/v/k3prlog®n and § < 1/k.
Proof. See Appendix [B-] O

Lemmal 7] reveals that the Hessian matrix is well-conditioned in a neighborhood close to X* that remains
incoherent measured in the ¢5/¢o, norm (cf. ), and along directions that point towards points which
are not far away from the truth in the spectral norm (cf. (63D)).

Remark 5. The second condition is characterized using the spectral norm ||-||, while in previous works
this is typically presented in the Frobenius norm || - ||g. It is also worth noting that the Hessian matrix —
even in the infinite-sample and noiseless case — is rank-deficient and cannot be positive definite. As a result,

we resort to the form of strong convexity by restricting attention to certain directions (see the conditions on
V).

7.1.2 Error contraction

Our goal is to demonstrate the error bounds measured in three different norms. Notably, as long as
the iterates satisfy at the tth iteration, then || X'H® — X*||3 o is sufficiently small. Under our sample

complexity assumption, X tH* satisfies the U5/l condition (63a)) required in Lemma Consequently, we
can invoke Lemma [7] to arrive at the following error contraction result.

Lemma 8 (Contraction w.r.t. the Frobenius norm). Suppose that n’p > Cr3ur3nlog® n for some suffi-
ciently large constant C' > 0, the noise satisfies . There exists an event that does not depend on t and
has probability 1 — O(n=1°), such that when it happens and (28al), ([28b]) hold for the tth iteration, one has

—~ 1 o n
t+1 7 t+1 * t+1 * *
| XH - X < Cup! | Xl + Ch \/;HX Il

np Omin
provided that 0 < 1 < 2/(25K0max), 1 — (omin/4) -1 < p < 1, and Cy is sufficiently large.
Proof. The proof is built upon Lemma[7] See Appendix O

Further, if the current iterate satisfies all three conditions in (28]), then we can derive a stronger sense of
error contraction, namely, contraction in terms of the spectral norm.

Lemma 9 (Contraction w.r.t. the spectral norm). Suppose n’p > Cr3pPr3nlog® n for some sufficiently
large constant C' > 0 and the noise satisfies (27)). There exists an event that does not depend on t and has
probability 1 — O(n~=19), such that when it happens and holds for the tth iteration, one has

— 1 o n
XTH — X*|| < Cgptt! X*|+C X 64
I | < Cop M”"\/@H |l + 10— pH | (64)

provided that 0 <n <1/ (20max) and 1 — (omin/3) - n < p < 1.
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Proof. The key observation is this: the iterate that proceeds according to the population-level gradient
reduces the error w.r.t. || - ||, namely,

| X H' — 0V Foean (XTHY) — X*|| < | X*H' — X*|,

as long as X'H! is sufficiently close to the truth. Notably, the orthonormal matrix H?! is still chosen
to be the one that minimizes the || - ||p distance (as opposed to || - ||), which yields a symmetry property

X*TX'H = (Xtﬁt)TX*, crucial for our analysis. See Appendix for details. O

7.2 Step 2: introducing the leave-one-out sequences

In order to establish the incoherence properties for the entire trajectory, which is difficult to deal with
directly due to the complicated statistical dependence, we introduce a collection of leave-one-out versions
of {X*},5,, denoted by {Xt’(l)}t>0 for each 1 <1 < n. Specifically, {Xt’(l)}t>0 is the iterates of gradient
descent oi)erating on the auxiliary loss function -

1 1
fO(X) = yo [Po-t [XXT = (M* + E)]||2 + 7 P(xx’ - M2 (65)

Here, Pq, (resp. Po-: and P;) represents the orthogonal projection onto the subspace of matrices which
vanish outside of the index set € := {(i,7) € Q| i =1lor j =1} (resp. Q7' :={(i,j) €Q|i#1,j#1} and
{(#,4) | ¢ =1 or j =1}); that is, for any matrix M,

M, ;, if i=1lorj=1) and (i,j) € Q,

66
0, else, (66)

[Pa, (M)]” = {

My, ifi#1and j# 1 and (i,5) € Q

0, ifi#£1land j #1,
Pa-i (M)]. . = d [P(M)], .=
[ Q! ( )]w {07 else an [ l( )L,J {Mi,jv ifi=1lorj=1L
(67)
The gradient of the leave-one-out loss function is given by
1
viO(x)= 13799_1 (XXT - (M*+E)]X+P (XX - M*) X. (68)

The full algorithm to obtain the leave-one-out sequence {X*®},5q (including spectral initialization) is
summarized in Algorithm [5]

Algorithm 5 The [th leave-one-out sequence for matrix completion
Input: Y = [Y;vj]lgi,jgn M, M, p.
Spectral initialization: Let U>OXOU%MT be the top-r eigendecomposition of

1 1
MO = ]37394 (Y)+ P (M*) = 57394 (M* + E)+ P, (M*)

with Po-: and P, defined in (§7), and set X00) = g0 (£O)"/?,

Gradient updates: for t =0,1,2,...,7—1 do

X0 = X0 0 (X0 0), (69)

Remark 6. Rather than simply dropping all samples in the [th row/column, we replace the {th row/column
with their respective population means. In other words, the leave-one-out gradient forms an unbiased
surrogate for the true gradient, which is particularly important in ensuring high estimation accuracy.
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7.3 Step 3: establishing the incoherence condition by induction

We will continue the proof of Theorem [2] in an inductive manner. As seen in Section the induction
hypotheses and hold for the (t+1)th iteration as long as holds at the tth iteration. Therefore,
we are left with proving the incoherence hypothesis for all0 <t < T = O(n®). For clarity of analysis, it
is crucial to maintain a list of induction hypotheses, which includes a few more hypotheses that complement

, and is given below.
1
X! H' - X g < (C4P pr +C1 OJ \/>> 1 X* s, (70a)

I
X H! - X*||2m_<c5pm,/ + Cs— ,/”Og”> [P. <[P (70b)

| X*H' - X*|| < (Cgp ur +C 7 ) X+, (70c)

1
max | XTH' = X"ORM|| < (@w,/ +C’amm\/n°g”> Xl 0es  (70d)
o nlogn
s [[(XAOF0 x| < (cWﬁw%m,/ : )n

hold for some absolute constants 0 < p < 1 and Cy,---,C1g > 0. Here, Ht® and R*® are orthonormal
matrices defined by

(70e)

,OO

HO = arg min || X*OWR - X*

REOT‘XT

. (1)

R*W .= arg min [|[X*WR-— X'H (72)

ReO™*r

le-

Clearly, the ﬁrst three hypotheses constitute the conclusion of Theorem' ie. . The last two
hypotheses (70d|) and are aux1hary propertles connecting the true iterates and the auxﬂlary leave-one-
out sequences. Moreover, we summarize below several immediate consequences of , which will be useful
throughout.

Lemma 10. Suppose n?p > Cr3u®r’nlogn for some sufficiently large constant C' > 0 and the noise satisfies
. Under the hypotheses , one has

HXtiI\t - Xt’(l)fI\t’(l)HF < 5k thﬁt - XtvU)R“”HF , (73a)

1 o n
< <20, 2 s Ix*
< {aowtir = v20 T Fh X,
1 I
prono - x, . <{cvs om0 1 o \/@}nxww (750
,00 np Omin p l

— 1 o n
XtWHEHD — x*|| < {20yt 20 = IX*|. 73d
| | < 9p pr D +2C10 o \ D (Xl (73d)

In particular, (73a) follows from hypotheses (70c|) and (70d]).
Proof. See Appendix [B4] O

HXt,(l)ﬁt,(l) _ X*H < HXt,(l)Rt,(l) _ X*
F = F

In the sequel, we follow the general recipe outlined in Section [f] to establish the induction hypotheses.

We only need to establish (70b)), (70d) and (70e) for the (¢ + 1)th iteration, since (70a)) and (70c|) have been

established in Section Specifically, we resort to the leave-one-out iterates by showing that: first, the
true and the auxiliary iterates remain exceedingly close throughout; second, the Ith leave-one-out sequence
stays incoherent with e; due to statistical independence.
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e Step 3(a): proximity between the original and the leave-one-out iterates. We demonstrate
that X**! is well approximated by X**() up to proper orthonormal transforms. This is precisely the
induction hypothesis (70d) for the (¢ 4+ 1)th iteration.

Lemma 11. Suppose the sample complexity satisfies n®p > Cr*p*r3nlog® n for some sufficiently large
constant C' > 0 and the noise satisfies . Let & be the event where the hypotheses in hold for the
tth iteration. Then on some event 411 C & obeying P(& NEF, 1) = O(n™10), we have

logn nlogn

np

— g
HXt-HHt-H _ xt+1L.0) gt+1L.@0) HF < Cgpt+1u7“ ||X*H2,oo + 0707. HX*HZ,oo (74)

provided that 0 <1 < 2/(25k0max); 1 — (Omin/5) -1 < p <1 and C7 > 0 is sufficiently large.

Proof. The fact that this difference is well-controlled relies heavily on the benign geometric property of the
Hessian revealed by Lemmalﬂ Two important remarks are in order: (1) both points X*H* and X*® Rt
satisfy (63a]); (2) the difference X tHt — XtO RO forms a valid direction for restricted strong convexity.
These two properties together allow us to invoke Lemma [7] See Appendix O

e Step 3(b): incoherence of the leave-one-out iterates. Given that X*+1() is sufficiently close to
X't we turn our attention to establishing the incoherence of this surrogate X*t1() wr.t. ;. This
amounts to proving the induction hypothesis (70e]) for the (¢ + 1)th iteration.

Lemma 12. Suppose the sample complexity meets n’p > Cng;ﬁr?’nloggn for some sufficiently large
constant C' > 0 and the noise satisfies , Let & be the event where the hypotheses in hold for the
tth iteration. Then on some event Ey19 C & obeying P(E NEF,, 5) = O(n™10), we have

1 N o nlogn .,
1 X l5,00 + Co X

vV np Omin p ||2,o<>

so long as 0 < n < 1/0max, 1 — (omin/3) -0 < p <1, Oy > kCy and Cg > kCio/+/logn.

Xt+1’(l)ﬁt+1’(l) _ X* S Oth+1ur 75
Ll

Proof. The key observation is that X*'*%() is statistically independent from any sample in the Ilth
row/column of the matrix. Since there are an order of np samples in each row/column, we obtain enough
information that helps establish the desired incoherence property. See Appendix [B.6] O

e Step 3(c): combining the bounds. The inequalities (70d)) and (70e) taken collectively allow us to
establish the induction hypothesis (70bf). Specifically, for every 1 <[ < n, write

(Xt+1ﬁt+1 . X*)z = (Xt+1ﬁt+1 . Xt+1,(l)ﬁt+1,(l))l + (Xt+17(l)ﬁt+l,(l) . X*)z '7

and the triangle inequality gives

H (Xt+1ﬁt+1 . X*)z H2 < HXt-i-lf_I\t+1 _ Xt—i—l,(l)f_I\t+1,(l)HF + H(Xt+1,(l)f{\t+1,(l) _ X*) (76)

Ll
The second term has already been bounded by . Since we have established the induction hypotheses
(70c) and (70d)) for the (¢+1)th iteration, the first term can be bounded by (73al) for the (¢+1)th iteration,
ie.
HXtﬂﬁtﬂ B Xt+1,(z)ﬁt+1,(z)H <5k HXtJrll/'_I\t+1 _ Xt+1,(l)Rt+1,(l)H
P

Plugging the above inequality, and into , we have

F

HXt+1ﬁt+1 _x*

logn Cr nlogn
<5k | Cyp™t — || X* + — X*
I K < 3P THT p [ ||2,oo Umina D [ ||2,oo
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1 N Cs nlogn
\/TTPHX 2’°O+0 7

+ Cop'™ pr

logn Cy nlogn
< Csp'pr e ||X*||2,oo + ——0

min

1 X l3 00

as long as C5/(kC5+C2) and Cys /(kC7+Cs) are sufficiently large. This establishes the induction hypothesis
(70b). From the deduction above we see & N EF,; = O(n™1°) and thus finish the proof.

7.4 The base case: spectral initialization

Finally, we return to check the base case, namely, we aim to show that the spectral initialization satisfies
the induction hypotheses ([70a))-(70€) for ¢ = 0. This is accomplished via the following lemma.

Lemma 13. Suppose the sample size obeys n’p > Cur?nlogn for some sufficiently large constant C > 0,
the noise satisfies , and K = Omax/Omin < 1. Then with probability at least 1 — O (n’lo), the claims in

(70a)-(70€]) hold simultaneously for t = 0.

Proof. This follows by invoking the Davis-Kahan sin® theorem |[DK70| as well as the entrywise eigenvector
perturbation analysis in [AFWZ17|. We defer the proof to Appendix O

8 Analysis for blind deconvolution

In this section, we instantiate the general recipe presented in Section [ to blind deconvolution and prove
Theorem (3] Without loss of generality, we assume throughout that ||h*||, = [|&*||, = 1.

Before presenting the analysis, we first gather some simple facts about the empirical loss function in
(32). Recall the definition of z in (33)), and for notational simplicity, we write f (z) = f(h,x). Since z is
complex-valued, we need to resort to Wirtinger calculus; see [CLS15| Section 6] for a brief introduction. The
Wirtinger gradient of with respect to h and x are given respectively by

|

Vif(z)=Vuf(h,x) (b haa; — y;) bjalle; (77)

j=1

M

Vol (z) =Vaf (h,x) =) (blhata; —y;)a;blh. (78)

=1

It is worth noting that the formal Wirtinger gradient contains V7 f (h,x) and Vzf (h,x) as well. Neverthe-
less, since f (h,x) is a real-valued function, the following identities always hold

Vuf(h,x) =V f(h,x) and Vof (h,x) =Vzf (h,x).

In light of these observations, one often omits the gradient with respect to the conjugates; correspondingly,
the gradient update rule can be written as

3

1 n H H H
hitl = nt — BT > (bfntaMa; — y;) bjalia’, (79a)
j=1
7’] m
o=t S e, o (79b)
j=1

We can also compute the Wirtinger Hessian of f(z) as follows,

Ve =] g 5],
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where

m 2 m
A— [ 2= ‘an‘ b;b H y pIyi (bthHajz_ v5) bja? 1 € C2Kx2K,
S [(bhata; —y])b a'l] S bR ajal
-
B = 0 Z] 1 b; th (aja x) c C2Kx2K
Z] Laja; Ha (b, th) 0

Last but not least, we say (h1, 1) is aligned with (hga,x2), if the following holds,

2
1
hy — hol — @32 =min{ || =hy — h
[h1 = ha|ly + [l&1 — @2]; ggg{Ha 1 — hy

+ llazy — x2|§} :
2

o [f]- [

with the alighment parameter o! given in . Then we can see that z? is aligned with z* and
dist (2, 2*) = dist (2*,2%) = H%’t - z*||2 .

To simplify notations, define 2t as

8.1 Step 1: characterizing local geometry in the RIC
8.1.1 Local geometry

The first step is to characterize the region of incoherence and contraction (RIC), where the empirical loss
function enjoys restricted strong convexity and smoothness properties. To this end, we have the following
lemma.

Lemma 14 (Restricted strong convexity and smoothness for blind deconvolution). Let ¢ > 0 be a sufficiently
small constant and

6 = ¢/ log® m.

Suppose the sample size satisfies m > COuQKlogg m for some sufficiently large constant cg > 0. Then with
probability 1 — O (m’lo +e Klog m), the Wirtinger Hessian V2 f (z) obeys

"[DV3f(2) + V2f () D]u> (1/4) - |ull;  and  ||[V*f(2)] <3

simultaneously for all

h1 — h2 ’YlIK
[ R | T _ Yol
Z_[:c] and u = h— h, and D = Tk ,
T — T2 Yolk
where z satisfies
max {||h — h*|;, & — z"[|,} <6 (82a)
1
_ < - .
11<r§ag§n‘a x— ") < 20310g3/2m’ (82b)
H K
1%a<}$n|b h| < 26’4\F10g m; (82¢)
(h1,21) is aligned with (ha, x3), and they satisfy
max {[|hy —h*[|y, [[ho — h* |y, lor — 27|, [z — 2", } < 6 (83)
and finally, D satisfies for v1,72 € R,
max {|y1 =1/, |y2 — 1} < 6. (84)

Here, C3,Cy > 0 are numerical constants.
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Proof. See Appendix O

Lemma [14] characterizes the restricted strong convexity and smoothness of the loss function used in blind
deconvolution. To the best of our knowledge, this provides the first characterization regarding geometric
properties of the Hessian matrix for blind deconvolution. A few interpretations are in order.

e The conditions specify the region of incoherence and contraction (RIC). In particular, (82a)) specifies
a neighborhood that is close to the ground truth in ¢ norm, and (82b)) and (82| specify the incoherence
region with respect to the sensing vectors {a;} and {b;}, respectively.

e Similar to matrix completion, the Hessian matrix is rank-deficient even at the population level. Con-
sequently, we resort to a restricted form of strong convexity by focusing on certain directions. More
specifically, these directions can be viewed as the difference between two pre-aligned points that are not
far from the truth, which is characterized by .

e Finally, the diagonal matrix D accounts for scaling factors that are not too far from 1 (see ), which
allows us to account for different step sizes employed for h and x.
8.1.2 Error contraction

The restricted strong convexity and smoothness allow us to establish the contraction of the error measured
in terms of dist(-, z*) as defined in as long as the iterates stay in the RIC.

Lemma 15. Suppose the number of measurements satisfies m > Cp2K log” m for some sufficiently large
constant C' > 0, and the step size n > 0 is some sufficiently small constant. There exists an event that does
not depend on t and has probability 1 — O (m’lo +e Klog m), such that when it happens and

dist (zt, z*) <g, (85a)
1
H Tt — r* < -
1213‘22(771’% (@ -7 < C’3logl'5m’ (850)
H~t < L 2
1%2%%” b;h'| < 6’4\/7nlog m (85¢)

hold for some constants C5,Cy > 0, one has
dist (2", 2*) < (1 —n/16) dist (2", 2*) .
Here, ht and Tt are defined in , and & < 1/log®m.

Proof. See Appendix O
As a result, if z! satisfies the condition forall 0 <t¢ < T, then

dist (zt7 z*) < pdist (ztfl7 z*) < pldist (zo, z*) < pley, 0<t<T,

where p := 1 — n/16. Furthermore, similar to the case of phase retrieval (i.e. Lemma [3)), as soon as we
demonstrate that the conditions hold for all 0 < ¢ < m, then Theorem |3| holds true. The proof of this
claim is exactly the same as for Lemma [3] and is thus omitted for conciseness. In what follows, we focus on
establishing forall0 <t <m.

Before concluding this subsection, we make note of another important result that concerns the alignment
parameter o, which will be useful in the subsequent analysis. Specifically, the alignment parameter sequence
{at} converges linearly to a constant whose magnitude is fairly close to 1, as long as the two initial vectors
h® and x° have similar /; norms and are close to the truth. Given that ol determines the global scaling of
the iterates, this reveals rapid convergence of both ||ht||z and ||x!||2, which explains why there is no need to
impose extra terms to regularize the ¢3 norm as employed in [LLSW18,[HH17|.

Lemma 16. When m > 1 is sufficiently large, the following two claims hold true.
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o If |laf| — 1| < 1/2 and dist(2?, 2*) < C1/log” m, then

at+1

- 1‘ < cdist(z", 2%) < CC;
log“m

for some absolute constant ¢ > 0;
o If [|a®| — 1| < 1/4 and dist(2*,2*) < C1(1 —n/16)*/log® m for all 0 < s < t, then one has

st = 1] < 1/2, 0<s<t.

Proof. See Appendix O
The initial condition ’|a0| — 1‘ < 1/4 will be guaranteed to hold with high probability by Lemma

8.2 Step 2: introducing the leave-one-out sequences

As demonstrated by the assumptions in Lemma [I5] the key is to show that the whole trajectory lies in
the region specified by —. Once again, the difficulty lies in the statistical dependency between the
iterates {z'} and the measurement vectors {a;}. We follow the general recipe and introduce the leave-one-
out sequences, denoted by {ht(®), gt ® } s for each 1 <1 < m. Specifically, {nt-O®, :ct’(l)}t>0 is the gradient
sequence operating on the loss function a

o (h,x) := Z ]b;' (th _ h*m*”) aj|2. (86)
Jg#l
The whole sequence is constructed by running gradient descent with spectral initialization on the leave-one-
out loss . The precise description is supplied in Algorithm @
t,(1)
For notational simplicity, we denote z() = [ ’al:t’(l) } and use f(z4®) = f(h»® xt1) interchangeably.
Define similarly the alignment parameters

2

1
ot = argmin || =W — B*|| + ||a:ct’(l) - w*Hz, (87)
aeC || 2
htM
and denote z24() = [ gt,(z) } where
B — tl(l) RO and @00 — gt Ogh() (88)
a k)

Algorithm 6 The [th leave-one-out sequence for blind deconvolution

Input: {a;} ;< 105 hi<jam i 20 Y5hcjcm e
Spectral initialization: Let oy (M®), h®® and %" be the leading singular value, left and right
singular vectors of

MY =" y;bal,
J:j#l
respectively. Set h%®) = /o1 (M®) hO® and 200 = /o (M D) £00).
Gradient updates: for t =0,1,2,...,7 —1 do

Rt+LO) | 3A0) mvhf(l) (ht7(l)7 wt,(l))
L@ | T gt | T 7”,1&»”2 Vo f® (ht,(l)7 wt,(l)) .
2
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8.3 Step 3: establishing the incoherence condition by induction

As usual, we continue the proof in an inductive manner. For clarity of presentation, we list below the set of
induction hypotheses underlying our analysis:

1

dist (2%, 2%) < C , 90a
( ) - 110g2m (90a)
. e 12K log” m
max dist(z",2") < Gy — (90b)
1<Ii<m N/ m
1
~t
max |by' ht| < 04—10g m, (90d)

1<I<m vm

where ht, ¢ and 2! are defined in . Here, C1,C3 > 0 are some sufficiently small constants, while
C5,Cy > 0 are some sufficiently large constants. We aim to show that if these hypotheses hold up to
the tth iteration, then the same would hold for the (¢ + 1)th iteration with exceedingly high probability (e.g.
1 — O(m~1%). The first hypothesis has already been established in Lemma and hence the rest of
this section focuses on establishing the remaining three. To justify the incoherence hypotheses and
for the (¢ + 1)th iteration, we need to leverage the nice properties of the leave-one-out sequences, and
establish first. In the sequel, we follow the steps suggested in the general recipe.

e Step 3(a): proximity between the original and the leave-one-out iterates. We first justify the
hypothesis for the (¢ + 1)th iteration via the following lemma.

Lemma 17. Suppose the sample complexity obeys m > CuzKlogg m for some sufficiently large constant
C > 0. Let & be the event where the hypotheses — hold for the tth iteration. Then on an event
Ery11 C & obeying P(E, NEF, 1) = O(m™10 +me=%) for some constant ¢ > 0, one has

| 11K log”
max dist (210, 31 < 0L R 08 T
1<i<m vm m

and max H"'t+1 () _ ~4&+1||2 <, Ko H Klog m

1<i<m ym ’

provided that the step size n > 0 is some sufficiently small constant.

Proof. As usual, this result follows from the restricted strong convexity, which forces the distance between
the two sequences of interest to be contractive. See Appendix [C.3] O

e Step 3(b): incoherence of the leave-one-out iterate x!*%() w.r.t. a;. Next, we show that the
leave-one-out iterate T — which is independent of a; — is incoherent w.r.t. a; in the sense that

1

log®?m

‘a? (0 — %) (91)

with probability exceeding 1 — O (m_lo +e Klog m). To see why, use the statistical independence and
the standard Gaussian concentration inequality to show that

max |a} (i“‘l’(l) —z*)
1<i<m

logm max Hw“‘l D — H2

with probability exceeding 1 — O(m~1°). It then follows from the triangle inequality that

[0 — 2, < (3O =, + 3 -2
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(i) 2K log® 1
<COC,JEZ 8 o
Vvm m log®m

(ii) 1
< 201 2 )
log”m

where (i) follows from Lemmas |15 and and (ii) holds as soon as m/(u2vV'K log"®?m) is sufficiently
large. Combining the preceding two bounds establishes .

Step 3(c): combining the bounds to show incoherence of z'*! w.r.t. {a;}. The above bounds
immediately allow us to conclude that

~ 1
11%1[;%}7(11 |a;'| (a;t+1 — ;Ij*)| < Cglogng

with probability at least 1 — O (m_lo +e Klog m), which is exactly the hypothesis |i for the (t+1)th
iteration. Specifically, for each 1 <1 < m, the triangle inequality yields

laf' (@ — 2)| < ‘alH (@ - 5t+1,(l))‘ " ’alH CARRUIPS

(i)
< [l Hit“ - 5t+17(l>H2 i ‘azH @0 — g¥)

(ii) 2 K log? 1
< 3VEK - CO oy [ 28 T o0y ———
vm m logs/ m
(iii) 1
= Sl
Here (i) follows from Cauchy-Schwarz, (ii) is a consequence of ((190), Lemma [17| and the bound , and
the last inequality holds as long as m/(u>K log® m) is sufficiently large and C5 > 11C}.

Step 3(d): incoherence of h!™! w.r.t. {b;}. It remains to justify that h!*! is also incoherent w.r.t. its
associated design vectors {b;}. This proof of this step, however, is much more involved and challenging,
due to the deterministic nature of the b;’s. As a result, we would need to “propagate” the randomness
brought about by {a;} to h'*! in order to facilitate the analysis. The result is summarized as follows.

Lemma 18. Suppose that the sample complexity obeys m > Cu2K log®m for some sufficiently large
constant C' > 0. Let & be the event where the hypotheses — hold for the tth iteration. Then on
an event Ex11,5 C & obeying P(E NEF, 5) = O(m™'Y), one has

bHEtH’ <P 1002
122’%‘ l < Ci s logim
as long as Cy is sufficiently large, and n > 0 is taken to be some sufficiently small constant.

Proof. The key idea is to divide {1,--- ,m} into consecutive bins each of size poly log(m), and to exploit

the randomness (namely, the randomness from a;) within each bin. This binning idea is crucial in ensuring
that the incoherence measure of interest does not blow up as t increases. See Appendix [C.4] O

With these steps in place, we conclude the proof of Theorem [3] via induction and the union bound.

8.4 The base case: spectral initialization

In order to finish the induction steps, we still need to justify the induction hypotheses for the base cases,
namely, we need to show that the spectral initializations 2° and {z%("}, _ _  satisfy the induction hypothe-

sesatt:O.

To start with, the initializations are sufficiently close to the truth when measured by the 5 norm, as

summarized by the following lemma.
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Lemma 19. Fiz any small constant & > 0. Suppose the sample size obeys m > Cp?K log? m/&? for some
sufficiently large constant C' > 0. Then with probability at least 1 — O(m™19), we have

aeg}ﬁ(?\:l{uaho_h*HQ—'_ laz® —z*|,} < ¢ and (92)
LB {Haho’(l) —h*|, + [laz®® — ac*||2} <¢  1<i<m, (93)

and ||ag| — 1| < 1/4.
Proof. This follows from Wedin’s sin® theorem [Wed72] and [LLSW18| Lemma 5.20]. See Appendix[C.5] [
From the definition of dist(-,-) (cf. (34))), we immediately have

2

()
dist(2°, 2*) = min \/th—h* + Ham—m*Hg < min{th—h* +||a:13—a:*||2}
acC |\ || @ ) acC | ||@ )
Y min {[Jah® — B[], + loa® - o],} € €1 (04)
T a€eClal=1 2 20 = long’

as long as m > Cp?K log® m for some sufficiently large constant C' > 0. Here (i) follows from the elementary
inequality that a? + b* < (a + b)2 for positive a and b, (ii) holds since the feasible set of the latter one is
strictly smaller, and (iii) follows directly from Lemma This finishes the proof of for t = 0. Similarly,
with high probability we have

1

log®m’

dist(zo’(l),z*) < min {Haho,(z) _ h*Hz n Hawo,(z) _ w*Hz} <

1<i<m. (95)
a€eC,|al=1

Next, when properly aligned, the true initial estimate z° and the leave-one-out estimate z% () are expected
to be sufficiently close, as claimed by the following lemma. Along the way, we show that h° is incoherent

w.r.t. the sampling vectors {b;}. This establishes and for t = 0.

Lemma 20. Suppose that m > Cp2K log® m for some sufficiently large constant C' > 0. Then with proba-
bility at least 1 — O(m~10), one has

2K log®
max dist(zo’(l),go) < C2M\/m (96)
1<i<m v/ m m

2
max ’b;"ﬁo‘ < C4Mloﬂ.

1<i<m vm

Proof. The key is to establish that dist (zo’(l)7 EO) can be upper bounded by some linear scaling of |b;"l~10|,
and vice versa. This allows us to derive bounds simultaneously for both quantities. See Appendix O

and

(97)

Finally, we establish (90c|) regarding the incoherence of ° with respect to the design vectors {a;}.

Lemma 21. Suppose that m > Cu2K log® m for some sufficiently large constant C > 0. Then with proba-
bility exceeding 1 — O(m~1°), we have

1

. [af! (@7 —at)| < O

Proof. See Appendix [C.7] O
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9 Discussions

This paper showcases an important phenomenon in nonconvex optimization: even without explicit enforce-
ment of regularization, the vanilla form of gradient descent effectively achieves implicit regularization for a
large family of statistical estimation problems. We believe this phenomenon arises in problems far beyond
the three cases studied herein, and our results are initial steps towards understanding this fundamental
phenomenon. There are numerous avenues open for future investigation, and we point out a few of them.

o Improving sample complexity. In the current paper, the required sample complexity O (,u37"3n10g3 n) for
matrix completion is sub-optimal when the rank r of the underlying matrix is large. While this allows us
to achieve a dimension-free iteration complexity, it is slightly higher than the sample complexity derived
for regularized gradient descent in [CW15]. We expect our results continue to hold under lower sample
complexity O (,u2r2nlog n), but it calls for a more refined analysis (e.g. a generic chaining argument).

e Leave-one-out tricks for more gemeral designs. So far our focus is on independent designs, including
the i.i.d. Gaussian design adopted in phase retrieval and partially in blind deconvolution, as well as the
independent sampling mechanism in matrix completion. Such independence property creates some sort
of “statistical homogeneity”, for which the leave-one-out argument works beautifully. It remains unclear
how to generalize such leave-one-out tricks for more general designs (e.g. more general sampling patterns
in matrix completion and more structured Fourier designs in phase retrieval and blind deconvolution). In
fact, the readers can already get a flavor of this issue in the analysis of blind deconvolution, where the
Fourier design vectors require much more delicate treatments than purely Gaussian designs.

o Uniform stability. The leave-one-out perturbation argument is established upon a basic fact: when we
exclude one sample from consideration, the resulting estimates/predictions do not deviate much from the
original ones. This leave-one-out stability bears similarity to the notion of uniform stability studied in
statistical learning theory [BE02]. We expect our analysis framework to be helpful for analyzing other
learning algorithms that are uniformly stable.

e Other iterative methods and other loss functions. The focus of the current paper has been the analysis
of vanilla GD tailored to the natural squared loss. This is by no means to advocate GD as the top-
performing algorithm in practice; rather, we are using this simple algorithm to isolate some seemingly
pervasive phenomena (i.e. implicit regularization) that generic optimization theory fails to account for.
The simplicity of vanilla GD makes it an ideal object to initiate such discussions. That being said,
practitioners should definitely explore as many algorithmic alternatives as possible before settling on
a particular algorithm. Take phase retrieval for example: iterative methods other than GD and /or
algorithms tailored to other loss functions have been proposed in the nonconvex optimization literature,
including but not limited to alternating minimization, block coordinate descent, and sub-gradient methods
and prox-linear methods tailed to non-smooth losses. It would be interesting to develop a full theoretical
understanding of a broader class of iterative algorithms, and to conduct a careful comparison regarding
which loss functions lead to the most desirable practical performance.

e Connections to deep learning? We have focused on nonlinear systems that are bilinear or quadratic in this
paper. Deep learning formulations/architectures, highly nonlinear, are notorious for their daunting non-
convex geometry. However, iterative methods including stochastic gradient descent have enjoyed enormous
practical success in learning neural networks (e.g. |ZSJT17,SJL19,[FMZ19]), even when the architecture
is significantly over-parameterized without explicit regularization. We hope the message conveyed in this
paper for several simple statistical models can shed light on why simple forms of gradient descent and
variants work so well in learning complicated neural networks.

Finally, while the present paper provides a general recipe for problem-specific analyses of nonconvex algo-
rithms, we acknowledge that a unified theory of this kind has yet to be developed. As a consequence, each
problem requires delicate and somewhat lengthy analyses of its own. It would certainly be helpful if one
could single out a few stylized structural properties / elements (like sparsity and incoherence in compressed
sensing [CP11]) that enable near-optimal performance guarantees through an over-arching method of analy-
sis; with this in place, one would not need to start each problem from scratch. Having said that, we believe
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that our current theory elucidates on a few ingredients (e.g. the region of incoherence and leave-one-out
stability) that might serve as crucial building blocks for such a general theory. We invite the interested
readers to contribute towards this path forward.
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