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Nonconvex problems are abundant

Empirical risk minimization is usually nonconvex

minimize, {(y;x) —  nonconvex




Nonconvex problems are abundant

Empirical risk minimization is usually nonconvex

minimize, {(y;x) —  nonconvex

low-rank matrix completion

phase retrieval

dictionary learning

blind deconvolution

mixture models

deep learning



Nonconvex optimization is daunting in theory

e.g. a single neuron model (Auer, Herbster, Warmuth '96)



Exponentially many local minima for perceptron

Given training data {x;,y;}7-;,
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Exponentially many local minima for perceptron

Given training data {x;,y;}7-;,

minimize,,cra  fn(w) := L Z (yz - U(mei))z
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Theorem (Auer et al., 1995)

Let o(-) be sigmoid and {(-) be the quadratic loss function. There
exists a sequence of training samples {x;, y;}1'_; such that {,(w)
has | 2| distinct local minima.

No. of local minima grows exponentially with the dimension d!



Nonconvex optimization is daunting in theory

e.g. a single neuron model (Auer, Herbster, Warmuth '96)



Nonconvex optimization is daunting in theory

There may be exponentially many local optima

e.g. a single neuron model (Auer, Herbster, Warmuth '96)



But they're solved on a daily basis in practice

Using simple algorithms such as gradient descent, e.g., “back
propagation” for training deep neural networks...
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Statistical models come to rescue

Data/measurements follow certain statistical models and hence
are not worst-case instances.

minimize, f(x) = ;Zﬁ(yz';w)



Statistical models come to rescue

Data/measurements follow certain statistical models and hence
are not worst-case instances.

minimize, f(x) = ;Zﬁ(yi;x) moge E[¢(y; z)]



Statistical models come to rescue

Data/measurements follow certain statistical models and hence
are not worst-case instances.
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Figure credit: Mei, Bai and Montanari



Putting together...

statistical models

\ ¢

benign
landscape
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global convergence



Computational efficiency?

statistical models

£

benign
landscape

But how
‘ fast?

global convergence



What we know in theory

Statistical: efficient

critical points

inefficient
(saddle point,
nonsmooth)

Computational:

sample

~ complexity
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What we know in theory

Statistical: efficient inefficient
@ @
critical points smoothness
. . inefficient
ComPUtatlonal' (saddle point, efficient
nonsmooth)
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~ complexity
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What we know in theory

Statistical: efficient inefficient
@ @

critical points smoothness

. . inefficient
Computatlonal' (saddle point, efficient
1nonsmooth)
regularized unregularized
efficient ?

sample

~ complexity
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What we know in theory

Statistical: efficient inefficient
o a sample
~ complexity

critical points smoothness

. . inefficient
ComputatlonaL (saddle point, efficient
1nonsmooth)
regularlze% knregulanzed
efficient

Can we simultaneously achieve statistical and computational
efficiency using unregularized methods?

10



Three problems | care about

2t — gt mV f ()

phase matrix
retrieval completion

blind
deconvolution
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Regularized gradient descent
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retrieval
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Regularized vs. unregularized gradient descent

2t — gt Utvf(wt)

phase matrix blind
retrieval completion deconvolution
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) l\e . 4 /
regularizgd ~ unregularized  regularizgd um§€ularized regularized unrdgularized
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trimming ~ suboptimal  regularized cost ? regularized cost ?
comput. cost projection projection
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Regularized vs. unregularized gradient descent

2t — gt Utvf(wt)

phase matrix blind
retrieval completion deconvolution
;o\ ;o\ A
) 1\9 . i !
regularizgd  un \gularlzed regularizgd ur\r§€ularized regularized um‘L ularized
Ill ’,’ ,’I
1 1 1 \
<« v < v <
trimming Subﬂp’flmal regularized cost ? regularized cost ?
comput. cost projection projection

This talk: vanilla gradient descent runs as fast as regularized ones!
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Shallow neural network

Xt
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.V\\\‘)
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input layer

Set X7 = [x1,x2, ..., @], then
y= Za(a—rmi).
i=1
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Shallow neural network with quadratic activation
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Generalized phase retrieval
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Recover X% € R™ " from m “random” quadratic measurements

2
v = fofx? . i=1m
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Single neuron with quadratic activation
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Recover xf € R” from m “random” quadratic measurements
T 02
Y = |akcch|, k=1,...,m
where m is about as large as n. Assume w.l.o.g. ||| = 1
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A natural least squares formulation

given: ye = |ag mh|2, 1<k<m

minimizegzcrn  f(x) = =S i Ua;—w}Q - yk}2
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A natural least squares formulation

given: ye = lajx??, 1<k<m
I
L I = T 2 2
minimizegzcrn  f(x) = 4771; Uak x|” — yk}

e pros: global minimizers are the truth as long as sample size is
sufficiently large
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A natural least squares formulation

given: ye = lajx??, 1<k<m
I
L I = T 2 2
minimizegzcrn  f(x) = 4771; Uak x|” — yk}

e pros: global minimizers are the truth as long as sample size is
sufficiently large

e cons: f(-) is nonconvex
— computationally challenging!

16



Two-step nonconvex procedure

|
|
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basin of attraction I

0

e Initialize " via spectral methods properly;

e Update using simple iterative methods, e.g. gradient descent.
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Two-step nonconvex procedure
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e Initialize " via spectral methods properly;

e Update using simple iterative methods, e.g. gradient descent.
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Wirtinger flow (Candes, Li, Soltanolkotabi '14)

Empirical risk minimization

1 — 2
minimize, %Z [ —yk}
k=1
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Wirtinger flow (Candes, Li, Soltanolkotabi '14)

Empirical risk minimization
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

at least along certain descent directions.
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Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity

at least along certain descent directions.
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity
¢ (local) smoothness

at least along certain descent directions.
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Gradient descent theory revisited

f is said to be a-strongly convex and [3-smooth if

0 < ol = V3f(x) < BI, Vax

20



Gradient descent theory revisited

]

region of local strong convexity 4+ smoothness
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Gradient descent theory revisited
nvexity + smoothness

@ region of loca
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Gradient descent theory revisited

g convexity 4+ smoothness

region of local stron




Gradient descent theory revisited

0 < ol < V3f(x) < BI, YV

e Condition number g determines rate of convergence
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Gradient descent theory revisited

0 < ol = V3f(x) < BI, Vax

e Condition number g determines rate of convergence

e Attains c-accuracy within O(g log 1) iterations

22



What does this optimization theory say about WF?

Gaussian designs: ay, bk N, I,), 1<k<m

23



What does this optimization theory say about WF?

Gaussian designs: ay, bk N, I,), 1<k<m

Population level (infinite samples)

E[V(@)] =3 (|23 T +222") - (|23 + 2257

locally positive definite and well-conditioned

I, < E[V*f(x)] = 101,

Consequence: WF converges within O(log 1) iterations if
m — o0

23
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Gaussian designs: ay, bk N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) but ill-conditioned (even locally)

condition number < n
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V2f(x) but ill-conditioned (even locally)
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O(n log %) iterations with n < 1/n if m < nlogn
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What does this optimization theory say about WF?

Gaussian designs: ay, bk N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) but ill-conditioned (even locally)

condition number < n

%In < V%f(x) < O(n)I,

Consequence (Candes et al '14): WEF attains e-accuracy within
O(n log %) iterations with n < 1/n if m < nlogn

Too slow ...

23



Numerical experiment with 7, = 0.1

10°

=
e
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Relative || - ||2 error
e
5
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100 200 300 400 500
Iteration count

Vanilla GD (WF) can proceed much more aggressively!
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Numerical experiment with 7, = 0.1

10°

10-10

Relative || - ||o error

10715 | | | |
0 100 200 300 400 500
Iteration count
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A second look at gradient descent theory
Which region enjoys both strong convexity and smoothness?

2) =L 3" [3(ale)’ - (af2)?] asal
m k ECQE

k=1
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A second look at gradient descent theory
Which region enjoys both strong convexity and smoothness?

2= 3 [plale)’ - (afe")"] axal

k=1

e Not smooth if  and ayj, are too close (coherent)
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A second look at gradient descent theory
Which region enjoys both strong convexity and smoothness?

e x is not far away from
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A second look at gradient descent theory
Which region enjoys both strong convexity and smoothness?

\\|\a;r\(z7z“)‘ < Vlogn
e x is not far away from

e x is incoherent w.r.t. sampling vectors (incoherence region)
(1/2)- I, = V*f(z) < O(logn) - I,
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A second look at gradient descent theory
Which region enjoys both strong convexity and smoothness?

as ai

T(x— 29| < /o ZoeT .
laj (z m)|N//\//, Gn ol (2 — 29| 5 vioE

e x is not far away from

e x is incoherent w.r.t. sampling vectors (incoherence region)
(1/2)- I, = V*f(z) < O(logn) - I,

26



A second look at gradient descent theory

region of local strong convexity + smoothness

e Generic optimization theory only ensures that iterates remain
in ¢ ball but not incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

-
e
—_

e Generic optimization theory only ensures that iterates remain
in o ball but not incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Generic optimization theory only ensures that iterates remain

in o ball but not incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Generic optimization theory only ensures that iterates remain
in ¢ ball but not incoherence region

e Existing algorithms enforce regularization, or apply sample
splitting to promote incoherence

27



Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

@ region of local strong convexity + smoothness

28



Theoretical guarantees

Theorem (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves
e max; |a) (z' — z%)| < logn ||x?||2 (incoherence)
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Theoretical guarantees

Theorem (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves
e max; |a) (z' — z%)| < logn ||x?||2 (incoherence)

o &t — &|s < (1—1)"||@"|2 (near-linear convergence)
1

logn

provided that step size 1 = and sample size m 2 nlogn.
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Theoretical guarantees

Theorem (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves
e maxy |a] (' — cch)‘ < Vlogn ||z%||2 (incoherence)

o &t — &|s < (1—1)"||@"|2 (near-linear convergence)
provided that step size 1) = -

i >
oz and sample size m 2 nlogn.

Big computational saving: WF attains e-accuracy within
O(lognlog %) iterations with n < 1/logn if m < nlogn

29



Key ingredient: leave-one-out analysis

30



Key ingredient: leave-one-out analysis

Technical difficulty: ! is statistically dependent with {a;};
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Key ingredient: leave-one-out analysis

Technical difficulty: ! is statistically dependent with {a;};

Leave-one-out trick: For each 1 < < m, introduce leave-one-out
iterates () by dropping Ith sample

AD x Ay y = |ADg|?
N "E B H |
il |- :
EE =B —> 5
s Am | [ =
1
H B [ | [ |
- EEN o |
NN o |
N u L L

30



Key ingredient: leave-one-out analysis

_ a

{ t,}l)—}‘ ~q
Z. ®

VA R N

incoherence region
w.r.t. a;

o Leave-one-out iterates {x>()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.
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Key ingredient: leave-one-out analysis
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o Leave-one-out iterates {x>()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.

o Leave-one-out iterates () ~ true iterates x!
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Key ingredient: leave-one-out analysis

a;
[t T~
/.

@~
{mt}10~ N \\

[t o
1

\

\ ‘{: $

Z
S \ A
~ — = 7 incoherence region

w.r.t. a;

o Leave-one-out iterates {x>()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.

o Leave-one-out iterates () ~ true iterates x!
e Finish by triangle inequality

‘al—r(g:t _ wh)‘ < ‘a;r(xt’(l) _ xh)‘ + |alT(:ct _ xt’(l))|

31



Incoherence region in high dimensions
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incoherence region is vanishingly small
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No sample splitting

e Several prior works use sample-splitting: require fresh samples
at each iteration; not practical but helps analysis.

z‘l 23 25
fresh samples
20 24
Z2

e This work: reuses all samples in all iterations

2! 23 25

sam\amples \/\/\/\

0 2!
z 2
z



This recipe is quite general



Low-rank matrix completion
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Fig. credit: Candes

Given partial samples of a low-rank matrix M in an index set €2,
fill in missing entries.

Applications: recommendation systems, ...
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Incoherence

100 --- 0 111 .- 1
0 00 0 1 11
VS.
000 ---0 111 -1
hard p=n easﬁ:l

Definition (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = USiU"T is
said to be p-incoherent if

o, . <5 e, =
2,00 n F n

36



Matrix completion via vanilla GD

minimizex g f(X) = > (e XX ey — M)
(k)0
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Prior theory

minimize x cgnxr  f(X) = Z (e;rXXTek—Mj,k)Q
(J,k)€Q

Existing theory promotes incoherence explicitly:
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(J,k)€Q

Existing theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + R(X) instead)

e e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma
'16
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Prior theory

minimize x cgnxr  f(X) = Z (e;rXXTek—Mj,k)Q
(J,k)€Q

Existing theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + R(X) instead)

e e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma
'16

e projection onto set of incoherent matrices
e e.g. Chen, Wainwright '15, Zheng, Lafferty '16

e no theory on vanilla / unregularized gradient descent

38



Our theory

Theorem (Matrix completion)

Suppose M = X" X"T js rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

o max; |le] (Xt — X%)||2 < || X¥||2,00 (incoherence)

e in O(log %) iterations

if step size ) < 1/0max(M) and sample size > nr> log3n
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Our theory

Theorem (Matrix completion)

Suppose M = X" X" s rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

o max; |le] (Xt — X%)||2 < || X¥||2,00 (incoherence)

e in O(logl) iterations w.r.t. | - ||p,

cand || - 2,00
——

incoherence

if step size ) < 1/0max(M) and sample size > nr3log®n

* near-optimal entrywise error control || X'X'T — M“HOO.
e O(log1/¢) iteration complexity.
e First result on vanilla gradient descent for matrix completion.

39



Noiseless matrix completion via Vanilla GD

10° T T T T
——relative || - || error
relateive || - || error
relative || - || error
w0 1051
5 10
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Tteration count

Figure: Relative error of X*X'" (measured by [|[|g, ||, Il )
vs. iteration count for matrix completion, where n = 1000, r» = 10,
p=0.1, and n; = 0.2.



Noisy matrix completion via Vanilla GD
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Figure: Squared relative error of the estimate X (measured by
-l s 1l 5.00) and M2 = XX (measured by -]..) vs. SNR, where

b
n =500, 7 =10, p = 0.1, and 7, = 0.2. Here, SNR := Ml

n2g2 -



What about random initialization?



Initialization

spectral
initializatio

e spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral |
initialization|

e spectral initialization gets us reasonably close to truth

e cannot initialize GD from anywhere, e.g. it might get stuck at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization|

e spectral initialization gets us reasonably close to truth

e cannot initialize GD from anywhere, e.g. it might get stuck at
local stationary points (e.g. saddle points)

Can we initialize GD randomly?

43



What does prior theory say?

e no spurious local mins (Sun et al.'16)
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What does prior theory say?

e no spurious local mins (Sun et al.'16)

e Vanilla GD with random initialization converges to global min
almost surely (Lee et al.'16)

No convergence rate guarantees for vanilla GD!

44



Randomly initialized GD for phase retrieval

ne =0.1, a; ~N(0,I,), m = 10n, 2’ ~ N (0,n'I,)

relative /o error

n = 800
n = 1000

0 50 100 150 200
t : iteration count



Randomly initialized GD for phase retrieval
ne =0.1, a; ~N(0,I,), m = 10n, 2’ ~ N (0,n'I,)

Stage 1

100F

relative ¢o error

108 ¢

n = 800

n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations
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Randomly initialized GD for phase retrieval
ne =0.1, a; ~N(0,I,), m = 10n, 2’ ~ N (0,n'I,)

Stage 1 Stage 2

relative {5 error

n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations
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Theoretical guarantees

ii.d

These numerical findings can be formalized when a; "~  N(0, I,,):

Theorem (Chen, Chi, Fan, Ma '18)

Under i.i.d. Gaussian design, GD with 2° ~ N'(0,n~'I,,) achieves
dist(a',z%) < 71— o)t Traile,  t>T,

for Ty < logn and some constants vy, p > 0, provided that step
size n < 1 and sample size m 2 npoly log m.
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Theoretical guarantees

relative {5 error

0 50 100 150 200
t : iteration count
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Theoretical guarantees

dist(z!, %) < y(1 — p)t=D||&f||a, t > T, =logn

O(logn)
10° \
—
5
-
-
o
Il
=
o PN
= { 1
=
()
- —n = 100
107 —n =200
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

o Stage 1: takes O(logn) iterations to reach dist(z!, z%) <
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Theoretical guarantees

dist(z!, %) < y(1 — p)' D |j&f||a, t > T, <logn

1
O(logn) O(log1)
10° \
—
5
-
-
o
Il
=
o PN
= { 1
2 Iy
=
()
- —n = 100
10 —Z =200
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

o Stage 1: takes O(logn) iterations to reach dist(z!, z%) <

e Stage 2: linear convergence

47



Theoretical guarantees

relative {5 error

50 100 150 200
t : iteration count
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Population-level (infinite samples) state evolution

mt-‘rl :mt_n_ VF(CL't)

N——

population gradient

¢k 10°
Let oy |(x!, )| ,
—_——
signal strength flo 1
]
3
Bi= Ja’ — (2l af)as .
size of residual component _gt
—
10—3 L L L
0 10 20 30

40 50
t : iteration count
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Population-level (infinite samples) state evolution

mt-‘rl :mt_n_ VF(CL't)

N——

population gradient

¢k 10°
Let oy := [z’ 2% ,
N——— R
signal strength < 10"
]
t 3
Bri= | — (@' at)at]y
size of residual component _gt
—
1073 ‘ ‘ ‘ :
0 10 20 30 40 50
t : iteration count
_ a1 = {1+3n[l — (of + B})] }ou
2-parameter dynamics:
/BtJrl =

{1+l - 3(af + 8]} 5t



Back to finite-sample analysis

2 =t V(')
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Back to finite-sample analysis

a:t+1 — gt T]Vf(mt) — gt nVF(wt) . n(vf(xt) _ VF(th

=r(xt)
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Back to finite-sample analysis

a:t+1 — gt T]Vf(-'Ft) — gt nVF(wt) . n(vf(xt) _ VF(th

=r(x?t)
""""" > a e population-level analysis holds
N approximately if
- N r(z') < @' —nVF(x')
-
<\

a region with well-controlled

r(x)
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Back to finite-sample analysis

CCt+1 — gt 7]Vf(-’17t) — gt — nVF(wt) _ n(Vf(gct) — VF<xt))

a region with well-controlled
r(x)

=r(xt)

e population-level analysis holds

approximately if
r(z') < ' — nVF(x!)

o r(x!) is well-controlled if x! is
independent of {ay}

49



Back to finite-sample analysis

CCt+1 — gt 7]Vf(-’17t) — gt — nVF(wt) _ n(Vf(gct) — VF<xt))

a region with well-controlled

r(x)

=r(xt)

e population-level analysis holds
approximately if
r(z!) < ' —nVF(x!)

o r(x!) is well-controlled if x! is
independent of {ay}

e key analysis ingredient: show x! is
“nearly-independent” of each a; via
leave-one-out analysis
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Conclusions

optimization theory + statistical model: vanilla gradient
descent is “implicitly regularized” and runs fast!

Computational: Statistical:
near dimension-free near-optimal
iteration complexity sample complexity

It will be interesting to study “implicit regularization” via the
leave-one-out argument for other algorithms such as alternating
minimization, and other problems.
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