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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

CHATGPT

@ 0openAl

RL holds great promise in the era of Al
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One more recent success: RLHF
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RLHF stands fo[ Reinforcement Learning from Human Feedback.]lt's

atechnique used in machine learning and artificial intelligence
where a model learns to perform tasks or make decisions based on
feedback from human trainers, rather than solely relying on pre-

existing data sets or explicit programming. This approach allows the
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In RL, agent(s) often learn by probing the environment



Reinforcement
Learning

In RL, agent(s) often learn by probing the environment

e unknown environment e delayed feedback

e explosion of dimensionality ® nonconvexity



Data efficiency

Data collection might be expensive, time-consuming, or high-stakes

self-driving cars

clinical trials

Calls for design of sample-efficient RL algorithms!
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Calls for computationally efficient RL algorithms!
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s »:gpe finite-sample
analysis «

asymptotic
anaIysV

Understanding efficiency of contemporary RL requires a modern suite
of non-asymptotic analysis
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics )

»
»

sample size
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Sample complexity issues that permeate
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Sample complexity issues that permeate
state-of-the-art RL theory
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
.or

other metrics

»

generative model / simulator
online RL
offline RL

»

@ sample size

huge burn-in cost!
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics |-

>
>

sample size

e multi-agent RL

e partially observable MDPs
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

>
>

e multi-agent RL sample size

e partially observable MDPs
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional
Prol

Numerical
Optimization

Amir Beck

S

(large-scale) optimization (high-dimensional) statistics

Design sample- and computationally-efficient RL algorithms
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional
ity

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Design sample- and computationally-efficient RL algorithms

Part 1. basics, RL w/ a generative model

Part 2. online / offline RL, multi-agent / robust RL
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Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

o model-based algorithms (a “plug-in" approach)

o model-free algorithms



Markov decision process (MDP)

state s action ay

0
I
I

environment |« — —J

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)
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Markov decision process (MDP)

state s action ay
pommmmm———- 1
| I
i reward
ith=T(8t,at |
R .

Dl environment |« — —

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)

e 1(s,a) € [0,1]: immediate reward
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Discounted infinite-horizon MDPs

action

environment |« — -

S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)
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Discounted infinite-horizon MDPs

action

environment |« — -

next state
St41 ~ P(st, ar)
S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities
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Value function

state s iction
_7r(_||st) T0 1 T2 T3 T4

I I
rgward I :> 80— S1 ‘I S2— S3 ‘l Sa ‘I
re =1(se, ae H i H ' i 3 H ' H '
4 N .’ o’ o’ Nt N’
4~~" environment - ao a as as aq
<

Sth1 ~ P(‘|8hae)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
=0
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Value function

state s iction
_7r(_||st) T0 1 T2 T3 T4

I I
riward I :> 80— S1 ‘I S2— S3 ‘l Sa ‘I
n—'r(s,,a, H i H K i 7 H H i H
4 N .’ o’ o’ e’ AN
4~~" environment - ao a as as aq
<

Sth1 ~ P(‘|St,ae)

Value of policy m: cumulative discounted reward

o0
VseS: V7T(s):=E Z’yt'r(st,at) |so=s
t=0
e v €[0,1): discount factor
o take 7 — 1 to approximate long-horizon MDPs

1

o effective horizon: —
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Q-function (action-value function)

To T1 T2 T3 T4 Ts
I
Q (80, ao) ’—"I—>81—‘|—>32—‘|—'83—‘|—>84—‘|—>s5—‘|—> oo
o A A N N A
Qo a1 a2 (] (21 as

Q-function of policy 7:

V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]sozs,ao =a
t=0

o (g¢7 s1,a1, S2,a2,---): induced by policy 7
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Q-function (action-value function)

To T T2 T3 T4 T5
VW(SO) . % 31_‘]_’8‘2 "I_’SS_‘I—'$4—‘L*S5—‘I—> eoe
ST
To T T2 T3 T4 Ts5
QW(So,ag) .—,‘I—*sl—,‘l—vslz—‘l—>33—‘L>34—‘|—>s5—‘|—> XY
\a ;l \Ef/ \(3]_2 o \EL'S'/ \zz:;¢ \&3‘¢
Q-function of policy 7:
oo
V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]so =s,a0 =a
t=0

e (ge¢7 s1,a1,52,a2,---): induced by policy w
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

Theorem (Puterman’94)

For infinite horizon discounted MDP, there always exists a
deterministic policy 7, such that

V™ (s) > V™(s), Vs, and .
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

e optimal value / Q function: V* := VT Qr = Q"
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
e optimal value / Q function: V* := VT Qr = Q"

e A question to keep in mind: how to find optimal 7*?
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Finite-horizon MDPs (nonstationary)

reward
Th = 7'(5}“ ap I

| environment [« — -

<
next state
Spy1 ~ Pr(-|sn,an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sn,ap) € [0, 1]: immediate reward in step h

7 = {7y }i_,: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h

18/ 72



Finite-horizon MDPs (nonstationary)

reward

Th = T(S}u Qap, I
“""""1 environment (¢ — ~

next state
Sht1 ~ Pu(-|sn, an)

value function: V;7(s) =E

H
Zrh(sh,ah) | Sp = S‘|

t=h
H

Q-function: Q}(s,a) =E Zrh(sh,ah) | Sp = 8,ap = a
t=h
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function at all steps
e optimal value / Q function: V;* := V™, Q% := QT , Vh

e Question: how to find optimal m*?
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Basic dynamic programming algorithms
when MDP specification is known



A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77
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A simpler problem: policy evaluation
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A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77

solution: Bellman’s consistency equation

Vi) = E Q7))
Q(s;0)= r(s0) +v E | V() |
—— S/NP(.|3,Q) N——
immediate reward next state's value

e one-step look-ahead g@

Richard Bellman
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A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77

solution: Bellman’s consistency equation

Vi) = E Q7))
Q(s;0)= r(s0) +v E | V() |
—— S/NP(.|3,(Z) N——
immediate reward next state's value

| g~
e one-step look-ahead g@

e P7T: state-action transition matrix induced by 7: =

Q" =r+9PQ" = Q" =(I—9P") s \ﬁ
Richard Bellman
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Back to main question: how to find optimal policy 7*7

solution: Bellman’s optimality principle
e Bellman operator:
TQ)(s,a):= 1(s,0) +7 E [maxQ(s,a)]
s'~P(-|]s,a) ta’'€A
immediate reward
next state’s value

o one-step look-ahead

o y-contraction: ||[T(Q1) — T (Q2)|lec < ¥||Q1 — Q2lo0
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Back to main question: how to find optimal policy 7*7

solution: Bellman’s optimality principle
e Bellman operator:
TQ)(s,a):= 1(s,0) +7 E [maxQ(s,a)]
s'~P(-|]s,a) ta’'€A
immediate reward
next state’s value

o one-step look-ahead

o y-contraction: ||[T(Q1) — T (Q2)|lec < ¥||Q1 — Q2lo0

e Bellman equation: Q* is unique solution to

TQ) ="
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Two dynamic programming algorithms

Q(U)

Value iteration (VI) T
(1)
Fort=0,1,... ¢
-
Qe+ = T(QY) ”
Q

Policy iteration (PI)

Fort=0,1,...

policy evaluation: Q) = Q™"

policy improvement: 7V (s) = argmaxQ¥ (s, a)

acA /
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.

Implications: to achieve ||Q) — Q*||o < ¢, it takes no more than

1 0) _ o~
—log (”QQ”OO> iterations
1 —x €
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.

Implications: to achieve ||Q) — Q*||o < ¢, it takes no more than

1 0) _ o~
—log (”QQ”OO> iterations
1 —x €

Linear convergence at a dimension-free rate!
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When the model is unknown ...

Reinforcement | \\ Dynamic Programming
Learning \ and Optimal Control
An lntsoduction § DIMITRI P. BERTSEKAS

second edition

]
1
]
| !
7/ \ -
7
/
44
77/ (
7 )
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When the model is unknown ...

Reinforcement
Learning

A latsoduction
second edition

— Dynamic Programming
.l and Optimal Control

DIMITRI P. BERTSEKAS

g
4
£
S
H
2
H
a
£

Need to learn optimal policy from samples w/o model specification
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Two approaches

o model P,
W (e P e RIS S
&,
! wmodel-based \

samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate Pfor P

2. planning based on the empirical P
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Two approaches

o model A
N ’ Ty

&
wodel-based )
samples value function
(experience) policy
4 4
wodel-free

Model-based approach (“plug-in”
1. build an empirical estimate Pfor P

2. planning based on the empirical P

Model-free approach
— learning w/o estimating the model explicitly

26/ 72



Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples
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2. online RL
o execute MDP in real time to obtain sample trajectories
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples

2. online RL
o execute MDP in real time to obtain sample trajectories

3. offline RL

o use pre-collected historical data

Question: how many samples are sufficient to
learn an e-optimal policy?

V> Ve

27/ 72



Exploration vs exploitation

Exploration

offline RL

\l
— *:%‘”efx

BN s

,mj\
“Recal

rcaldating ..

online RL

generative model
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Exploration vs exploitation

> Exploration

offline RL online RL generative model

Varying levels of trade-offs between exploration and exploitation. J
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Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

o model-based algorithms (a “plug-in" approach)

o model-free algorithms



A generative model / simulator

— Kearns and Singh, 1999

generative model

e sampling: for each (s,a), collect N samples {(S,G,S/(Z-))hgigN
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A generative model / simulator

— Kearns and Singh, 1999

generative model

e sampling: for each (s,a), collect N samples {(S,G,S/(Z-))hgigN

e construct 7 based on samples (in total SA x N)
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{s-sample complexity: how many samples are required to

learn an e-optimal policy ?

o~

Vs: V7 (s) > V*(s)—e



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all £ € [0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

(k)

to achieve V* — V™ < &, where T is the output of any RL algorithm.
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Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all £ € [0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

(k)

to achieve V* — V™ < &, where T is the output of any RL algorithm.

e holds for both finding the optimal Q-function and the optimal
policy over the entire range of ¢

e much smaller than the model dimension |S|?|A|

32/ 72



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns et al., 2002

Azar et al., 2013

Sidford et al., 2018a, 2018b
Wang, 2019

Agarwal et al., 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru et al., 2020

Mou et al., 2020

Cui and Yang, 2021
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An even shorter list of prior art

algorithm sample size range | sample complexity e-range
Empirical QVI S2A SA 0, —1—
Azar et al., 2013 [<17w2 ) (1-7)3e? (©. ¢(17w>s]
Sublinear randomized VI s SA 1
Sidford et al., 2018b [<1 27 ) (1-v)*e? (0’ lfv]
Variance-reduced QVI SA SA
: 54 0,1
Sidford et al., 2018a (@252 (1732 ©,1]
Randomized primal-dual SA SA 1
Wang 2019 [a2e0) -7 0=
Empirical MDP + planning [ S ,00) SA (0, 1 ]
Agarwal et al., 2019 (1=7)2” (1—v)3e? T V1-y
e £ states S, # actions A
important parameters ] ]
P P e the discounted complexity llﬁ
— -
e approximation error ¢ € (0, %}
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s,a, Sl(i))}lgz'gzv

generative moolel
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s;a,s() h<isn

Empirical estimates

generative model /‘S a) Z 1 {S

empirical frequency
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Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[ empirical MDP

H E N
| [ |
| - | =
H B [ planning =%
[ BB oracle
| [ | _ .
| | | B e.g. dynamic programming
N N |
| |
T

empirical p

Find policy based on the empirical MDP (empirical maximizer)
—_—— (S —

using, e.g., policy iteration (P,r)
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Challenges in the sample-starved regime

H B
= M
H |
|
H =
H B
H
L
H_ BN
O |
truth: P € RSAXS empirical estimate:
' P

e Can't recover P faithfully if sample size < S2?Al
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Challenges in the sample-starved regime

H N
- O
| n
H
H N
o B
|
L
H_ B
O |
_ SAxS empirical estimate:
truth: P e R p

e Can't recover P faithfully if sample size < S2?Al

e Can we trust our policy estimate when reliable model estimation
is infeasible?
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(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)
1

Forany 0 <e < Naert

achieves

the optimal policy T of empirical MDP

V™ =Vl <&

with high prob., with sample complexity at most

o (=)
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(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

ﬁ
achieves

V™ =Vl <&

with high prob., with sample complexity at most
~ SA
o —=2"
((1 - 7)352>

e matches minimax lower bound: Q(W) when € < ——

(equivalently, when sample size exceeds (1_7)2) Azar et al., 2013

ﬁ_
2

38/ 72




sample
complexity

SIIA
(=7

ISIAL |-

(1-9)?

/-

X0
N

N
bq‘/“
S —Sidford et al.'18a

e era oan

Agarwal et al.’19

S, BN °S,
7
3 BON
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sample
complexity

SIIA
(=7

ISIIA|

-

ISIIA|
1-v

/.

P

&

R .
— Sidford et al. '18a

o“(\e>
Agarwal et al.’19 z(\o
<, oo
sk
@
1 1 >
N BN °S,
7 4
3 O\
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sample
complexity

SIIA]

(T=7?°

S]]
(1-9)?

SIIA]

1-v

Agarwal et al.,

P

N
&
R )
— 0 — Sidford et al.'18a

5

=/ o
Agarwal et al.’19
?/ \«“*
/
1 1 1 >
@\\ L @\\/ 52
4 4
7
SO
>
2019 still requires a burn-in sample size 2 ﬁ
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sample
complexity

SIIA]
T=7?[=

'"Aérwal et al.'19

ISIIA| &
(1 =2 3
P
.\‘\\
isila | ® «
1-v 14 1 1 > —
@\\ L @\\/ 52
4
5 BN
>
Agarwal et al., 2019 still requires a burn-in sample size 2 %

Question: is it possible to break this sample size barrier? J
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Perturbed model-based approach (Li et al.’24)

— Li, Wei, Chi, Chen, 2024

/" empirical MDP / N
H EDNR H N E
|| | || -]
[ | W o | perwurb | W HE
| | B | rewards || B . ~
H N || H N B planning 71—:
. . . :> - . . oracle
[ | [ | | [ ]
.- . .. . e.g. dynamic programming
H BN H BB
|| | B B
empiricalf’ T &IPTP/

Find policy based on empirical MDP w/ slightly perturbed rewards
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Optimal /..-based sample complexity

Theorem (Li, Wei, Chi, Chen’20; OR ’24)

Forany 0 < e < % the optimal policy 7}, of perturbed empirical
MDP achieves

[V = V| < &

with high prob., with sample complexity at most

o (=)
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Optimal /..-based sample complexity

Theorem (Li, Wei, Chi, Chen’20; OR ’24)

Forany 0 < e < % the optimal policy 7}, of perturbed empirical

MDP achieves
[V = V| < &

with high prob., with sample complexity at most

o (=)

e matches minimax lower bound: Q(u—iﬁ) Azar et al., 2013

e full e-range: ¢ € (0, 1i7] — no burn-in cost

41/ 72
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complexity
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Notation and Bellman equation

Bellman equation: V™ =r +~P, VT

e V/™: value function under policy 7
o Bellman equation: V™ = (I —yP;)"1r,

e /™. empirical version value function under policy 7

o Bellman equation: VT = (I — ’yﬁw)_lrw
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Notation and Bellman equation

Bellman equation: V™ =r +~P, VT

V7™ value function under policy m
o Bellman equation: V™ = (I —vP;) " r,

V™. empirical version value function under policy 7

o Bellman equation: VT = (I — ’yﬁw)_lrw

w*: optimal policy for V™

7*: optimal policy for v

43/ 72



Main steps

Elementary decomposition:

o~

VIV = (V= VT (VT V) (VT -V
< (v™ V*)+0+(V V”)
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Main steps

Elementary decomposition:

VISV = (VDT 4 (07 D) 4 (07 V)

< (V™ -V )+0+(V V”)

e Step 1: control V7 — V™ for a fixed (called “policy
evaluation”)
(Bernstein inequality + a peeling argument)
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Main steps

Elementary decomposition:

VISV = (VDT 4 (07 D) 4 (07 V)

< (V™ -V )+0+(V V”)

e Step 1: control V7 — V™ for a fixed (called “policy
evaluation”)
(Bernstein inequality + a peeling argument)

e Step 2: extend it to control G (7* depends on samples)
(decouple statistical dependency)

44/ 72



A glimpse of key analysis ideas

1. leave-one-out analysis: decouple statistical dependency

(
— ! H E N [ | | K
decouple ] ] = .. E R
dependency | [ | |
HE B HE B
H BN H BN
| [ | | [ |
I | I |
H BN H BN
EEm N EE N
empirical P 7 leave-one-out P(*®) r(5@)
» e’
V) 4
o .

2. tie-breaking via random perturbation ‘
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Key idea 1: leave-one-out analysis

Decouple dependency by introducing auxiliary state-action absorbing
MDPs by dropping randomness for each (s, a)

4
c— i HHn [ | B
decouple _i. ] = .. | =
dependency | [ | |
HE B | |
H BN H BN
| || | ||
| |
H BN H BN
EE N EEm BN
empirical P . leave-one-out P(:@) p(5®)

— inspired by Agarwal et al. '19 but quite different . ..
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Key idea 1:

leave-one-out analysis

El Karoui, Bean, Bickel, Lim, Yu, 2013
El Karoui, 2015

Javanmard, Montanari, 2015
Zhong, Boumal, 2017

Lei, Bickel, El Karoui, 2017
Sur, Chen, Candes, 2017

Abbe, Fan, Wang, Zhong, 2017
Chen, Fan, Ma, Wang, 2017
Ma, Wang, Chi, Chen, 2017
Chen, Chi, Fan, Ma, 2018
Ding, Chen, 2018

Dong, Shi, 2018

Chen, Chi, Fan, Ma, Yan, 2019
Chen, Fan, Ma, Yan, 2019

Cai, Li, Poor, Chen, 2019
Agarwal, Kakade, Yang, 2019
Pananjady, Wainwright, 2019
Ling, 2020

Yan, Chen, Fan, 2024

Foundations and Trends® in Machine Learning

Spectral Methods for Data
Science: A Statistical Perspective

Suggested Citation: Yuxin Chen, Yuejie Chi, Jianging Fan and Cong Ma (2020), “Spec-
tral Methods for Data Science: A Statistical Perspective”, Foundations and Trends® in

4 Fine-grained analysis: /., and /5, perturbation theory 126
4.1 Leave-one-out-analysis: An illustrative example . . . . .. 127
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Key idea 1: leave-one-out analysis

P -
o

\
1

gmm—————= Ty A
TEAEE m )
-ElEE [ | | 3
| BN n N |
| | | |
HEH B HE B
H EHNR H BN
Hn | H B |
I | I |

H BN H BN
Em HE mEm B
empirical P 7 leave-one-out P(*@) (5@

(Saa‘))

1. embed all randomness from P; , into a single scalar (i.e. rsq
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1. embed all randomness from P, , into a single scalar (i.e. 15"

2. build an e-net for this scalar
works under a separation condition

Vs, Q'(s,*(s)) — max Q*(s,a)>0

a: a#T* (s
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Key idea 2: tie-breaking via perturbation

e How to ensure separation between the optimal policy and others?

Vs, Q*(s,7*(s))— max Q*(s,a)>0
a: a#m*(s)
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Key idea 2: tie-breaking via perturbation

e How to ensure separation between the optimal policy and others?

Vs, Q'(s,#(s) = max Q*s.a)>0
a: a#m*(s)
*
p
can be differentiated from others with high prob.

e Solution: slightly perturb rewards r — 7

*

o ensures %p

v y (4

W
m
v’ p Ny
‘—
\
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Key idea 2: tie-breaking via perturbation

e How to ensure separation between the optimal policy and others?

Vs, Q*(s,7*(s)) — max Q*(s,a) > %
a: a#m*(s)

*

P

can be differentiated from others with high prob.

e Solution: slightly perturb rewards r — 7«

*

o ensures %p

v y (4

W
m
v’ p Ny
‘—
\
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sample

complexity
*
f}.\’ 7
SIIA| %
SN H '
(1—7)3 & — Sidford et al."18a
S
ISIIA] | ) ¢
(1 - 7)2 \o‘xAe
isll4) L~ .
1 1 1 .
AN ARN SN " g2
N \./

Model based RL is minimax optimal under generative models
and does NOT suffer from a sample size barrier J




Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

o model-based algorithms (a “plug-in" approach)

o model-free algorithms



Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P
2. planning based on empirical P

Model-free / value-based approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q) ="
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?
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Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) + ymax Q(s',a’)

T(@Q)(s,a) =7(s,a) +v E [max Qs a’)]

s'~P(-]s,a) a’

56/ 72



A generative model / simulator

— Kearns, Singh, 1999

generative model

Each iteration, draw an independent sample (s, a, s") for given (s, a)
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Synchronous Q-learning

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s,a, s’), run

Qr1(s,a) = (1 —ny)Qu(s,a) + nt{r(s,a) + 7 max Qi(s, a/)}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: TSA
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

{6(0_‘%‘;‘452) ifA>2

5(#) ifA=1 (TD learning)
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA .
O(i2m) ifA=2
O(ﬁ) ifA=1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 o 1
= ca(1-T rn= c2(1—7)t
1+ log? T 1 + log? T
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA f
6((1—5)352) ifA=1 (minimax optimal)

other papers sample complexity
Even-Dar & Mansour, 2003 21—v %
(1—-v)%e
: S242
Beck, Srikant, 2012 (1=5)5:2

. . SA
Wainwright, 2019 (1=2)5:2

Chen, Maguluri, Shakkottai, Shanmugam, 2020 %
(1—~)°e
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All this requires sample size at least %

Pt
4 O
sample %

complexity

(log scale) N

(A>2)...




All this requires sample size at least % (A>2)...

sample
complexity

(log scale)

1
log scale
~— (log scale

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



A numerical example: L“ samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1—51:;{>452> Samp/es
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 <& <1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least
~ < SA

Q (1_7>4€2> Samp/es

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1_51:/?)482> Samp/es

sample +
complexity
(log scale)

(log scale)
L=y 62/ 72



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 mm Q'(s, argmax, Q(s, a)) — Va(s)

< il

g

error

o

©248%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 [ Q'(s, argmax,Q(s, a)) — Vi(s)
5 |
oo JF &4

%
3

error

o

R R RN
e ge%

number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

A provable improvement: Q-learning with variance reduction

(Wainwright 2019)
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Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright, 2019)
— inspired by SVRG (Johnson & Zhang, 2013)

Quls,a) = (1= n)Qe-1(s,0) +n(Te(Qe-1) ~T(@) + T(@) ) (s,a)

use Q to help reduce variability
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Variance-reduced Q-learning updates (Wainwright, 2019)
— inspired by SVRG (Johnson & Zhang, 2013)

Quls,a) = (1= n)Qe-1(s,0) +n(Te(Qe-1) ~T(@) + T(@) ) (s,a)

use Q to help reduce variability

e (): some reference Q-estimate

o T empirical Bellman operator (using a batch of samples)

Ti(Q)(s,a) = 7(s,a) +ymax Q(s',a’)

T(Q)(s,a) =r(s,a) +v E [max Q(s, a/)]

~ [
s/'~P(:|s,a) @
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An epoch-based stochastic algorithm

— inspired by Johnson & Zhang, 2013

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively
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Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

o(i5=)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

o(i5=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-
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Reference: general RL textbooks |

“Reinforcement learning: An introduction,” R. S. Sutton, A. G. Barto, MIT
Press, 2018

“Reinforcement learning: Theory and algorithms,” A. Agarwal, N. Jiang,
S. Kakade, W. Sun, 2019

" Reinforcement learning and optimal control,” D. Bertsekas, Athena
Scientific, 2019

" Algorithms for reinforcement learning,” C. Szepesvari, Springer, 2022

“Bandit algorithms,” T. Lattimore, C. Szepesvari, Cambridge University
Press, 2020
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Reference: model-based algorithms |

“Finite-sample convergence rates for Q-learning and indirect algorithms,”
M. Kearns, S. Satinder, NeurlPS, 1998

"On the sample complexity of reinforcement learning,” S. Kakade, 2003

“A sparse sampling algorithm for near-optimal planning in large Markov
decision processes,” M. Kearns, Y. Mansour, A. Y. Ng, Machine learning,
2002

“Minimax PAC bounds on the sample complexity of reinforcement learning
with a generative model,” M. G. Azar, R. Munos, H. J. Kappen, Machine
learning, 2013

“Randomized linear programming solves the Markov decision problem in
nearly linear (sometimes sublinear) time,” Mathematics of Operations
Research, 2020

" Near-optimal time and sample complexities for solving Markov decision
processes with a generative model,” A. Sidford, M. Wang, X. Wu, L. Yang,
Y. Ye, NeurlPS, 2018
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Reference: model-based algorithms Il

"Variance reduced value iteration and faster algorithms for solving Markov
decision processes,” A. Sidford, M. Wang, X. Wu, Y. Ye, SODA, 2018

“Model-based reinforcement learning with a generative model is minimax
optimal,” A. Agarwal, S. Kakade, L. Yang, COLT, 2020

“Instance-dependent {.-bounds for policy evaluation in tabular
reinforcement learning,” A. Pananjady, M. J. Wainwright, IEEE Trans. on
Information Theory, 2020

“Spectral methods for data science: A statisticaAl perspective,” Y. Chen,
Y. Chi, J. Fan, C. Ma, Foundations and TrendsA® in Machine Learning, 2021

“Breaking the sample size barrier in model-based reinforcement learning with
a generative model,” G. Li, Y. Wei, Y. Chi, Y. Chen, Operations Research,
2024
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Reference: model-free algorithms |

"A stochastic approximation method,” H. Robbins, S. Monro, Annals of
Mathematical Statistics, 1951

"Robust stochastic approximation approach to stochastic programming,”
A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM Journal on
optimization, 2009

"Q-learning,” C. Watkins, P. Dayan, Machine Learning, 1992

"Learning rates for Q-learning,” E. Even-Dar, Y. Mansour, Journal of
Machine Learning Research, 2003

" The asymptotic convergence-rate of Q-learning,” C. Szepesvari, NeurlPS,
1998

" Error bounds for constant step-size Q-learning,” C. Beck, R. Srikant,
Systems & Control Letters, 2012

"Stochastic approximation with cone-contractive operators: Sharp {o
bounds for Q-learning,” M. Wainwright, 2019
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Reference: model-free algorithms Il

“Is Q-learning minimax optimal? a tight sample complexity analysis,” G. Li,
C. Cai, Y. Chen, Y. Wei, Y. Chi, Operations Research, 2024

"Variance-reduced Q-learning is minimax optimal,” M. Wainwright, 2019

“Sample-optimal parametric QQ-learning using linearly additive features,”
L. Yang, M. Wang, ICML, 2019

" Asynchronous stochastic approximation and Q-learning,” J. Tsitsiklis,
Machine learning, 1994

“Finite-time analysis of asynchronous stochastic approximation and
Q-learning,” G. Qu, A. Wierman, COLT, 2020

“Finite-sample analysis of contractive stochastic approximation using smooth
convex envelopes,” Z. Chen, S. T. Maguluri, S. Shakkottai, K. Shanmugam,
NeurlPS, 2020

“Sample complexity of asynchronous Q-learning: Sharper analysis and
variance reduction,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, IEEE Trans. on
Information Theory, 2022
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Information-theoretic, statistical and algorithmic
foundations of reinforcement learning

Yuejie Chi Yuxin Chen Yuting Wei
CcMU UPenn UPenn

Tutorial, ISIT 2024
Part 2



>~ W

. Online RL

. Offline RL

. Multi-agent RL
. Robust RL

Part 2



Online RL: interacting with real environment

To 1 T2 T3 T4 5

exploration via adaptive policies

e trial-and-error

e sequential and online

e adaptive learning from data

ﬂ;,',//\\ apeess

“Recalculating ... recalculating ...”

3/73



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

ik execute 7!

episode 1 |::> {sh»ah, 7 e

(= 3Ir execute 7>
L 2 2 2\H
episode 2 {8h> @ T =1
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

U execute 7'

episode 1 |::> {sh»ah, 7 e

S e [ execute 7>

2 2 oH
episode 2 :> {8h: @k, i h=1

execute 75

episode K |:> {Sf ai{7 T}{(}hH:I
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

4
LE execute 7!

episode 1 |:> {sh> ah,ThHhey

execute 7>

s rihin

episode 2

‘;% execute 75

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute
st = policy 7!

episode 1
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Regret: gap between learned policy & optimal policy

adversary learner

>

initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K

Performance metric: given initial states {s}}X , define
K

Regret(T) = Y (Vi(sf) = V7" (s1))
k=1
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Lower bound
(Domingues et al, 2021)

Regret(T') =2 VH?SAT

Existing algorithms

UCB-VI: Azar et al, 2017

UBEV: Dann et al, 2017
UCB-Q-Hoeffding: Jin et al, 2018
UCB-Q-Bernstein: Jin et al, 2018
UCB2-Q-Bernstein: Bai et al, 2019
EULER: Zanette et al, 2019
UCB-Q-Advantage: Zhang et al, 2020
MVP: Zhang et al, 2020

UCB-M-Q: Menard et al, 2021
Q-EarlySettled-Advantage: Li et al, 2021
(modified) MVP: Zhang et al, 2024



Existing algorithms
e UCB-VI: Azar et al, 2017
e UBEV: Dann et al, 2017
e UCB-Q-Hoeffding: Jin et al, 2018

Lower bound o UCB-Q-Bernstein: Jin et al, 2018
(Domingues et al, 2021) o UCB2-Q-Bernstein: Bai et al, 2019
e EULER: Zanette et al, 2019
Regret(T") 2 VH?SAT e UCB-Q-Advantage: Zhang et al, 2020

e MVP: Zhang et al, 2020

e UCB-M-Q: Menard et al, 2021

e Q-EarlySettled-Advantage: Li et al, 2021
e (modified) MVP: Zhang et al, 2024

Which online RL algorithms achieve near-minimal regret? J




Model-based online RL with UCB exploration



Model-based approach for online RL

/ empirical MDP \

HENR )
execute 7! .. . = execute 7
=== =3l =
| —ll |:'|> - . planning E:> "
= .. = oracle
| ||
{shsahs Yo ..I. =
Nl

repeat:

e use collected data to estimate transition probabilities

e apply planning to the estimated model to derive a new policy for
sampling in the next episode
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Model-based approach for online RL

/ empirical MDP \

HENR )
execute 7! .. . = execute 7
=== =3l =
| —‘l |:'|> - . planning E:) %
= .. = oracle
| ||
{shsahs Yo ..I. =
Nl

repeat:

e use collected data to estimate transition probabilities

e apply planning to the estimated model to derive a new policy for
sampling in the next episode

How to balance exploration and exploitation in this framework? J
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level

Optimistic model-based approach: incorporates UCB framework
into model-based approach
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H,H —1,...,1: run value iteration

Qn(Sh,an) < rr(sn,an) + Phsya, Vit
——
model estimate

Vi(sp) < max Qn(sh, a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(snsan) < rr(sn,an) + Phsyan V1 +  bu(sn,an)
—— —_——
model estimate  bonus (upper confidence width)

Vi(sp) < max Qn(sh, a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(snsan) < rr(sn,an) + Phsyan V1 +  bu(sn,an)
—— —_——
model estimate  bonus (upper confidence width)

Vi(sp) < max Qn(sh, a)

2. Forward h =1,..., H: take actions according to greedy policy

Th(8) <— argmax,c 4 Qn (s, a)

to sample a new episode {s, an, 7},
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")
VH2SAT

0 sample size : T’
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— Azar, Osband, Munos, 2017

Regret(T")
—VH2SAT

UCB-VI

HYS%A

0 sample size : T’
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")
—VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T

11/ 73



UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T')

- VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T

huge burn-in cost!
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T')

- VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T

huge burn-in cost!

Issues: large burn-in cost
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Other asymptotically regret-optimal algorithms

Range of K that

Algorithm Regret upper bound
attains optimal regret
UCBVI s ——
(Azar et al, 2017) VSAHT + S°AH [SPAH?, 00)
ORLC 2 P -
(Dann et al, 2019) VSAHT + S°AH [S?AH?®, 00)
EULER . - -
(Zanette et al, 2019) SAHT + S*PAHY(VS + VH) | [SPAHY(VS + VH), 0)
UCB-Adv 2 2 43/2 1733 /4 101 /4 6 14 7727
(Zhang et al, 2020) SAH?T + S*A**H™/K [S°A*H?T, 00)
MVP . .
(Zhang et al, 2020) SAH?T + 5°AH [S°AH, c0)
v SAH?T + SAH? [SAHS, 00)

(Menard et al, 2021)
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Other asymptotically regret-optimal algorithms

Range of K that

Algorithm Regret upper bound
attains optimal regret
UCBVI - o —
(Azar et al, 2017) VSAHT + S°AH [SPAH?, 00)
ORLC 2 B P
(Dann et al, 2019) VSAHT + S°AH [S?AH?®, 00)
EULER . - —
(Zanette et al, 2019) SAHT + S*PAHY(VS + VH) | [SPAHY(VS + VH), 0)
UCB-Adv 2 2 A3/2 ;733/4 jr1/4 6 14 1727
(Zhang et al, 2020) SAH®T + S*A°°H K [S°A*H?T, 00)
MVP o ;
(Zhang et al, 2020) SAH?T + 5°AH [S°AH, c0)
v SAH?T + SAH? [SAHS, 00)

(Menard et al, 2021)

Can we find a regre-optimal algorithm with no burn-in cost?
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time
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Monotonic Value Propagation
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
P—@ —p(
56)_e.

PO —@

PW —@

PB—@ — P
P2 —@—

pl) g —pm

o visitation counts change much less frequently
— reduces covering number dramatically

e data-driven bonus terms (chosen based on empirical variances)

13/ 73



Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)
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Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)

e the only algorithm so far that is regret-optimal w/o burn-ins

14/ 73



Key technical innovation

N .
N —
\ —
online data collection samples drawn
w/ sample reuse independently from simulator

Decoupling complicated statistical dependency during online learning
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Key technical innovation

N .
N —
\ _—
online data collection samples drawn
w/ sample reuse independently from simulator

Decoupling complicated statistical dependency during online learning

e couples online data collection with i.i.d. sampling
e exploit compressibility of visitation counts

o w/ the aid of doubling algorithmic trick

15/ 73



How about memory complexity?

Algorithm Regret upper bound atzn?:sgi;;)tﬁr{l{alt?:;ret Memory complexity
(AzarUefB;,I 2017) VSAHT + SAH’ [SPAH?, 00) S?2AH
(zmnicf{ﬁv 2020) | VSAH'T + SPASPHPAKYY | SPATH?T, oc) SAH
(Zhang }::]ZL 2020) VSAHT + S* Al [SAH,00) S2AH
(Mengr(ziB;T_Sl. 21) VSAH'T + SAH! [SAH?, ) S2AH
(Zhang Z:IP;I 2024) VSAHT [1,00) S2AH
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How about memory complexity?

Range of K that

Memory complexity

Algorithm Regret upper bound i ]
attains optimal regret

UCBVI - S R »
(Azar et al, 2017) VSAH?T + S°AH [SPAH?, o) S2AH

UCB-Adv VSAH? 12 A3/2 1733/4 771/4 6 A4 7727 .
(Zhang et al, 2000) | VSAHT +SSAVTHTIK [SCALH? o0) SAH

Mvp i 3 2 4172 3 N

(Zhang et al, 2020) SAH®T + 5°AH [SPAH, 00) S*AH

UCB-M-Q . - -~ -
(Menard et al.'21) SAH®T + SAH [SAH?, 00) S°AH
el SAIT (1, 50) SPAH

(Zhang et al, 2024)

Can we find a regret-optimal algorithm with
(1) low burn-in cost and (2) low memory complexity?
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Model-free RL is often more memory-efficient

o model P,
‘Ww | (e. P e RISIIXISI) == “ﬁ(ﬂg

&

wodel-based -
samples value function
(experience) policy

store transition kernel estimates
— O(S?AH) memory
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Model-free RL is often more memory-efficient

Y model %,
.Vwm'f‘:‘,v»» > (ie. P € RISIIAIXIS]) ‘1\[1“19

&,
wodel-based X -
samples value function samples value function
ot
‘ wodel-free
store transition kernel estimates maintain Q-estimates
— O(S?AH) memory — O(SAH) memory
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Model-free RL is often more memory-efficient

o model P,
‘Ww | (e. P e RISIIXISI) == “ﬁ(ﬂg

&,
wodel-based X :
samples value function samples value function
wodel-free

store transition kernel estimates maintain Q-estimates

— O(S?AH) memory — O(SAH) memory
Definition (Jin et al. '18)
An RL algorithm is model-free if its space complexity is 0o(S?AH) J

17/ 73



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)

Te(Qn)(sh, an) = r(sn,an) + max Q(sp+1,a’)
a
using sample in k-th episode

19/ 73



Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH |

Issue: large variability in stochastic update rules
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Q-learning with UCB and variance reduction

— Zhang et al. 20

Incorporates variance reduction into UCB-Q:
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— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sh,an) < (1 —n1)Qn(sh,an) + ni bn(sh, an)
———
UCB bonus
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e Reference @hﬂ, batch estimate 7 help reduce variability
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advantage reference
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sh,an) < (1 —n1)Qn(sh,an) + ni bn(sh, an)
———

UCB bonus
0 (Te(@ur1) = Te@n) + T @us0)) (51, n)
dvant f
advantage rererence

e Reference @hﬂ, batch estimate 7 help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal |

Issue: high burn-in cost O(S%A*H?%)

21/ 73



Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references @,
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Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references @,

{

Updating references Q,, and V', many times

{

Large burn-in cost

Key idea: early settlement of the reference as soon as
it reaches a reasonable quality (e.g., V), < V¥ +1)

22/ 73



Our algorithm: Q-EarlySettled-Advantage

Theorem (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + H°SA

with a memory complexity of O(SAH)
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Our algorithm: Q-EarlySettled-Advantage

Theorem (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + H°SA

with a memory complexity of O(SAH)

e regret-optimal with burn-in cost O(SApoly(H))
o optimal in SA, suboptimal in H

e memory-efficient O(SAH)

e computationally efficient: runtime O(T")

23/ 73



memory

complexity
A
UCB-M-Q

: UCB-Q-Advantage
SAH ‘ el . burn-in cost
0 SApoly(H)  SPA'HS  SSATH

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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memory

complexity
A
UCB-M-Q

: UCB-Q-Advantage
SAH ‘ el . burn-in cost
0 SApoly(H)  SPA'HS  SSATH

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

THE COMING INAUTONOMOUS VEHICLES

e B

/a5

medical records data of self-driving clicking times of ads
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

ou
w
e
. & e
< (7}

NS LS
N

medical records data of self-driving clicking times of ads

Question: can we learn based solely on historical data
w/o active exploration? J

26/ 73



A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

historical dataset D = {(s(V,a(", s'))}: N independent copies of
s~ P, aNTrb('|S)a S,NP("Sva’)
e p: initial state distribution;  7P: behavior policy
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

Goal: given a target accuracy level € € (0, H], find 7 s.t.

V*(p) — V?(p) = sIEp [V*(s)] — SINEp [V?(s)} <e

— in a sample-efficient manner

27/ 73



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*

easier harder
| > distance(n®, 1)

\ ?

\ )

2 expert data : ﬁ ?
N

b4
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Challenges of offline RL

e Distribution shift

distribution(D) # target distribution under optimal

¢ Partial coverage of state-action space

1 > \ P R N
/ \\\ / Practically, N
1 4 !
, -4 samples cover all (s,a) & all polncnes/ I/ ' historical dataset D ,/\\'
~ /l \\,\\ - i
m[ﬂm > ™ L
- ) ~— ’ 0o,
9 5 /i\”// \\\‘* /3\ ///\\7//
SUN N /, N
uniform coverage over entire space
(sufficiently explored)

partial coverage
(inadequately explored)

28/ 73



How to quantify quality of historical dataset D (induced by 7°)?

29/ 73



How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™" (s, a) occupancy distribution of T*

C* := max =
sa dm (s, a)

. . . b
occupancy distribution of 7® ||
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

C* := max d b(s,a) =
s,a d™(s,a)

occupancy distribution of "

. . . b
occupancy distribution of 7® ||

e captures distributional shift
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of "
C* = max b<’): paney T 1
s,a d™ (s, a) occupancy distribution of ©° ||
e captures distributional shift
large C*
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of ™
C”* := max b(’): pancy ekttt - 1
s,a d™ (s, a) occupancy distribution of 7° ||
‘M\(\/V“\ ! )
e captures distributional shift /

e allows for partial coverage
o as long as it covers the part
reachable by 7*

29/ 73



Prior art: sample complexity bounds

sample“
complexity

H5SC~|-

w3scrl/

HSC*

4
4
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Prior art: sample complexity bounds

sample

. A
complexity

H5SC*

H3sC*|

HSC*

> Yan et al.

4
4
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Prior art: sample complexity bounds

sample
. A
complexity "
%C)
o
%
e
H5SC* ‘q’b‘g‘,}- Yan et al.
::ffb\g/‘ & N
,,,;:?\ _x’b ‘3;560
©
S
. B
H35C* < o
o
\O
s
HSC* «°
1 1 S
e e g2
N A
v
(5} /&
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Prior art: sample complexity bounds

sample
complexity“ "
c\,o
©
&/ w
>
H5SC* q’bé,}- Yan et al.
::ftf’g/‘ & &
,,,,, SEG o %
= NP2
. S
H3SC* o>
f\/ Ny O
/@ o
l:, \('\\((\'XF
HSC* _/ )
1 1 >
e e g2
N A
7
& /&

Can we close the gap between upper & lower bounds?
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Model-based (“plug-in”) approach?

samples
(experience)

model | Al
(i.e. P e RISIMIXISI) "‘\\‘}f‘f‘s
wmodel-based \

value function
policy
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Model-based (“plug-in”) approach?

[ empirical MDP

H E BN
| [ |
| |

u | . e

mE = Poracie” ™
i HBE

| _ .

| | | || e.g. dynamic programming
H_ EHNR
| |
r

empirical P

1. construct empirical model P

P(s'|s,a) = Z]l{s

empirical frequency
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Model-based (“plug-in”) approach?

[ empirical MDP

H E BN
| [ |
| |
u | . e
H B B plannllng T
[ H B oracle
| _ .
| | | || e.g. dynamic programming
H_ EHNR
| |
r

empirical P

1. construct empirical model P

2. planning (e.g. value iteration) based on empirical MDP

31/ 73



Issues & challenges in the sample-starved regime

. H N
H
H H
|
H N
H BN
H
L
H_ N
| n
truth: P € RS4x5 empirical P (simulator)

e can't recover P faithfully if sample size < S%A
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Issues & challenges in the sample-starved regime

o H N H N
H
H H
|
H N
H BN |
H
L
H_ N H B
H n H
truth: P € RS4xS empirical P (simulator) empirical P (offline)

e can't recover P faithfully if sample size < S%A

e (possibly) insufficient coverage under offline data

32/ 73



Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

online

upper confidence bounds
— promote exploration of under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

1. build empirical model P
2. (value iteration) repeat: for all (s, a)

~

Q(s,a) < max {r(s, a) +~(P(-|s,a),V), 0}

where V(s) = max, Q(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

Penalize those poorly visited (s, a) ...

1. build empirical model P
2. (pessimistic value iteration) repeat: for all (s, a)

~

Q(s,a) <+ max {r(s, a) + ’y<]3( |s,a), ‘7> — b(s,a; ‘A/), O}
uncertainty penalty

where V(s) = max, Q(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

Penalize those poorly visited (s, a) ...

1. build empirical model P
2. (pessimistic value iteration) repeat: for all (s, a)

~

Q(s,a) + max {r(s, a) + ’y<]3( |s,a), ‘7> — b(s,a; V), O}

uncertainty penalty

compared w/ Rashidinejad et al, 2021

e sample-reuse across iterations e Bernstein-style penalty

33/ 73



Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most

0 (a=p=)
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most
~ SC*
o—"=__
((1 - 7)352)

e depends on distribution shift (as reflected by C*)

e achieves minimax optimality

e full e-range (no burn-in cost)

34/ 73



sample
complexity

SC*

Model-based offline RL is minimax optimal with no burn-in
cost! J




Is it possible to design offline model-free algorithms
with optimal sample efficiency?



Is it possible to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al, 2022, Yan et al, 2023

Qey1(5t,ar) < (L —n)Qu(st, 1) + 0 Te (Qr) (8¢5 a1) — nebe(5e,ar)

———
classical Q-learning LCB penalty
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classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al, 2022, Yan et al, 2023

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

37/ 73



Q-learning with LCB and variance reduction

— Shi et al, 2022, Yan et al, 2023

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al, 2022, Yan et al, 2023

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3
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Q-learning with LCB and variance reduction

— Shi et al, 2022, Yan et al, 2023

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem (Yan, Li, Chen, Fan’23, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V?(p) <e
with optimal sample complexity O(ﬁ)

38/ 73
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Multi-agent reinforcement learning (MARL)

E S

41/ 73



Two-player zero-sum Markov games (finite-horizon)

state sp, ction ap
P » max-player —_— —I
state sp_— action by, I
___________ 'i m|n—player’— —_ —I

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player
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Two-player zero-sum Markov games (finite-horizon)

state sp ction ap
P ) max-player -_— —I

reward 75,

state S J— action by,
___________ >l min-player —— _|
reward -7,

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player

e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
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Two-player zero-sum Markov games (finite-horizon)

state Sp, action

N pn (- | sn)
___________ max-player — — — —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7,

4===7 environment —
< : '

e S = [S]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]

min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
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Two-player zero-sum Markov games (finite-horizon)

action

state Sp ~ G
___________ max-player _—— —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7, I

4===7 environment —
< : '

next state
Sha1 ~ Pu(- | sh, an, bn)

e S =[9]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
e P,(-|s,a,b): unknown transition probabilities
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Value function under independent policies (i, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = S]
h=1
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Value function under independent policies (4, ) (no coordination)

H
VIY(s) = | > rh(Sh; an, bn) ’ s1=15
h=1

state s

which action a
to take?

e Each agent seeks optimal policy maximizing her own value
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Value function under independent policies (4, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = 8]
h=1

¢ S .
r t\x\\ & N /”,W
L - which action b o
R e =
PR state s N
' \g “

e Each agent seeks optimal policy maximizing her own value

e But two agents have conflicting goals ...
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE pOliC pair /L*, v*) obeys
Y Y

* * gk . *
max VY =VHF Y =minVH* Y
n v
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e no unilateral deviation is beneficial
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An e-NE policy pair (i, 7) obeys

max VY —e < VHY <minV*Y 4 ¢
m v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)
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Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)

Question: how many samples are sufficient to
learn an e-Nash policy pair?
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

empirical
model P

’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
2. build empirical model P

46/ 73



Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)

1. for each (s,a,b,h), call simulator N times

2. build empirical model P, and run “plug-in" methods
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)

1. for each (s,a,b,h), call simulator N times

2. build empirical model P, and run “plug-in" methods

. 4
sample complexity: H—fﬁ J
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Curse of multiple agents

~
s !E!
(<

1 player: A
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Curse of multiple agents

§ "‘\”&
1 player: A 2 players: AB
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,
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horizon

HG

H4

4

A

V-learning
............ .
model-based
........ .
A+B AB  4tactions



horizon

HG

H4

A
V-learning
............ .
\7 model-based
e
........ p .

&
A+ B AB

##actions



horizon
A
V-learning
F6 [ .

model-based

e our algorithm

0 ; E >
A+B AB  4tactions

Theorem (Li, Chi, Wei, Chen '22)
For any 0 < € < H, one can design an algorithm that finds an e-Nash
policy pair (i, V) with high prob., with sample complexity at most

~ (H4S(A + B))

0 =2 (minimax-optimal Ve)




>~ W

. Online RL

. Offline RL

. Multi-agent RL
. Robust RL

Part 2



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

Sim2Real Gap: Can we learn optimal policies that are robust
to model perturbations? J
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

=

Te

P
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

\
LN
/ \
|
//_k A
\ )
S— AN /

[ V-1

/
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

///—\/ 1\\
/ \
)
//_k A
( \
/
\/— \\ /
[ }-7
/
“=_ P L__v
- = /
I)u \\_//

e Examples of p: f-divergence (TV, x2, KL...)
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Robust value/Q function

StEH ~ P('Istvat)

Robust value/Q function of policy 7:

VseS: V™o(s):= inf E, t =
s (s) PeZ/III(}(PO) P LZ_; ~y'ry | S0 s]
o0
v S : e = inf E; t =s,a9 =
(s,a) eSxA: Q™(s,a) PeZ/I{IC}(PO) P [;7 T | 50 = 5,00 a]

Measures the worst-case performance of the policy in the uncertainty

set.
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Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. '05, Nilim and El Ghaoui. '05)
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Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy
7* and optimal robust value V*7 := V7% satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,q, V),
Ps, €U (PS,)

V*o(s) = max Q" (s,a)
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Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. '05, Nilim and El Ghaoui. '05)
Robust Bellman’s optimality equation: the optimal robust policy

7* and optimal robust value V*7 := V7% satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,q, V),
Ps, €U (PS,)

V*o(s) = max Q" (s,a)

Distributionally robust value iteration (DRVI):

Q(s,a) + r(s,a) +~ inf (Psa, V),
Py o€l (P2,)

where V(s) = max, Q(s,a).
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})})¥, from the nominal
environment PY, find an e-optimal robust policy & obeying

V*,O’ _ V;T\,O' S c

— in a sample-efficient manner
54/ 73



A curious question

HEN Learn the optimal policy of

. . = /r" the nominal MDP?
’/

. N.-
HE B ==
H B = o /l

CE g
- . . <4 Learn the robust policy

around the nominal MDP?

n n '

empirical MDP

55/ 73



A curious question

. N . Learn the optimal policy of
.. . = /," the nominal MDP?
’/

. . /"’ Iy
HE B e
H B R (]

- ]

\N Sl
- . . \~,‘ Learn the robust policy
. . around the nominal MDP?
empirical MDP

Robustness-statistical trade-off? |s there a statistical premium
that one needs to pay in quest of additional robustness? J

55/ 73



Prior art: TV uncertainty

Sample complexity 4
SA

SA
1—7e

Upper bound [Clavier et al.] s
'_ pp! [ ]

I Standard MDPs
upper & minimax lower bound "~ 7"

Lower bound [Yang et al.]

1 >
»

o1-v) o) 1 9

e Large gaps between existing upper and lower bounds

e Unclear benchmarking with standard MDP
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Prior art: \? uncertainty

Sample complexity 4 )
Upper bound S*Aa
S2A [Panaganti and Kalathil] (1 —y)te?

(=

SA Standard MDPs
----------- upper & minimax lower bound

Lower bound [Yang et al.]

1 »

(1= y)e? 0 1 1
o(1-») 0 o(1/(1=7))

e Large gaps between existing upper and lower bounds

e Unclear benchmarking with standard MDP
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Our theorem under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with
radius o € [0,1). For sufficiently small ¢ > 0, DRVI outputs a policy
T that satisfies V*° — V™7 < ¢ with sample complexity at most

O (T Fmt=m12)

ignoring logarithmic factors. In addition, no algorithm can succeed if
the sample size is below

. ((1 —7)21115;?1 —%0}62>'

e Establish the minimax optimality of DRVI for RMDP under the

TV uncertainty set over the full range of o.
58/ 73



When the uncertainty set is TV

Sample complexity 4
SA
W - Upper bound [Clavier et al.] ==
—7)4e
1
|
|
SA ] Standard MDPs
W 7 === upper & minimax lower bound =~~~
—7)3e
_s4
(=)o Upper & minimax lower bound
SA (this work)
)22 -
(1-7) ;
1
1
1
SA(1—7) . 1 Lower bound [Yang et al.]
7] >
‘ 0 O(1-7) o(1) 1

g
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When the uncertainty set is TV

Sample complexity 4
SA
m - | — Upper bound [Clavier et al.] =
|
|
|
] Standard MDPs
% - === upper & minimax lower bound ==~
—7)3¢
SA
(A -2ea Upper & minimax lower bound
SA (this work)
=P
SA(I _ 'Y) . Lower bound [Yang et al.]
2 >
0 on-4  0Q) 1 9
RMDPs are easier to learn than standard MDPs. y

59/ 73



Our theorem under \? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x* divergence with
radius o € [0,00). For sufficiently small ¢ > 0, DRVI outputs a policy
T that satisfies V*7 — V™% < e with sample complexity at most

0 (?114—(154;) )

ignoring logarithmic factors.
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Our theorem under \? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x* divergence with
radius o € [0,00). For sufficiently small ¢ > 0, DRVI outputs a policy

T that satisfies V*7 — V™% < e with sample complexity at most

0 (?114—(1’;4;) )

ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)

In addition, no algorithm succeeds when the sample size is below

{ 2 (=) ifo<1—7
o

oSA .
min{l,(lf»y)4(1+o-)4}€2) otherwise

60/73"



When the uncertainty set is \? divergence

Sample complexity 4

S2A

Upper bound

[Panaganti and Kalathil] / (

(=

Upper bound
(this work) (

SAo
=i o)

S? Ao
1)
Lower bound
(this work)
SAc
L—qy)te?
SAo

22

Standard MDPs
upper & minimax lower bound =

Lower bound [Yang et al.]

O(1—7)

0o(1) o(1/(1-7))
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When the uncertainty set is \?

divergence

Sample complexity 4
Upper bound S?Aa
2 i i 1—~)4e2
S2A [Panaganti and Kalathil] ( Y) ———
(1 - 7)452 (this work)
Upper bound SA‘f _
(this work) (1—)te?
SA -
(1—=7)te?
SAo SAo
L=m*1+ao)* €2
SA Standard MDPs
(1 _ 7)352 ___________ upper & minimax lower bound =
i - Lower bound [Yang et al.]
(1 —y)e? o ] ] > -
o1-7) 01  O/1-7)

RMDPs can be harder to learn than standard MDPs.
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Concluding remarks

U\ state . FIRsT-ORDER METHODS
i\ agent action IN OPTIMIZATION
Reinforcement |\ Dynamic Programming r |
Learning 1y and Optimal Control H
i |
L reward Amir Beck
-—¢—— environment [¢ —

<
:next state

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J

Promising directions:

e function approximation e hybrid RL
e multi-agent/federated RL e many more...
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Beyond the tabular setting

Policy network Value network

p,, @ls) v, 8)

*

l‘s‘ <«

(J ]
[ ] ®
L ] ]
‘ s , s’
e function approximation for dimensionality reduction

Figure credit: (Silver et al., 2016)
e Provably efficient RL algorithms under minimal assumptions
(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)
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Multi-agent RL

e Competitive setting: finding Nash equilibria for Markov games

e Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)
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Hybrid RL

Online RL

this is done \ e interact with environment
many timi

e actively collect new data

train for
> many epoch
big dataset from
past interactions 4%;

deploy learned policy in new scenarios

Offline/Batch RL
e no interaction

e data is given

Can we achieve the best of both worlds?

(Wagenmaker and Pacchiano, 2022; Song et al., 2022; Li et al., 2023)
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RL meets federated learning

Federated reinforcement learning enables multiple agents to

collaboratively learn a global model without sharing datasets.

Central server

:xi?l: :ﬁ & :@:

Agent 1 Agent2 7 Agentk " Agentk

Can we achieve linear speedup via federated learning?
(Khodadadian et al., 2022; Woo et al., 2023)

67/ 73



Reference: online RL |

"Asymptotically efficient adaptive allocation rules,” T. L. Lai, H. Robbins,
Advances in applied mathematics, vol. 6, no. 1, 1985

“Finite-time analysis of the multiarmed bandit problem,” P. Auer,
N. Cesa-Bianchi, P. Fischer, Machine learning, vol. 47, pp. 235-256, 2002

“Minimax regret bounds for reinforcement learning,” M. G. Azar, |. Osband,
R. Munos, ICML, 2017

“Is Q-learning provably efficient?” C. Jin, Z. Allen-Zhu, S. Bubeck, and
M. Jordan, NeurlPS, 2018

“Provably efficient Q-learning with low switching cost,” Y. Bai, T. Xie,
N. Jiang, Y. X. Wang, NeurlPS, 2019

"Episodic reinforcement learning in finite MDPs: Minimax lower bounds
revisited” O. D. Domingues, P. Menard, E. Kaufmann, M. Valko,
Algorithmic Learning Theory, 2021

"Almost optimal model-free reinforcement learning via reference-advantage
decomposition,” Z. Zhang, Y. Zhou, X. Ji, NeurlPS, 2020

68/ 73



Reference: online RL |1l

“Is reinforcement learning more difficult than bandits? a near-optimal
algorithm escaping the curse of horizon,” Z. Zhang, X. Ji, and S. Du, COLT,
2021

"Breaking the sample complexity barrier to regret-optimal model-free
reinforcement learning,” G. Li, L. Shi, Y. Chen, Y. Gu, Y. Chi, NeurlPS, 2021

" Regret-optimal model-free reinforcement learning for discounted MDPs with
short burn-in time,” X. Ji, G. Li, NeurlPS, 2023

" Reward-free exploration for reinforcement learning,” C. Jin,
A. Krishnamurthy, M. Simchowitz, T. Yu, ICML, 2020

“Minimax-optimal reward-agnostic exploration in reinforcement learning,”
G. Li, Y. Yan, Y. Chen, J. Fan, COLT, 2024

"Settling the sample complexity of online reinforcement learning,” Z. Zhang,
Y. Chen, J. D. Lee, S. S. Du, COLT, 2024

69/ 73



Reference: offline RL |

“Bridging offline reinforcement learning and imitation learning: A tale of
pessimism,” P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, S. Russell, NeurlPS,
2021

“Is pessimism provably efficient for offline RL?" Y. Jin, Z. Yang, Z. Wang,
ICML, 2021

" Settling the sample complexity of model-based offline reinforcement
learning,” G. Li, L. Shi, Y. Chen, Y. Chi, Y. Wei, Annals of Statistics,
vol. 52, no. 1, pp. 233-260, 2024

" Pessimistic Q-learning for offline reinforcement learning: Towards optimal
sample complexity,” L. Shi, G. Li, Y. Wei, Y. Chen, Y. Chi, ICML, 2022

" The efficacy of pessimism in asynchronous Q-learning,” Y. Yan, G. Li,
Y. Chen, J. Fan, IEEE Transactions on Information Theory, 2023

“Policy finetuning: Bridging sample-efficient offline and online reinforcement
learning” T. Xie, N. Jiang, H. Wang, C. Xiong, Y. Bai, NeurlPS, 2021

70/ 73



Reference: multi-agent RL |

“Stochastic games,” L. S. Shapley, Proceedings of the national academy of
sciences, 1953

“Twenty lectures on algorithmic game theory,” T. Roughgarden, 2016

"Model-based multi-agent RL in zero-sum Markov games with near-optimal
sample complexity,” K. Zhang, S. Kakade, T. Basar, L. Yang, NeurlPS, 2020

“When can we learn general-sum Markov games with a large number of
players sample-efficiently?" Z. Song, S. Mei, Y. Bai, ICLR, 2021

“V-learning—A simple, efficient, decentralized algorithm for multiagent RL,"
C. Jin, Q. Liu, Y. Wang, T. Yu, 2021

"Minimax-optimal multi-agent RL in Markov games with a generative
model,” G. Li, Y. Chi, Y. Wei, Y. Chen, NeurlPS, 2022

When are offline two-player zero-sum Markov games solvable?” Q. Cui,
S. S. Du, NeurlPS, 2022

“Model-based reinforcement learning for offline zero-sum Markov games,”
Y. Yan, G. Li, Y. Chen, J. Fan, Operations Research, 2024

71/ 73



Reference: robust RL |

“Robust dynamic programming,” G. lyengar, Mathematics of Operations
Research, 2005

" The curious price of distributional robustness in reinforcement learning with
a generative model.,” L. Shi, G. Li, Y. Wei, Y. Chen, M. Geist, Y. Chi,
NeurlPS, 2023

“Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity,” L. Shi, Y. Chi, 2022

“On the foundation of distributionally robust reinforcement learning,”
S. Wang, N. Si, J. Blanchet, and Z. Zhou, 2023

“Sample complexity of robust reinforcement learning with a generative
model,” K. Panaganti, D. Kalathil, AISTATS, 2022

" Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of
Environmental Uncertainty,” L. Shi, E. Mazumdar, Y. Chi, and A. Wierman,
ICML, 2024

72/ 73



Thanks!

https://users.ece.cmu.edu/~yuejiec/
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