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Abstract

We study the problem of recovering a vector x ∈ Rn from its magnitude mea-
surements yi = |〈ai,x〉|, i = 1, ...,m. We design an incremental/stochastic
gradient-like algorithm, referred to as incremental reshaped Wirtinger flow (IRWF),
based on minimizing a nonconvex nonsmooth loss function, and show that such an
algorithm converges linearly to the true signal. We further establish performance
guarantee of an existing Kaczmarz method for solving the same problem based on
its connection to IRWF. We demonstrate IRWF outperforms previously developed
batch algorithms as well as other incremental algorithms.

1 Introduction
Many problems in machine learning and signal processing can be reduced to solve an unknown signal
for a quadratic system of equations, e.g., phase retrieval. Mathematically, the problem is formulated
below.
Problem 1. Recover x ∈ Rn/Cn from measurements yi given by

yi = |〈ai,x〉| , for i = 1, · · · ,m, (1)

where ai ∈ Rn/Cn are random design vectors (known).

Recently, efficient nonconvex approaches such as AltMinPhase [2], Wirtinger flow (WF) [3] and
truncated Wirtinger flow (TWF) [4] have been proposed to solve the above problem. Specifically,
WF minimizes a nonconvex loss function via gradient descent together with a spectral initialization
step, and is shown to recover the true signal with onlyO(n log n) Gaussian measurements and attains
ε−accuracy within O(mn2 log 1/ε) flops. TWF algorithm further improves the sample complexity
to O(n) and the convergence time to O(mn log 1/ε) by truncating bad-behaved measurements when
calculating the initial seed and the gradient.

The reshaped Wirtinger flow (RWF) [1] designed the loss function based on |aTi z| rather than on
its quadratic counterpart |aTi z|2 used in WF and TWF. Although the loss function is not smooth
everywhere, it reduces the order of aTi z to be two, and the general curvature can be more amenable
to convergence of the gradient method. Specifically, it minimizes the following the loss function

`(z) :=
1

2m

m∑
i=1

(
|aTi z| − yi

)2
. (2)

For such a nonconvex and nonsmooth loss function, RWF [1] developed a gradient descent-like
algorithm with a spectral initialization.

On the other hand, incremental/stochastic methods, e.g., Kaczmarz methods [5, 6] and incremental
truncated Wirtinger flow (ITWF) [7], are proposed to solve Problem 1. Specifically, Kaczmarz
methods are shown to have superb empirical performance, but no global convergence guarantee is
established.
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In this paper, we consider the incremental/stochastic version of RWF (i.e., IRWF) and show that
IRWF converges to the true signal geometrically under an appropriate initialization. Interestingly, we
further establish the connection between IRWF and Kaczmarz methods: the randomized Kaczmarz
method can be seen as IRWF with a specific rule of choosing step size, which implies its global
convergence. Empirically we demonstrate that IRWF often performs better than other competitors.

Throughout the paper, boldface lowercase letters such as ai,x, z denote vectors, and boldface capital
letters such as A,Y denote matrices. For a complex matrix or vector, A∗ and z∗ denote conjugate
transposes of A and z respectively. For a real matrix or vector, AT and zT denote transposes of A
and z respectively. The indicator function 1A = 1 if the event A is true, and 1A = 0 otherwise. The
Euclidean distance between two vectors up to a global phase difference [3] is, for complex signals,

dist(z,x) := min
φ∈[0,2π)

‖ze−jφ − x‖, (3)

where it is simply min ‖z ± x‖ for real case.

2 Incremental Reshaped Wirtinger Flow: Algorithm and Convergence
In this section, we first describe the algorithm of minibatch incremental reshaped Wirtinger flow
(minibatch IRWF) and then establish its performance guarantee. In the end, we draw the connection
between IRWF and Kaczmarz method.

Algorithm 1 Minibatch Incremetnal Reshaped Wirtinger Flow (minibatch IRWF)
Input: y = {yi}mi=1, {ai}mi=1;

Initialization: Let z(0) = λ0z̃, where λ0 = mn∑m
i=1 ‖ai‖1 ·

(
1
m

∑m
i=1 yi

)
and z̃ is the leading eigen-

vector of

Y :=
1

m

m∑
i=1

yiaia
∗
i 1{αlλ0<yi<αuλ0}.

Gradient loop: for t = 0 : T − 1 do
Sample Γt uniformly at random from the subsets of {1, 2, . . . ,m} with cardinality k

z(t+1) = z(t) − µA∗Γt

(
AΓt

z(t) − yΓt
� Ph(AΓt

z(t))
)
, (4)

where AΓt is a matrix which stacks a∗i for i ∈ Γt as its rows, yΓt
is a vector which stacks yi for

i ∈ Γt as its elements, � denotes element-wise product, and Ph(z) returns a phase vector of z.
Output z(T ).

We set parameters αl = 1, αu = 5 and µ = 1/n in practice.

Due to the space limitation, we provide the minibatch IRWF only, which reduces to IRWF if the
minibatch size k = 1. Compared to ITWF [7], IRWF does not employ any truncation in gradient
loops and hence is easier to implement. We characterize the convergence of minibatch IRWF as
follows.
Theorem 1. Consider solving Problem 1 and assume that ai ∼ N (0, I) are independent. There exist
some universal constants 0 < ρ, ρ0, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ = ρ0/n,
then with probability at least 1− c1 exp(−c2m), Algorithm 1 yields

EΓt

[
dist2(z(t),x)

]
≤ ν

(
1− kρ

n

)t
‖x‖2, ∀t ∈ N, (5)

where EΓt [·] denotes the expectation with respect to algorithm randomness Γt = {Γ1,Γ2, . . . ,Γt}
conditioned on the high probability event of random measurements {ai}mi=1.

We note that Theorem 1 establishes that IRWF achieves linear convergence to the global optimum.
It is not anticipated that incremental/stochastic first order method achieves linear convergence for
general objectives due to the variance of stochastic gradient. However, for our specific problem
(1), the variance of stochastic gradient reduces as the estimate approaches the true solution, and
hence a fixed step size can be employed and linear convergence can be established (see [7] for
similar justification). Another intuition comes from a side fact [8, 9] that stochastic gradient method
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yields linear convergence to the minimizer x? when the objective F (x) =
∑
i fi(x) is a smooth

and strongly convex function and x? minimizes all components fi(x). Although our objective (2) is
neither convex nor smooth, the summands share a same minimizer. We here establish a similar result
for a nonconvex and nonsmooth objective.

3 Connection to the Kaczmarz method
[5] proposed a Kaczmarz method to solve Problem 1, which exhibits superb empirical performance
in terms of sample complexity and convergence time. However, theoretical guarantee of Kaczmarz
methods is not satisfying to date. We next draw the connection between IRWF and Kaczmarz method,
and establish a linear convergence guarantee for Kaczmarz method motivated by the result of IRWF.
We also note that [9] established a similar connection between Kaczmarz method and stochastic
gradient method when solving the least-squares problem.

The Kaczmarz method (Algorithm 3 in [5]) employs the following update rule

z(t+1) = z(t) − 1

‖ait‖2

(
a∗itz

(t) − yit ·
a∗itz

(t)

|a∗itz(t)|

)
ait , (6)

where it is selected either in a deterministic manner or randomly. We focus on the randomized
Kaczmarz method where it is selected uniformly at random.

Comparing (6) with (4), the step size µ in (4) is replaced by 1
‖ait‖2

in (6). These two update rules

are close if µ is set to be µ = 1
n , because ‖ait‖2 concentrates around n by law of large numbers. As

we demonstrate in empirical results (see Table 1), these two methods have similar performance as
anticipated. Thus, following the convergence result Theorem 1 for IRWF, we have the convergence
guarantee for the randomized Kaczmarz method as follows.
Corollary 1. Assume the measurement vectors are independent and each ai ∼ N (0, I). There exist
some universal constants 0 < ρ and c0, c1, c2 > 0 such that if m ≥ c0n, then with probability at
least 1− c1m exp(−c2n), randomized Kaczmarz update rule (6) yields

Eit

[
dist2(z(t+1),x)

]
≤
(

1− ρ

n

)
· dist2(z(t),x) (7)

holds for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10 .

The above corollary implies that once the estimate z(t) enters the neighborhood of true solutions
(often referred as to basin of attraction), the error shrinks geometrically by each update in expectation.

We can similarly draw the connection between the block Kaczmarz method and the minibatch IRWF,
where the update rule of the block Kaczmarz method is given by

z(t+1) = z(t) −A†Γt

(
AΓtz

(t) − yΓt � Ph(AΓtz
(t))
)
, (8)

where † represents Moore–Penrose pseudoinverse and other notations follow those in Algorithm 1.

On the other hand, since block Kaczmarz method needs to calculate the matrix inverse or to solve an
inverse problem, the block size cannot be too large. In contrast, minibatch IRWF works well for a
wide range of batch sizes which can even vary with the signal dimension n as long as a batch of data
is loadable into memory.

4 Numerical Comparison with Other Algorithms
In this section, we demonstrate the numerical efficiency of IRWF by comparing its performance with
other competitive algorithms. Our experiments are run for both real Gaussian and complex Gaussian
cases. All the experiments are implemented in Matlab and carried out on a computer equipped with
Intel Core i7 3.4GHz CPU and 12GB RAM.

We first compare the sample complexity of IRWF with those of RWF, TWF, WF and ITWF via
the empirical successful recovery rate versus the number of measurements. For IRWF, we adopt a
minibatch size 64 and follow Algorithm 1 with suggested parameters. For RWF, TWF, ITWF and
WF, we use the codes provided in the original papers with the suggested parameters. We conduct the
experiment for real Gaussian, complex Gaussian respectively. We set the signal dimension n to be
1024, and the ratio m/n take values from 2 to 6 by a step size 0.1. For each m, we run 100 trials

3



and count the number of successful trials. For each trial, we run a fixed number of iterations/passes
T = 1000 for all algorithms. A trial is declared to be successful if z(T ), the output of the algorithm,
satisfies dist(z(T ),x)/‖x‖ ≤ 10−5. For the real Gaussian case, we generate signal x ∼ N (0, I),
and the measurement vectors ai ∼ N (0, I) i.i.d. for i = 1, . . . ,m. For the complex Gaussian case,
we generate signal x ∼ N (0, I) + jN (0, I) and measurement vectors ai ∼ 1

2N (0, I) + j 1
2N (0, I)

i.i.d. for i = 1, . . . ,m.
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0

0.2

0.4

0.6

0.8

1
E

m
pi

ric
al

 s
uc

ce
ss

 r
at

e

RWF
IRWF
TWF
ITWF
WF

(a) Real Gaussian case
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(b) Complex Gaussian case

Figure 1: Comparison of sample complexity among RWF, IRWF, TWF, ITWF and WF.

Figure 1 plots the fraction of successful trials out of 100 trials for all algorithms, with respect to m. It
can be seen that IRWF exibits the best sample complexity for both cases, which is barely above the
theoretical identifiable bound [10]. This is because the inherent noise in IRWF helps to escape bad
local minima, which is helpful in the regime of small sample size where local minima do exist near
the global ones. See Section 5 for more intuition.

Table 1: Comparison of iteration count and time cost among algorithms (n = 1024,m = 8n)

Real Gaussian Complex Gaussian
#passses time(s) # passes time(s)

Batch RWF 72 0.52 177 4.81
TWF 182 1.30 484 13.5

methods WF 217 2.22 922 24.9

Incremental minibatch IRWF (64) 9 0.28 21 1.53
minibatch ITWF (64) 15 0.72 28.6 3.28

methods block Kaczmarz (64) 8 0.45 21 3.22

We next compare the convergence rate of minibatch IRWF with those of Kaczmarz, RWF, TWF,
ITWF and WF. We run all algorithms with suggested parameter settings in the original papers. We set
the minibatch size/block size to be 64 for incremental methods. We generate signal and measurements
in the same way as those in the first experiment. All algorithms are seeded with minibatch IRWF
initialization. In Table 1, we list the number of passes and time cost for those algorithms to achieve
the relative error of 10−14 averaged over 10 trials. Clearly, minibatch IRWF achieves the best
computational complexity for both cases. Moreover for full gradient algorithms, RWF outperforms
TWF and WF in terms of passes and running time.

5 Further Direction
One interesting direction is to study the convergence of algorithms without spectral initialization. In
the regime of large sample size (m� n), the empirical loss surface approaches the asymptotic loss for
which all local minimums are global optimal. It is understandable that pure gradient descent converges
to these minimizers from random starting point due to the result in [11]. Similar phenomenon has been
observed in [12]. However, under moderate number of measurements (m < 10n), local minimums
do exist which often locate not far from the global ones. In this regime, the batch gradient method
often fails to converge to global optimums when starting from random points. As always believed,
stochastic algorithms are efficient in escaping bad local minimums or saddle points in nonconvex
optimization because of the inherent noise [13, 14]. We observe that IRWF and block IRWF without
spectral initialization still converge to global optimums even with very small sample size which is
close to the theoretical limits [10]. Therefore, stochastic methods do escape these local minimums
(not just saddle points) efficiently. Further study of stochastic method with random initialization in
non-convex non-smooth setting is of great interest.
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