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ABSTRACT

Graph clustering, where the goal is to cluster the nodes in a graph
into disjoint clusters, arises from applications such as community
detection, network monitoring, and bioinformatics. This paper de-
scribes an approach for graph clustering based on a small number of
linear measurements, i.e. sketches, of the adjacency matrix, where
each sketch corresponds to the number of edges in a randomly se-
lected subgraph. Under the stochastic block model, we propose a
computationally tractable algorithm based on semidefinite program-
ming to recover the underlying clustering structure, by motivating
the low-dimensional parsimonious structure of the clustering matrix.
Numerical examples are presented to validate the excellent perfor-
mance of the proposed algorithm, which allows exact recovery of
the clustering matrix under favorable trade-offs between the num-
ber of sketches and the edge density gap under the stochastic block
model.

Index Terms— graph clustering, sketching, convex optimiza-
tion, stochastic block model

1. INTRODUCTION

An increasing number of modern datasets can be represented by an
undirected graph which encodes user interactions and node connec-
tivities within complex networks such as social networks, biological
networks, and computer networks. Identifying the communities, or
dense subgraphs in the graph is important to network structure infer-
ence, anomaly detection, and data mining [1]. By exploring different
connectivity patterns between nodes based on whether they belong to
the same cluster, graph clustering aims to recover the clusters within
a graph from observations of its adjacency matrix. Many algorithms
have been proposed such as spectral clustering [2], correlation clus-
tering [3], and convex optimization [4]-[8], where exact recovery
guarantees have been established recently, most notably under the
stochastic block model [9].

In all the existing approaches, the graph is either fully observed
which is expensive when the graph size is large, or randomly sub-
sampled [4], or adaptive subsampled [10], which is not suitable for
updating in a dynamic graph stream model [11]. Sketching a graph
via linear measurements has been considered recently as a powerful
tool to reduce the dimensionality of the graph [11, 12, 13], while the
acquired sketches is sufficient to faithfully recover the graph or esti-
mate its properties such as cut values, by exploiting low-dimensional
structures of the graph, e.g., sparsity of the adjacency matrix [13].

In this paper, we propose a new scheme to sketch the graph,
and analyze an algorithm to exactly recover the underlying cluster-
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ing structure that generates the graph, without first reconstructing
the graph, based on a number of sketches that is much smaller than
the ambient dimension of the graph. This is motivated by the obser-
vation that, under popular generative models such as the stochastic
block model, the graph can be regarded as a noisy realization of the
clustering matrix that encodes the true user membership. Therefore,
it is of interest to recover the clustering matrix, rather than the graph
itself, from a reduced number of measurements of the graph.

Our proposed linear measurements of the graph adjacency ma-
trix, referred to as sketches, are inner products between the adja-
cency matrix and a rank-one matrix, given as xT

i Axi = 〈A,xix
T
i 〉,

where A is the adjacency matrix and xi’s are randomly selected
Bernoulli vectors. These sketches are equivalent to counting the
number of edges in a randomly selected subgraph determined by the
support of xi, which can be computed in a parallel and distributed
manner, and updated in an online fashion if the graph dynamically
inserts or delete an edge. Our graph sketching scheme is motivated
by the rank-one observation model studied in [14, 15, 16], which
aims to recover a low-rank symmetric matrix from quadratic mea-
surements. Compared with unstructured linear measurements of the
adjacency matrix, the proposed sketches have a lower computational
and memory cost.

The proposed graph sketching scheme may naturally fit in sev-
eral applications. For example, consider the friendship graph in so-
cial networks. It may be prone to privacy leakage if the server di-
rectly query a specific friendship between one user and the other.
Rather, the server may query the number of users that one user is
friend of within a randomized group, and none of the specific friend-
ships is revealed through these aggregated answers. As another ex-
ample, consider the IP flows in traffic monitoring [17], rather than
directly storing all the pairwise links between different IPs, it is pos-
sible to only track the summary links between a group of IPs, which
can be implemented in a decentralized fashion.

Our second contribution is an efficient algorithm to recover the
clustering matrix from the sketches using semidefinite programming
under the balanced planted partition model, a special case of the
stochastic block model [9]. Inspired by [6], our algorithm promotes
the sparsity and low-rankness of the clustering matrix via convex re-
laxation, where a surrogate matrix is properly designed to assume the
role of the adjacency matrix. The algorithm then selects the matrix
with the desired low-dimensional structure that maximizes its corre-
lation with the surrogate matrix. Numerical examples are presented
for the proposed algorithm to demonstrate its desirable performance.
In particular, it is observed that exact recovery is achieved for a wide
range of parameters, even when the graph is relatively sparse; dimen-
sionality reduction in graph acquisition is achieved as well, where
the number of sketches can be made much smaller than the ambient



dimension of the adjacency matrix.
The rest of this paper is organized as follows. Section 2 reviews

several background ingredients. Section 3 presents the proposed
sketching scheme and clustering algorithm. Section 4 validates the
proposed approach via numerical simulations, and we conclude and
outline future work in Section 5.

2. BACKGROUNDS

2.1. Stochastic Block Model

The stochastic block model (SBM) [9], or the planted partition
model, is a popular generative model for studying community struc-
tures in complex networks. Consider a graph G = (V,E) where
V is composed of a set of N nodes and E is composed of a set of
random edges. Assume that each node 1 ≤ i ≤ N belongs to a non-
overlapping cluster π(i) ∈ {1, . . . , r}, where r is the total number
of clusters. Define Y ∈ {0, 1}N×N as the clustering matrix, where

Yi,j =

{
1, if π(i) = π(j)
0, otherwise . (1)

The edge set E can be represented by the adjacency matrix A ∈
{0, 1}N×N , where Ai,j can be modeled as a Bernoulli random vari-
able with different parameters depending on whether π(i) = π(j):

Aij =

{
Ber(p), if π(i) = π(j)
Ber(q), otherwise . (2)

Without loss of generality we assume p > q, and denote the edge
density gap as

δ = p− q, (3)

which serves as a key quantity in characterizing clustering perfor-
mance for various graph clustering algorithms [2, 4, 5]. Fig. 1 (a)
gives an example realization of the adjacency matrix A generated
by the SBM with two clusters of size 50 when p = 0.5 and q = 0.1,
and Fig. 1 (b) shows the sorted adjacency matrix according to the
cluster membership.

In this paper, for simplicity we focus on the balanced planted
partition model, which assume the size of all clusters are the same as
K, and hence N = rK. Our algorithm can be implemented to more
general models.

2.2. Graph Clustering

The classical problem of graph clustering is that given the adjacency
matrix A, recovering the true membership matrix Y . Of the most
relevance to this paper are the semidefinite programming approaches
proposed and studied in recent literature [6, 7, 8]. These approaches
can be motivated as semidefinite relaxations of the maximum likeli-
hood estimator under the SBM, and strong guarantees exist for their
performance that are provably near optimal. In general, one wishes
to solve the following problem:

Ŷ = argmaxZ 〈A,Z〉

s.t. Z ∈ {0, 1}N×N is a clustering matrix,
(4)

which returns a clustering matrix Z that maximizes its correlation
with the adjacency matrix A. However, the constraint of being a
clustering matrix is combinatorial and NP-hard, and therefore we
seek convex relaxations of this constraint. Note that the true clus-
tering matrix Y is simultaneously low-rank with rank(Y ) = r and
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Fig. 1. The stochastic block model with p = 0.5 and q = 0.1: (a) the
adjacency matrix A; and (b) its permutation according to the cluster
membership.

sparse with ‖Y ‖1 = rK2 with binary entries, the non-convex con-
straint in (4) is replaced by its convex relaxation [6]

Q = {Z : 0 ≤ Zi,j ≤ 1, ‖Z‖1 = rK2, ‖Z‖∗ ≤ rK}, (5)

where the rank constraint is replaced by the nuclear norm constraint
‖Z‖∗ ≤ rK, and the binary constraint is replaced by 0 ≤ Zi,j ≤ 1
for all the entries. To sum up, the algorithm proposed in [6] can then
be represented as

Ŷ = argmaxZ 〈A,Z〉 s.t. Z ∈ Q, (6)

where the number of clusters r is assumed known.

2.3. Matrix Sketching

Sketching via linear measurements is an useful algorithmic tool in
computer science [11] and compressed sensing [18, 19] to reduce
the dimensionality of the data without losing its information content.
In particular, when Σ is a symmetric matrix with low-dimensional
structures such as low-rankness and sparsity, a quadratic sensing
scheme can be exploited to recover Σ from a small number of ran-
dom measurements yi = xT

i Σxi, i = 1, . . . ,m by solving the
nuclear-norm or `1-norm regularized convex relaxation algorithms
[14, 15, 16]. This quadratic sensing scheme is leveraged in this work
to obtain summary information of randomly selected subgraphs by
choosing Σ = A as the adjacency matrix. If p = 1 and q = 0,
then A = Y is an exactly rank-r matrix, which can be recovered
via nuclear norm minimization from an order of Nr measurements.
However, this algorithm doesn’t provide exact recovery when p < 1
or q > 0, since it is formulated to recover the matrix under sketching
A rather than the clustering matrix Y that induces it.

3. GRAPH CLUSTERING FROM RANDOM SKETCHES

In this section, we first describe a graph sketching scheme that yields
compressive measurements of the graph adjacency matrix, and then
propose a semidefinite program to recover the clustering matrix from
the sketches. The proposed algorithm is summarized in Algorithm 1.

3.1. Sketching node connectivities

Consider a graph G with the adjacency matrix A. Our sketching
scheme is non-adaptive and can be implemented in a parallel. Define
the ith sketching vector xi ∈ {0, 1}N×1 where each entry xi,j is a



Algorithm 1 Graph Clustering From Random Sketches
Input: number of clusters r, m sketching vectors {xi}mi=1, and
sketches {yi}mi=1 from (7);

1: Compute the surrogate matrix in (9);
2: Compute the solution Ŷ of the algorithm (10);
3: if Ŷ is a clustering matrix then
4: output Ŷ ;
5: else
6: declare failure.
7: end if

Fig. 2. Example of the measurement scheme.

Bernoulli random variable with parameter s ∈ (0, 1), then the ith
sketch can be given as

yi = xT
i Axi, i = 1, . . . ,m. (7)

Denote the support of xi as Ii, then the ith sketch is twice the num-
ber of edges within the subgraph formed by the nodes in Ii. For
example, consider the graph in Fig. 2, and let

x1 = [1, 0, 0, 0, 0, 1, 0, 1]T

whose support is I1 = {1, 6, 8} corresponding to the nodes in the
dashed subgraph. Then it is straightforward to verify that xT

1 Ax1 =
2 is twice the number of edges among I1. Therefore, the sketches
can be computed without directly observing the subgraph, by query-
ing each node within the subgraph “for the nodes indexed by Ii, how
many of them are you connected with?”; and then summing up their
answers. This indicates that the sketch in (7) can be computed in a
fully distributive manner without observing the entries in A directly.

Succinctly, we can represent the sketches (7) as

y = X (A), (8)

where y = {yi}mi=1 and X represents the linear map A 7→ y. Our
goal is to recover the clustering matrix Y given the sketches y. If
m ≥ N2/2, then (8) is overdetermined and A can be exactly recov-
ered from (8) and then use existing graph clustering algorithm (6) to
retrieve Y . Therefore, we focus on the case when m � N2/2 and
(8) is under-determined.

3.2. Clustering via semidefinite programming

Motivated by the recent convex relaxations for graph clustering [6, 7,
8], we propose the following two-step algorithm for graph clustering.
First, since A is not available, we formulate the surrogate matrix S

as the least-norm solution of (8):

S = X †(y) = (X ∗X )†X ∗(y), (9)

where X ∗(y) =
∑m

i=1 yixix
T
i , and † denotes pseudo-inverse. Sec-

ond, we replace A by the surrogate matrix in (6) and solve the fol-
lowing semidefinite program:

Ŷ = argmaxZ 〈S,Z〉 s.t. Z ∈ Q. (10)

Interestingly, as the matrix S resembles the structure of A, the above
algorithm (10) can recover the clustering matrix without actually re-
constructing A. If the return Ŷ from (10) is indeed a clustering
matrix, we claim it as the clustering output; otherwise the algorithm
returns a failure. It is possible to employ alternative constructions of
the surrogate matrix, for example, using the ridge estimation of (8)
for some regularization parameter. We leave this to future work.

4. NUMERICAL EXAMPLES

Let r = 2, K = 40 and N = rK = 80. The affinity matrix A is
randomly generated following the SBM with p = 0.8 and q = 0.1.
We denote the solution of (10) as Ŷ . Due to numerical inaccuracies,
the matrix Ŷ contains continuous values, therefore we post-process
it by hard-thresholding the entries in Ŷ against its mean value into a
binary matrix. The normalized mean squared error (NMSE) is com-
puted as ‖Ŷ −Y ‖2F/‖Y ‖2F, which corresponds to the percentage of
misidentified pairs. Fig. 4 shows the NMSE with respect to the num-
ber of measurements for different values of s = 0.2, 0.4, and 0.6. It
can be seen that the reconstruction exhibits a phase transition behav-
ior, where exact recovery of the clustering matrix is possible as soon
as m exceeds certain threshold, which is much smaller than the am-
bient dimension of A. It is also worth noticing that the performance
variation with respect to s is small.

We further examine the performance of the Algorithm 1 with
respect to the edge densities specified in the SBM. Let r = 2 and
K = 50, and fix s = 0.5. For m = 2000 and m = 3000, we first
generate m sketching vectors. For each (p, q) (q < p), we generate
the matrix A following the SBM and run Algorithm 1. Fig. 3 shows
the recovery NMSE for different values of p and q when m = 2000
and m = 3000, where p ∈ [0.05, 1] and q ∈ [0, 0.95] with a step
size of 0.05. The algorithm achieves good performance as long as
the edge density gap δ is not too small, where we plotted the line
δ = 0.4 when m = 2000 and δ = 0.25 when m = 3000 for
comparison. Encouragingly, exact recovery is achieved for a wide
range of (p, q) pairs, even sparse graphs when p < 0.5; and a higher
edge density gap is allowed as m increases.

5. CONCLUSION

This paper presents a novel framework for graph clustering from a
small number of linear measurements that can be regarded as pool-
ing of a random subgraph, which is particularly suitable to scenarios
when direct observations of node connectivities are impossible or ex-
pensive. Dimensionality reduction is simultaneously achieved to re-
duce the number of required measurements to be much smaller than
the ambient dimension of the adjacency matrix. This work leaves
many open questions that need to be addressed, including theoretical
guarantees of the proposed algorithm, and efficient implementations
to handle large-scale networks.
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Fig. 3. The recovery NMSE with respect to the p × q plane. Only the region q < p, corresponding to the southwest triangle, is examined.
The lines with the edge density gap δ = 0.4 when m = 2000 and δ = 0.25 when m = 3000 are plotted for comparison.
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