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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e unknown environments
e maximize total rewards

trial-and-error

sequential and online

“Recalculating ... recalculating ...”



Recent successes in RL

Atlast —a computer
can beat a champion G

ALL SYSTEMSGO

RL holds great promise in the next era of artificial intelligence.



Challenges of RL

e explore or exploit: unknown or changing environments
e credit assignment problem: delayed rewards or feedback

e enormous state and action space

e nonconcavity in value maximization




Sample efficiency

Collecting data samples might be expensive or time-consuming
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Sample efficiency

Collecting data samples might be expensive or time-consuming
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clinical trials autonomous driving online ads

Calls for design of sample-efficient RL algorithms!



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!



From asymptotic to non-asymptotic analyses

]

PTIRTINY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic

analysis
Reinforcement Learning:
Theory and Algorithms
Alekh Agarwal ~ NanJiang ~ Sham M. Kakade ~ Wen Sun
December 9, 2020

Non-asymptotic analyses are key to understand sample and
computational efficiency in modern RL.




This tutorial

Part I: backgrounds and basics

e Markov decision processes
e Planning

Part |l: statistical guarantees under the generative model
e minimax lower bound
e |s model-based RL minimax optimal?
e |Is Q-learning minimax optimal?

Part Ill: computational guarantees of policy optimization
¢ (natural) policy gradient methods
o finite-time rate of global convergence
e entropy regularization and beyond

Part IV: concluding remarks and further pointers



Part I: backgrounds and basics



Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|8t,at)

e S: state space e A: action space

o
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Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|3t,at)

e S: state space e A: action space
e r(s,a) € [0,1]: immediate reward

e 7(-|s): policy (or action selection rule)
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Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|3t,at)

e A: action space

S: state space

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)

P(-|s,a): transition probabilities

[T Teé
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Value function

action
state s
a; ~ 7(-|st)
_______ 5| agent —-I To ™1 T2 3 T4
reward I :> S0 ‘I S1 ‘I S2 ‘I S3 ‘I S4 ‘I
r T A O A G G A .
i | environment — ag a1 az a3 da
<

sth1 ~ P(-|st,at)

Value function of policy 7:
Vse S VT(s) :=E Z'ytrt‘sozs
t=0
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Value function

action

state s a ~ s
------- ) noonon

T3 T4

reward I :> S0 ‘I S1 ‘I S2 ‘I S3 ‘I S4 ‘I
re =1(S¢, ar v T T L T
4--- environment |¢= — ag ay az az ay
<

St ~ P(“st;at)

Value function of policy 7:
Vse S VT(s) :=E Zytrt‘sozs
t=0

e v €[0,1) is the discount factor; ﬁ is effective horizon

e Expectation is w.r.t. the sampled trajectory under w
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Q-function

To 71 T2 T3 T4 Ts
V‘"(SO) ’_L‘SI_L'-QZ—L‘33—I—>S4—L>S5—I—> I
W@ @ a i W
7o T1 T2 T3 T4 5
Q 307‘10 ._L' —I—' —I—>83—|—> —I—'35—|—> vos
oW & w % W%
Q-function of policy :
V(s,a) eSxA: Q7 (s,a): E V(s ar) | so =

* (ge7 s1,a1,82,az2,---): generated under policy ™

S,a0 =a
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Searching for the optimal policy

Reinforcement |
Learning

______ —_— Dynamic 'Prugramming
r and Optimal Control

4
£
z
2
2
H
H
£
P
1
1
A
1
1
. 1
b

Goal: find the optimal policy 7* that maximize V™ (s)

o optimal value / Q function: V* := V7™, Q* := Q™

e optimal policy 7*(s) = argmax,c 4 Q*(s, a)

14



Planning: when the model is known

/" MDP specification

H |
[ |
|
n _ X
B planning T
] oracle
|
= e.g. policy iteration
| |

[ﬁ

Planning: find the optimal policy 7* given MDP specification
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Policy evaluation: Bellman's consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

Vﬂ-(s) = anﬂ’(-|s) [Qﬂ-(& CL)]

Q(s,a)= r(sa) +v E | V) |
S—— s'~P(:|s,a) S——
immediate reward next state’s value

e one-step look-ahead

e Let P™ be the state-action transition matrix
induced by 7:

Q" =r+yP"Q" = Q"= {I—P") " !r

Bellman

16



Bellman’s optimality principle

Bellman operator

T(@Q)(s,a) = r(s,a)  +7

——

immediate reward

e one-step look-ahead

E
s'~P(:|s,a)

/ /
a.
max Q(s', ')

next state's value
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Bellman’s optimality principle

Bellman operator

T(Q)(s,a):== r(s,a) +v E |maxQ(s,d)
S—— s'~P(:|s,a) a’eA
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

TQR)=Q"
~-contraction of Bellman operator:
17T(Q1) — T(Q2)|loo <7]|Q1 — Q2]lco Richard
Bellman
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Value iteration and policy iteration

Q(O)

Q(l)
Q(i)

Qb

Value iteration (VI)
Fort=0,1,...,

QU =T(@QY)
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Value iteration and policy iteration

Q(O)
T
Q(l)
T
Q(i)
Qb
Value iteration (VI) Policy iteration (Pl)
Fort=0,1,..., Fort=0,1,...,
Q(t+1) _ T(Q(t)) ) = Greedy(Q(t_l))

Q(t) _ Qﬂ(t)

18



lteration complexity

Proposition (Linear convergence of policy/value iteration)

10 = Q*lloo <+'1Q"” - Q"|los
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lteration complexity

Proposition (Linear convergence of policy/value iteration)

10 = Q*lloo <+'1Q"” - Q"|los

|

Implications: to achieve [|Q®) — Q*| s < ¢, it takes no more than

L <HQ(O)—Q*HOO>
1—7 €

iterations.
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lteration complexity

10 = Q*lloo <+'1Q"” - Q"|los

Proposition (Linear convergence of policy/value iteration) J

Implications: to achieve [|Q®) — Q*| s < ¢, it takes no more than

L <HQ(O)—Q*HOO>
1—7 €

iterations.

Linear convergence at a dimension-free rate! J
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Part Il: statistical guarantees
under the generative model



Two approaches to RL

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P

21



Two approaches to RL

ot model | Pl
0 : L%, .
,;é“'f// (i-e. P € RISIMAIXISIy \ffff,g
B wmodel-based )
samples value function
(experience) policy
"~ E

-

T_model-free -

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on empirical P

Model-free approach
— learning w/o constructing model explicitly

21



RL with a generative model / simulator

— Kearns and Singh, 1999

generative model

For each state-action pair (s, a), collect N samples

{(s, @, 503 h<isn

22



RL with a generative model / simulator

— Kearns and Singh, 1999

generative model

For each state-action pair (s, a), collect N samples

{(s, @, 503 h<isn

Question: How many samples are necessary and sufficient to solve
the RL problem without worrying about exploration?

22



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € |0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

*(a-ope)

to achieve ||Q — Q*||so < €, where Q is the output of any RL
algorithm.

23



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € |0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

*(a-ope)

to achieve ||Q — Q*||so < €, where Q is the output of any RL
algorithm.

e holds for both finding the optimal Q-function and the optimal
policy over the entire range of €

e much smaller than the model dimension |S|?|.A|

23



Is model-based RL minimax optimal?

& .
/ model-based B
samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on empirical P

Model-free approach
— learning w/o constructing model explicitly

24



Model estimation under the generative model

generative modlel

For each (s,a), collect N ind. samples {(S,G,Sl(i))}lgigj\f

25



Model estimation under the generative model

generative modlel

For each (s,a), collect N ind. samples {(S,Cl,sl(i))}lgigj\f

N
~ 1
Empirical estimates: estimate P(s'[s,a) by N Z]l{s’(i) =5}
i=1

empirical frequency

25



Model-based (plug-in) estimator

— Azar et al., 2013; Agarwal et al., 2019

[/ empirical MDP \

H EBN
|| [ |
| N |
| _ .
H B || planning T
] | ] oracle
||
| | ] [ | e.g. policy iteration
H E R
E N
empirical P T

Run planning algorithms based on the empirical MDP

26



Challenges in the sample-starved regime

l H N
|
H |
H
H =
H B
H
L
H B
| |
truth: empirical estimate:
P < RISIAIXIS| p

e Can't recover P faithfully if sample size < |S|?|.Al!
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Challenges in the sample-starved regime

l H N
|
H |
H
H =
H B
H
L
H B
| |
truth: empirical estimate:
P < RISIAIXIS| p

e Can't recover P faithfully if sample size < |S|?|.Al!

e Can we trust our policy estimate when reliable model
estimation is infeasible?

27



Sample complexity of the plug-in estimator

Theorem (Azar et al., 2013)

For any 0 < € < 1, the optimal Q-function @ of the empirical
MDP achieves

IQ - Q"o < e

with sample complexity at most 0] ( (1|§|7|3§e2 )

e matches with the minimax lower bound whenever e € (0, 1].
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Sample complexity of the plug-in estimator

Theorem (Azar et al., 2013)

For any 0 < € < 1, the optimal Q-function @ of the empirical
MDP achieves

IQ - Q"o < e

with sample complexity at most 0] ( (1|fly|3§e2 )

e matches with the minimax lower bound whenever e € (0, 1].

e Question: Does it imply a near minimax-optimal policy 77

28



From Q-function to policy

Proposition (Singh and Yee, 1994)
Let the greedy policy w.r.t. @ be 7, then

_ 9 .
Vi-VT< EHQ* — Qllso-
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From Q-function to policy

Proposition (Singh and Yee, 1994)
Let the greedy policy w.r.t. @ be 7, then

_ 2 .
Vi-VT< :HQ* — Qllso-

T= Greedy(@)

10— Qe <€
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From Q-function to policy

Proposition (Singh and Yee, 1994)
Let the greedy policy w.r.t. @ be 7, then

_ 9 .
Vi-VT< ﬁHQ* — Qllso-

10— Qe <€

This error amplification has consequences in sample complexities.

7 = Greedy(Q)

e To reach e-optimality, the greedy policy of a minimax-optimal
Q-function estimator needs

*(a-mre)

samples invoking the above naive argument. ”



Sample complexity of the plug-in estimator

Theorem (Agarwal et al., 2019)

< 1 . . A~ ..
Forany 0 <e< Nt the optimal policy ™ of the empirical

MDP achieves

VA =Vl <€

with sample complexity at most O ( (ll‘_gu)Ang )

e matches with the minimax lower bound whenever

1
e € (0, ——].
V2 Sl
e requires a sample size of at least ('f_”j;'z.

30



A benchmark of the prior art

sample
. A
complexity

ISILA| ¢

Sl

ISIIA] |~
(1-7?
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A benchmark of the prior art

sample
. A
complexity

&7}'
IS]IAl S
_elAL R . \
& — Sidford et al.’18a

Sl
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A benchmark of the prior art

sample
. A
complexity

bt 1L B Q& :
-
ISIIA| /
Agarwal et al.’19
(1-7)? /
7 «\“‘L

\(‘\
siA |- ® <«
1-v | ] ] >
o\\ é‘\\ 6‘\\/ 5-2
7 7
\ 17%
Al h | > S|4
prior theory requires sample size = =2
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A benchmark of the prior art

sample
. A
complexity

_ISHIAL >
R
Sl /
Agarwal et al.’19
(1-7)? /
7 «\“‘L

\(‘\
siA |- ® <«
1-v | ] ] >
o\\ é‘\\ 6‘\\/ 5-2
7 7
\ 17%
Al h | > S|4
prior theory requires sample size = =2

Is it possible to close the gap?
31



Our method: a perturbed plug-in estimator

— Li, Wei, Chi, Gu, Chen, 2020

[/ empirical MDP \ / \
H EBN H E B
|| [ | | ]
[ | B B | perturb | M |
| ] B | rewards || 2] : .
H N [ | H N B planning T,
|| | N | :> || | oracle
| || | ||
o | .... = e.g. policy iteration
H BN
| | n B
empirical P T empirical P Tp

Run planning algorithms based on the empirical MDP with slightly
perturbed rewards

ro(s,a) =r(s,a) +((s,a), ¢(s,a) ~ Unif(0,¢).



Sample complexity of a perturbed plug-in estimator

Theorem (Li, Wei, Chi, Gu, Chen, 2020)

Forany 0 < e < ﬁ the optimal policy %; of the perturbed
empirical MDP with & < % achieves
VE- VT <e

with sample complexity at most

(0= ya)

33



Sample complexity of a perturbed plug-in estimator

Theorem (Li, Wei, Chi, Gu, Chen, 2020)

Forany 0 < e < ﬁ the optimal policy 7} of the perturbed
empirical MDP with & < % achieves
VE- VT <e

with sample complexity at most

(0= ya)

e 75: obtained by empirical VI or Pl within 5(ﬁ) iterations

33



Sample complexity of a perturbed plug-in estimator

Theorem (Li, Wei, Chi, Gu, Chen, 2020)

For any 0 < € < ;—, the optimal policy @ 7, of the perturbed

empirical MDP W/th 5 = ‘S|5|X|5 achieves

V-V < ¢

with sample complexity at most

(0= ya)

e 75: obtained by empirical VI or Pl within O( ) iterations

SIIA]

e Minimax lower bound: Q((lﬂ)geg

) (Azar et al.'13)

33



Close the gap

sample
complexity
&
Y ~
7 -
M &Q’ Sidford I."18: <
1—~)3 O — didford et al. a
(1-7 S o
7~ (\6
SI14) oo
(1—7)2 o
S|IA|
& ' =
S BN S, g?
e

34



A glimpse of the analysis: notation

e V7™ true value function under policy 7
e Bellman equation: V™ = (I — P;)~!r
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e V7™ true value function under policy 7
e Bellman equation: V™ = (I — P;)~!r
e VV™: estimate of value function under policy 7

e Bellman equation: V™ = (I — P;)~1r

e 7*: optimal policy w.r.t. true value function

e 7*: optimal policy w.r.t. empirical value function
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A glimpse of the analysis: notation

e V7™ true value function under policy 7
e Bellman equation: V™ = (I — P;)~!r

e VV™: estimate of value function under policy 7
e Bellman equation: V™ = (I — P,)~!r

e 7*: optimal policy w.r.t. true value function

e 7*: optimal policy w.r.t. empirical value function

* .
e V*:= V7™ : optimal values under true models

~ ey . .
e VV*:= V7™ optimal values under empirical models

35



Proof ideas

Elementary decomposition:

V* _ V%* — (V* _ ‘771'*) + (‘//\'W* _

AN ~%

VT (V

o V%*)
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Proof ideas

Elementary decomposition:

V* _ V%* — (V* _ ‘771'*) + (‘//\'W* _ ‘7%*) + (‘7%* _ V%*)
< (V™ V™) 40+ (VE V™)
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Proof ideas

Elementary decomposition:

vV — Vﬁ* _ (V* _ f}n*) + (f}w* _ ‘7%*) + (‘7%* _ V%*)
< (V™ V™) 40+ (VE V™)

e Step 1: control V™ — V™ for a fixed
(Bernstein inequality + high-order decomposition)

36



Proof ideas

Elementary decomposition:

Vr — Vﬁ* _ (V* _ f}n*) + (f}w* _ ‘7%*) + (‘7%* _ V%*)
< (V™ V™) 40+ (VE V™)

e Step 1: control V™ — V™ for a fixed
(Bernstein inequality + high-order decomposition)

e Step 2: extend it to control V' — V7 (7* depends on
samples)
(decouple statistical dependency)

36



Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy m, estimate V™ via the plug-in estimate VT

37



Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy 7, estimate V™ via the plug-in estimate VT

A
sample
complexity

S|

(Agarwal et al.'19, Pananjady & Wainwright '19, Khamaru et al. '20)

e A sample size barrier T2 already appeared in prior work

37



Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy 7, estimate V™ via the plug-in estimate VT

Theorem (Li, Wei, Chi, Gu, Chen, 2020)

Fix any policy m. For(0 < e < the plug-in estimator v obeys

1~r

VT = Vo < €

with sample complexity at most

o( o)
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Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy 7, estimate V™ via the plug-in estimate VT

Theorem (Li, Wei, Chi, Gu, Chen, 2020)

Fix any policy m. For(0 < e < the plug-in estimator v obeys

1~r

VT =Vl < €

with sample complexity at most

o( o)

e Minimax optimal for all € (Azar et al.’13, Pananjady & Wainwright '19)

37



Key idea 1: a peeling argument

First-order expansion:

VT — VT = (I —P;)  (Pr — P)VT™

Higher-order expansion — tighter control:

VT — VT = (I —~P;)  (Pr — Pr) V™ +

38



Key idea 1: a peeling argument

First-order expansion:

VT — VT = (I —P;)  (Pr — P)VT™

Higher-order expansion — tighter control:
VT — VT = (I —~P;)  (Pr — Pr) V™ +
+ (L= Py) " (B = P) (VT - V)

38



Key idea 1: a peeling argument

First-order expansion:

VT VT = fy([ — fyPﬂ)fl(ﬁr — P7r)‘77r (%)

Higher-order expansion —; tighter control:
VT — V™ = (I —~P;) ' (Pr — Py) V™ +
+92((1 = Pr) 7 (Pr - PW)>2V’T
+ 93 ((I —P,) (P - Pﬁ))gw
+...

38



Step 2: controlling vE

A natural idea: apply our policy evaluation theory 4+ union bound

39



Step 2: controlling vE

A natural idea: apply our policy evaluation theory 4+ union bound

e highly suboptimal! (there are exponentially many policies)

39



Key idea 2: leave-one-out analysis

Decouple dependency by introducing auxiliary state-action
absorbing MDPs by dropping randomness for each (s, a)

(=== === = N
— i HEN u _ §
decouple -i ----- ; “= ---------- i. ----- i “=
dependency [ | ] | ]
HE B HEE B

H EHBR H EBN

HE | H |

H B |

H EHBR H EBN

EE B EEm B

empirical P T leave-one-out P(*:@) r(s:)

— inspired by (Agarwal et al. 2019) but quite different . ..

Other leave-one-out analysis: (El Karoui, 2015; Javanmard, Montanari, 2015; Abbe
et al., 2017; Zhong, Boumal, 2017; Ma et al., 2017; Pananjady, Wainwright, 2019)
40



Is model-free RL minimax optimal?

/ model-based B
samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P

Model-free approach
— learning w/o modeling & estimating environment explicitly

41



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

where

T(Q)(s,a):= r(s,a) +v E [maxQ(s',a’)]

N——" s'~P(:|s,a) a’€ A
immediate reward —

next state's value

42



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)

43



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)

Te(Q)(s,a) = (s, a) + ymaxQ(s', a)
T(Q)(s,a) =r(s,a) + v E [maxQ(s,a’)]

s'~P(:|s,a)  a’

43



Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

44



Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

paper

sample complexity

Even-Dar & Mansour'03

1
= _silAl
2 (1-v)%e?

Beck & Srikant '12

|S12]A412
(1—7)Be2

Wainwright '19

[SIA]
(1—~)%€2

Chen et al.’20

[SIA]
(1—7)5e2

sample
complexity
(log scale)

\SIAL
il

All prior results require sample size of at least %@?.

1
1—

vy

(log scale)
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Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

paper

sample complexity

Even-Dar & Mansour'03

1
= _silAl
2 (1-v)%e?

sample
complexity
(log scale)

&
Beck & Srikant '12 |S|2‘A‘2
ec| rikan m
Wainwright '19 %
1
Chen et 1. 20 % T (log scale)
: : g [S|IA]
All prior results require sample size of at least W! J

Is Q-learning sub-optimal, or is it an analysis artifact?

44



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

(i)
1

e Improves dependency on effective horizon —

45



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

o(a-ya)
1

e Improves dependency on effective horizon —

e Allows both constant and rescaled linear learning rate:

1
— 7 <M S 7
a(-—T — " = c2(1=y)t
L+ log? T L+ log? T

45



A curious numerical example

. . S
Numerical evidence: % samples seem necessary ...

— observed in Wainwright '19

=)
>

=)
g
N
D

S
>
D

sample size per state-action: N

10%
4’7 _ 1 ——— Q-learning
_ 3 ———~ Theory: N = ﬁ
v 102 - 15 0 25 30 35 40
r(0,1)=0, r(1,1)=r(1,2) =1 e

46



Q-learning is not minimax optimal

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exists an MDP such that to achieve
|IQ — Q*||co < €, Q-learning needs at least a sample complexity of

(k)

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

1
2

a
a

47



Where we stand now

sample
s &
> (log scale)
Q-learning requires a sample size of %. J

48



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

e max,c 4 EX(a) tends to be
over-estimated (high positive
bias) when EX (a) is replaced
by its empirical estimates using
a small sample size;

e often gets worse with a large
number of actions (Hasselt,
Guez, Silver, 2015).

error

o

15 _— e, O(s.a) - Vi(s)
0 mm Q'(s,argmax,Q(s,a)) — V.(s)
0.0 H

3‘ J‘ \/

37:}’{?

number of actions
Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi (s) + €, and the errors {¢, }7"; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

e max,c 4 EX(a) tends to be ' - Q00 VO
- . . 5 10 = Q'(s, argmax,Q(s,a s
over-estimated (high positive £,
bias) when EX (a) is replaced 00 H
by its empirical estimates using Crresay
1ze: number of actions
a small Sample size Figure 1: The orange bars show the bias in a single Q-
. learning update when the action values are Q(s,a) =
e often gets worse with a large Vi(8) + €, and the errors {€,}™; are independent standard
H normal random variables. The second set of action values
number of actions (Hasselt, @', used for the blue bars, was generated identically and in-
Guez, Silver, 2015). dependently. All bars are the average of 100 repetitions.

A provable fix: Q-learning with variance reduction (Wainwright 2019)
is provably minimax optimal.
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Part IlI: policy optimization



Policy optimization

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;

e work with both continuous and discrete problems.

T Y,
__'.\*\w, w7
N w. el
—— AN =7 o< 59 -
.‘\\\%‘/) a f\;/;;/, AN,
5% @G-~
——@<Z¥@<T < _ 5o
TR o S L AN
_ TEMDEDN, T TG~
% S, NN
/7, i g
—

input layer output layer
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Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
e understand finite-time convergence rates of popular heuristics;

e design fast-convergent algorithms that scale for finding
policies with desirable properties.
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J
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Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,-
9(t+1) — 9(15) + nvevﬂ.ét) (p)

where ) is the learning rate.
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Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in

O(%) iterations
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>

Is the rate of PG good, bad or ugly? )
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A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

I2f

\ S

iterations

to achieve ||V — V*||o < 0.15.
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A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

sz

\ S

iterations

to achieve ||V — V*||o < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \3| Sees [V (s) = V*(s)].
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MDP construction for our lower bound
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MDP construction for our lower bound
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Key ingredients: for 3 < s < H <
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MDP construction for our lower bound

§1 52 SH
00000 00000 00000 00000 00000 00000 00000
ay al ai y s ’ e
& o, /. 4 v 4
I S N A 7 AR S A |/
i ap ayr ap apr ag ¥ 1 b Vi
i N ) i h 4 v v v
; Si Sy ) 3 4 .5 .6 ceo e H
- I'N ey s VA
’ \ 1 ag s s /s 2 s
agp . ai a; - ’alaL /// ?//// ?//// ? ?
‘¥ N el P AP ! !
? Pt g & - g
! o0 0
] o« Al ] «! A «
i /ag / ao / i / i / i / i / i
1 ’ i ’ ' 7 1 ’ 1 7 1 ;1 i 1
L .l 1 .I L - 1 ] J. L 1 L 1 L J
ai ai { / / H {
1 1 [] 1 1 1 1
00000 00000 00000 00000 00000 00000 00000
St S5 Sz
1

Key ingredients: for 3 < s < H < S

o 7 (aopt | 5) keeps decreasing until 7 (agpe | s —2) ~ 1
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What is happening in our constructed MDP?

m9(ar | 1)

v
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What is happening in our constructed MDP?

v
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What is happening in our constructed MDP?

~ g
=~ -
~<, -
~ P
~ -
~——e -

Convergence time for state s grows geometrically as s increases
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What is happening in our constructed MDP?

-
-
~ -
~ -
~., -
-
~ -
Ssa. -

Convergence time for state s grows geometrically as s increases

convergence-time(s) 2 (convergence-time(s — 2))1'5
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Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

0D = 90 4 (F0) VeV (p)
where 1 is the learning rate and ]-'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Ve log7rg(a|s))T] .
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Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

00 = 0 4 () VeV (o)

where 1 is the learning rate and ]—'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Vg log 7T9((1|8))T] .

In fact, popular heuristic TRPO (Schulman et al., 2015) = NPG + line search.
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NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

7D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—_—— 1-— Y

current policy
soft greedy

where Q(t) = Q’Tm is the Q-function of #®), and n>0.

e invariant with the choice of p

¢ Reduces to policy iteration (Pl) when n = cc.
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Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For allt > 0, we have

log | A 1
+ 2
o (1=7)

VO (p) > V¥ (o) - (

)

1
n
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Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For allt > 0, we have

log | A n 1 > 1
o (1=9)?

VO (p) > V¥ (o) - ( L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For allt > 0, we have

log | A| n 1 > 1
no (1-9)?

VO (p) > V¥ (o) - ( L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%

Global convergence at a sublinear rate independent of |S|, |A|! |
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Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

62



Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8

UOT)RZIIR[NSSI 9SBIIOUT

=2
log (ar) log m(ar)



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?
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Entropy-regularized NPG in the tabular setting

*
7T7.

<
Q@

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
nT

a0 ([s) oo 7O () 1T exp(QW (s, ) /7) T
——— S———

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n < 1_77

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when 5 = =2

T
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Linear convergence with exact gradient

Exact oracle: perfect evaluation of Qﬁm given 7(1);

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 — ~y)/7, the entropy-regularized
NPG updates satisfy

¢ Linear convergence of soft Q-functions:
15 — Q¥ Vloe < Cry (1 = n7)*

for all t > 0, where Q% is the optimal soft Q-function, and

=110 = Qo+ 27 (1= 17 ) 1o — log .

v
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Implications

To reach ||Q% —

(1) HOO < ¢, the iteration complexity is at most

i 1—7y.
 General learning rates (0 <n < —7):

1 <Cl’7>
— log
nT €

e Soft policy iteration (n = 1_77)

L (n@:—@(f)um)
0g
1—7 €
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Implications

To reach ||Q% — (1) HOO < ¢, the iteration complexity is at most

o General learning rates (0 < 7 < +=2):
1 <C’17>
nt €

* Soft policy iteration (1 = —7)

* _ 00)
! bg(n@T QF Hm)
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|!
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Comparisons with entropy-regularized PG

Natural Policy Gradient Log Policy Difference

Natural Policy Gradient

Policy Gradient

log 7(a1)

0 1000

2000 3000 4000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V() = Vi) < (Vo) = Vi ()

1=

4 >
¢ 7

cexp | —

(8/7 + 4+ 8log|A|)|S|

P 0<k<t—1 s,a
oo

2
min p(s) ( inf minw(k)(a|s))
S

can be exponential

in |S| and ll—,y

Much faster convergence of entropy-regularized NPG

at a dimension-free rate!
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

le)

-

Q;

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

Entropy regularization enables fast convergence! J
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Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).

69



Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).

Inexact entropy-regularized NPG:

(t+1)( B ( (t)( | ))171’1—1Y (U@Sf’)(s,a)>
T a|s) o« (m a|s exXp 71_7

69



Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).

Inexact entropy-regularized NPG:

(t+1)( B ( (t)( | ))171’1—1Y (U@Sf’)(s,a)>
T a|s) o« (m a|s exXp 71_7

Question: Robustness of entropy-regularized NPG?
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Linear convergence with inexact gradients

Theorem (Cen, Cheng, Chen, Wei, Chi '20; improved)

For any learning rate 0 < n < (1 — ~)/7, the entropy-regularized
NPG updates achieve the same iteration complexity as the exact
case, as long as

5§1_7-min{6, 67}
0% 4 2
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Linear convergence with inexact gradients

Theorem (Cen, Cheng, Chen, Wei, Chi '20; improved)

For any learning rate 0 < n < (1 — ~)/7, the entropy-regularized
NPG updates achieve the same iteration complexity as the exact

case, as long as
5 < M.mm{ﬂ 67}
0% 4 2

e Intuition: assume 7 = O(¢), the per-iteration policy
evaluation error is no larger than

final error €

. . — = = — ~ (1 —7)e
iteration complexity — O((1 —~)-1)
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Aside: statistical implication

Question: how many samples are sufficient to find an e-optimal
policy of the unregularized MDP?

71



Aside: statistical implication

Question: how many samples are sufficient to find an e-optimal
policy of the unregularized MDP?

Recipe:

_ (A=,
® set T = AT

e use fresh samples for policy evaluation with a targeted

accuracy 0 < %, e.g. using model-based plug-in

estimators (Li et al., 2020).
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Aside: statistical implication

Question: how many samples are sufficient to find an e-optimal
policy of the unregularized MDP?

Recipe
_ (I—=y)e,
® set T = JooTAT
e use fresh samples for policy evaluation with a targeted
(1=

accuracy § =< g Al e.g. using model-based plug-in
estimators (Li et al., 2020).

A crude answer:

O <(1|fu;;t7|62) samples

71



A key lemma: monotonic performance improvement

V(1)

1 T

VI () = V(o) =E, e l (5155 k(e e [ 0)

1—7v

KL divergence

1
discounted state + EKL (W(t)(|8) H W(t+1)('|5))]

visitation distribution

KL divergence
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A key lemma: monotonic performance improvement

V(1)

1 T

VI () = V(o) =E, e l (5155 k(e e [ 0)

KL divergence

1—7v

1
discounted state + EKL (W(t)(|8) H W(t+1)('|5))]

visitation distribution

KL divergence

Implication: monotonic improvement of V. (s) and Q-(s,a). )
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

——
immediate reward
+v E max [ Q(s',a") leogW(a'|5’)} ,
§'~P([s,a) | T(Is") a/~m(|s") b S~ —

next state's value entropy
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

immediate reward

+v E [ max [ Q(s',a") —r7log 7r(a'|s’)}] ,
—— ————

s'~P(-|s,a) | m(:|8") @/~ (-|s")

next state's value entropy

Soft Bellman equation: ()7 is unique solution to

TH(Q7) = Q7

~-contraction of soft Bellman operator: \jﬁ
| 7-(Q1) — T (Q2)]| oo < ¥||Q1 — Q2|00 Richard
Bellman
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Analysis of soft policy iteration (7

Policy iteration

Bellman operator
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Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator
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A key linear system: general learning rates

s - @,

Let x; :=
Q5 = 7log W[

|

QY — rlog @] _
0

where £ o () is an auxiliary sequence, then

|
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A key linear system: general learning rates

NN D)
Qs — Q| and y = QY — 710g £
@ = Tlog €M 0

where £ o () is an auxiliary sequence, then

Let x; := [

777_ t+1
$t+1<A$t+7<1— ) Y,

where

is a rank-1 matrix with a non-zero eigenvalue 1 —n7
——

contraction rate!

|
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Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier
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Regularized RL in general form

action 70 1 T2 3 T4

state s a; ~ m(-|s;)
------- et = — 900909
0 T 2~ I 4T
reward I :> \\__,' \\_/’ \\_/' \\_/' \\_/’
re = 1(S¢, at ap ay az as 2
¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

Z’yt(rt — Thst(ﬂ(-\st))) ‘ so=s|,
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).
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Regularized RL in general form

action 70 1 T2 3 T4
state s a; ~ W("St) S

"""" - ] S0 l S I S l S I s l
0 T 2~ I 4T

reward I :> \\__,l \\_/l \\_’,l \\_’,l \\_’,I

re = 1(S¢, at ap ay az az ay

¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

D 2 (re = The(n(lse)) | s0 = s |
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

maximizer V[ (p) := Egup [V (5)] J




Detour: a mirror descent view of entropy-regularized NPG

Entropy-reg. NPG = mirror descent with KL divergence:
(Lan, 2021; Shani et al., 2020)

. 1
D |s) = argmin ( = Q(s, ), p) — TH() + —KL(pl|7 " (]s))
PEA(A) n
x 70 Js) T exp(Q (s, ) /7) T
——

/

current policy soft greedy

for all s € S.
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Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.
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Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.

A natural idea
Fort=0,1,---,

7-‘-(’5""1)(.|3) = argmin <—QT($, -),p) + Ths(p)
PEA(A)

+ ;Dhs (p, 7O (|5); Oha(r D (-]5)))
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PMD with Generalized Bregman Divergence (GPMD)

Plugging in a recursive surrogate {€(®)} of dh (") (-]5)), we
obtain the formal algorithm.

Generalized policy mirror descent (GPMD) method
Fort=0,1,---, update

7D (s) = argmin (—Q, (s, ), p) + Ths(p)

PEA(A)
1
+EDhs(var(t)("S);g(t)(S?'))7
and )
EHD) (e )t ey T (s .
€)= €000 + Qs )

The subproblem does not admit closed-form solution in general.
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Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.
— Read our paper for the inexact case!
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Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.

— Read our paper for the inexact case!

Theorem (Zhan*, Cen*, Huang, Chen, Lee, Chi '21)
For any learning rate n > 0, the GPMD updates satisfy
e Linear convergence of soft Q-functions:

t
« o+ < I o))
10: - QI < Ciy (1= TEZY)

where C1 = ||Q* — ng)Hoo + 1437,7”@: — 70|
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Implications

To reach ||QF — StH)HOO < ¢, the iteration complexity is at most

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):

* _ )
10g<HQT Q! Hw)
€

L=y
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Implications

To reach * - Stﬂ) 0 < €, the iteration complexity is at most
T p y

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):
0
L o (H@: e Nm)
1—7 €

Global linear convergence of GPMD at a dimension-free rate! |
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Comparison with PMD (Lan, 2021)

Policy mirror descent (PMD) method (Lan, 2021)
Fort=0,1,---,

‘ 1
7 ([s) = argmin {~ Qs (s, ), p) + The(p) + —KL(pl[x " (]s)
PEA(A) K

e Linear convergence is established only when hg is stronger
than entropy regularization (hs + H is convex).

e In contrast, GPMD converges linearly for general convex and
nonsmooth h,!
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Numerical examples

hs = Tsallis Entropy
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Numerical examples

10-°
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.

L s e
X p=001

=01,
o =1 \‘\‘\

PMD e
---- GPMD T
0 500 1000 1500 2000 2500 3000

#iterations

107

107

hs = Log Barrier

ety GEEED ieiiekfntuater. ot
x n:o.ofP B R
+ =01 Ty
° = e
PMD e
----- GPMD
0 500 1000 1500 2000 2500 3000
#iterations

GPMD achieves faster convergence than PMD! J
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Part IV: concluding remarks and further pointers



Concluding remarks

mlﬂ_
it state . Finsv-Onoer Memioos
I\ action I OrtiszAToN
V PR agent AL
Reinforcement |\ Dynamic Programming f
Learning | and Optimal Contral H
g SN PSR iad !
1.
X ILE reWard Amir Beck
i i-—€==1 environment
inext state

Understanding non-asymptotic performances of RL algorithms
is a fruitful playground! J

Future directions:

e function approximation e offline RL
e multi-agent RL e many more...
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Beyond the generative model

Sampling under a behavior policy: asynchronous/offline RL

To T1 T2 T3 T4 T5

oL Lo Ll-a Ll
{\_all (\."/' N ~—’

ag

N,
.
.
.

az as ;zI h’{
7 )
(

mo(|s0) mo(-|s1) mb(-[s2) mo(-lss) mb(-[sa) mu(-[s5)
(Bhandari et al, 2018; Srikant and Ying, 2019; Qu and Wierman, 2020; Li et al., 2020)

Exploration under an adaptive policy: minimize the regret
against the optimal policy

To 1 T2 3 T4 T5
sLalelelalel
L (i o . . ./
ag ay 2 as ay 5
T ) ) )
mo(lao) mi(-la1) m2(-la2) m3(|as) ma(-|las) 75(-|as)

(Azar et al., 2017; Jin et al., 2018; Li et al., 2021)
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Beyond the tabular setting

Policy network Value network
Py, (@ls) vy (5))
*
@
o °
° e
O o
s s’

Figure credit: (Silver et al., 2016)

e function approximation for dimensionality reduction
e Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)
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Multi-agent RL

e Competitive setting: finding Nash equilibria for Markov
games

e Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)
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Offline RL

V4

Tl s

5 T @

<

Can we design RL algorithms based on history data?
(Rashidinejad, Zhu, Ma, Jiao, and Russell, 2021)

Tl
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