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Inverse problems

Forward model: we interrogate the signal of interest x through
forward model A and make measurements y.

y = A(x)

lll%lll



Inverse problems

Forward model: we interrogate the signal of interest x through
forward model A and make measurements y.

y = A(x)

lll%lll

inverse problem

Inverse problem: recover the signal of interest « from y.



Ubiquitous in sensing and imaging applications

microscopy

hyperspectral

Radio astronomy

seismic imaging



Challenges: finding needles in a haystack

® Sampling constraints: sample-starved, low signal-to-noise ratio,
nonlinear measurements;

® lll-conditioned sources: weak and fine-grained information;

® Resiliency: miscalibration, missing data, corruptions, etc.

DALLE generated with the prompt “finding needles in the haystack”



Geometry as a prior: from low-rank to generative models

How do we learn effectively leveraging the data priors?
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Subspace models: Neural networks:

Sparsity, low-rank, ... GAN, VAE, diffusion models...



First vignette: preconditioning for low-rank learning

An optimization vignette: preconditioning to accelerate nonconvex
ill-conditioned low-rank estimation

preconditioning

error

overparameterization

GD

(X0Y)

ScaledGD

(JMLR 2020,

iteration

TSP 2021, JMLR 2022, 1&1 2023, ICML 2023).



Second vignette: diffusion models for inverse problems

A sampling vignette: how can we leverage score-based generative
models for solving inverse problems, efficiently and provably?
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(Xu and Chi, arXiv:2403.17042)



Accelerating gradient descent for ill-conditioned
low-rank estimation

Tian Tong Cong Ma
CMU—Amazon UChicago



A canonical problem: low-rank matrix sensing

ni1Xn
M < R™ ™2 ) A(Y) y € R™
rank(M) =r linear map
N
n
n
—> =
n
H
n
y = A(M) + noise
Recover M in the sample-starved regime:
mim)y s m < ung

degree of freedom sensing budget ambient dimension




Low-rank matrix factorization

min  rank(Z)
ZeRnl Xno
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Low-rank matrix factorization

min  rank(Z) st. y=~A(Z)
ZeRnIX'n2
mn g - AZ)2
rank(Z)=r 2 Y 2
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Low-rank matrix factorization

min  rank(Z) st. y=~A(Z)
ZeRnl ><‘n,2
Ly - A2
min Ny —
rank(Z)=r 2 Yy 2
scalable, but nonconvex! X YT

min F(X,Y) Hy A( XYT)H




Statistics meets optimization

Statistical model

m—)

worst case

average case
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Statistics meets optimization

Statistical model

—)

worst case average case

Vanilla gradient descent (GD):

X1 =X, —nVxf(X,Y))
Y1 =Y, —nVy (X, Y?)

fort =0,1,... from a carefully chosen (e.g., spectral) initialization.
10



Benign nonconvexity: global linear convergence

2
min  f(X,Y) HPQ (XY - M)H
XY F

Relative error

0 200 400 600 800 1000
Iteration count

Vanilla GD converges in O(log %) iterations from a spectral
initialization with barely enough samples information-theoretically.
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Benign nonconvexity: global linear convergence

2
min  f(X,Y) HPQ (XY - M)H
XY F

10°

Relative error

0 200 400 600 800

1000
Iteration count

Similar results hold for many low-rank problems...
(Tu et al. '16, Netrapalli et al. '

)

14, Sun and Luo '15, Chen

13, Candes, Li, Soltanolkotabi '
and Wainwright '15, Zheng and Lafferty '15, Ma et al. '17, ....)
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What could go wrong?
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What could go wrong?

2
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What could go wrong?
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What could go wrong?

Relative error

FX,Y) HPQ (XY - M)Hi

e
£

10-10 L

10-12 L

1074

o~ VanillaGD x =1
| VanillaGD « =5
|+ VanillaGD & = 10|
|-~ VanillaGD x = 20|

0 200 400 600 800 1000
Iteration count

12



What could go wrong?

2
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Relative error
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Condition number can be large

40
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Singular values
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chlorine concentration levels
120 junctions, 180 time slots

power-law spectrum

Data source: www.epa.gov/water-research/epanet
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Condition number can be large
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Condition number can be large

40

. 96%
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[}
3 Kk ~ 60
520
3
g
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. -

0 5 10 15 20

Index

chlorine concentration levels
120 junctions, 180 time slots

rank-10 approximation

Must mind the condition number! )

Data source: www.epa.gov/water-research/epanet

13


www.epa.gov/water-research/epanet

Getting rid of the condition number?

0 T T
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Our recipe: scaled gradient descent (ScaledGD)

HXY) = 1 H A(XYT)HQ ® Spectral initialization: find an initial point
Y e 2 in the “basin of attraction”.
® Scaled gradient iterations:

X1 =X —nVx (X, Y3) (Y, V)~
——
preconditioner

Y1 =Y, —nVy (X, V) (X X,) !

— v
preconditioner

o \ fort=0,1,...
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Our recipe: scaled gradient descent (ScaledGD)

2 ® Spectral initialization: find an initial point

1
X7Y =3 —-A XYT - “ H H "
s ) 2 Hy ( )H2 in the “basin of attraction”.

® Scaled gradient iterations:

X1 =X —nVx (X, Y3) (Y, V)~
——
preconditioner

Y1 =Y, —nVy (X, V) (X X,) !

— —
preconditioner

& \ fort=0,1,...

ScaledGD is a preconditioned gradient method
without balancing regularization! J

15



ScaledGD for low-rank matrix completion

10° ‘
6 -e-ScaledGD k =1
——ScaledGD k =5
10—2 ——ScaledGD x = 10 |
-g-ScaledGD & = 20
~o-VanillaGD k=1
107 H —VanillaGD k =5 []
- VanillaGD x = 10
I ~=-VanillaGD x = 20
S
5 10°
2
3 108
[an
10—10 L
10-12 L
10—14 L L
0 200 400 600 800 1000
Iteration count
Huge computational saving: ScaledGD converges in an
k-independent manner with a minimal overhead!
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A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

(X+,Y)

M,=X,Y]
W)

T
Mt+1 = Xt+1Yf,+1

Xi+1,Y a
(Xit41,Y141) (X141Q,Y111Q ")



A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

(X+,Y)

M,=X,Y]

W -

1
i
l T
! M =XinY,
XY _
Kot Vi) (X141Q.Y11Q ™)
New distance metric as Lyapunov function:
2

a2 (| X Xl . H B 1/2
dist ({Y}’{Y*])icgelg{(r) (XQ - X%, .

n H(YQ’T - Y*)zi/zHi —

+ a careful trajectory-based analysis - -
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD with
spectral initialization achieves

1X.Y," — M|lp < € omin(M)

 Computational: within O(log L) iterations;
e Statistical: the sample complexity satisfies

m > (ny + ng)rik?.
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD with
spectral initialization achieves

1X:Y," — Mllp S & - owmin(M)

 Computational: within O(log L) iterations;
e Statistical: the sample complexity satisfies

m > (ny + ng)r?k2.

Strict improvement over vanilla GD: provable acceleration at the
same sample complexity! J

18



ScaledGD works more broadly

v 717 7 v
v v 7
v 77 v 7
[ S A
v o 7o 7 7
T v T TV
robust PCA matrix completion

slLw

Tucker tensor recovery




More gain for tensors

1
i F) = —‘
F:(UH,I‘I/I,IW,S) 1(F) 2

5000

Pa(U, V. W)-5) -7

‘
4500 |-« RegularizedGD

4000 -
3500 -
3000 -
2500 -

2000 -

Iteration count

1500

1000 x

500 o

The benefit of ScaledGD is even more evident for tensors!

2

F
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Saliency detection in materials data

Unrolling ScaledGD + self-supervised learning for tensor RPCA

Xl Xrq &
> . n — Xr
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Saliency detection in materials data

Unrolling ScaledGD + self-supervised learning for tensor RPCA

some materials data

Yy \ [ s A
" ‘
YA S T
), /" ." S A
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Saliency detection in materials data

Unrolling ScaledGD + self-supervised learning for tensor RPCA

some materials data

“Deep Unfolded Tensor Robust PCA with Self-supervised Learning”, Dong, Shah, Donegan, and Chi, ICASSP 2023.
21



Preconditioning meets generalization in
overparameterized low-rank matrix sensing

Yandi Shen Cong Ma
Yale UChicago




What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

23



What if we do not know the exact rank?
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Misspecification by overparameterization:

M=XX", X e RV >
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX', XeR™, k6 >y

ScaledGD:

X1 =X, —nVxf(Xy) (X X))
————

preconditioner

analysis break down and might be unstable...
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX" XeR™, k6 +>r

ScaledGD(\):

X1 =X, —nVxf(X) (X, X, +2)7!

preconditioner

add regularization to stabilize the preconditioner

23



Does preconditioning hurt generalization?

® Infinitely many global minima, not all generalize
e Can we still guarantee generalization?

optimization generalization

WHEN DOES PRECONDITIONING HELP OR HURT GEN-
ERALIZATION?

*Shun-ichi Amari', Jimmy Ba??, Roger Grosse®*, Xuechen Li*, Atsushi Nitanda®°,
Taiji Suzuki®®, Denny Wu?3, Ji Xu”
IRIKEN CBS, 2University of Toronto, ®Vector Institute, “Google Research, Brain Team,
SUniversity of Tokyo, °RIKEN AIP, "Columbia University
amari@brain.riken.jp, {jba, rgrosse, 1xuechen, dennywu}@cs.toronto.edu,
{nitanda,taiji}@mist.i.u-tokyo.ac.Jjp, jixu@cs.columbia.edu
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Theoretical guarantees

Theorem (Xu, Shen, Ma, Chi, ICML 2023)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD(\)
with A < opmin (M), n < 1, and small random initialization
Xo ~ aN(0,1/n) with sufficiently small o achieves

||XtXtT — Mlr S e omin(M)
e Computational: within O(log rlog(rn) + log L) iterations;
e Statistical: the sample complexity satisfies

m > nrpoly(k).

® QOur analysis also enables exact convergence under random
initialization with correct rank specification.

25



Comparison with overparameterized GD

error

GD

ScaledGD

[

iteration
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Comparison with overparameterized GD

4 K w3 log(1/¢)

>

error
A

(Stéger and Soltanolkotabi, '21)

GD

ScaledGD

[

iteration
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Comparison with overparameterized GD

4 Kk K> log(1/¢)

>
>

(Stéger and Soltanolkotabi, '21)

error
A
N7

log(1/e) GD

ScaledGD

[

iteration

ScaledGD picks up the signal component much faster than GD even
from small random initialization!

26



Summary: preconditioning helps!

Preconditioning

—

27



Summary: preconditioning helps!

Preconditioning

—

Preconditioning can dramatically increase the computational efficiency
of vanilla gradient methods without hurting statistical efficiency J

Future directions:

® generalizing the idea of ScaledGD to other learning problems

27



Score-based diffusion models for inverse problems




State-of-the-art diffusion models

Inspired by nonequilibrium thermodynamics

Diffusion models

Stable Diffusion

29



A high-level description of diffusion models

noise noise noise

¢ forward process: (progressively) diffuse data into noise
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noise noise noise

noise noise noise
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® reverse process: convert pure noise into data-like distributions
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A high-level description of diffusion models

noise noise noise

noise noise noise

¢ forward process: (progressively) diffuse data into noise

® reverse process: convert pure noise into data-like distributions
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Score is all you need (Anderson’32)

¢ score functions of marginals of forward process: Vlogpx, (X)
—_——

w.rt. X
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Score is all you need (Anderson’32)

e score functions of marginals of forward process: Vlogpyx, (X)

w.rt. X
—= N
-7 F\\\\><//7 \
e g\sxﬁ— Y AN
\\\/7‘// \\\) / SO
4,\?,1\/ P N
SENEET s learn si(1) = Vogpx, (1)
XN / -7
Pl Tl g
\\\\\ I//>\§\ //
27N v/

1. score learning/matching: learn estimates s;(-) for Vlogpx, (-)
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Score is all you need (Anderson’32)

e score functions of marginals of forward process: Vlogpyx, (X)

w.r.t. X
YT oA
PR i N
AT . N
N SR 2 N
\;;‘%? é/>;§ S learn s¢(-) = Vlogpx, ()
CS@E
‘é:\\ ///7>/>><§ /
) k//__\#\ ,
Yb 4‘ }fl 4‘ ng DT 000 C 4‘ YT
s1()  s2(1) s7()

1. score learning/matching: learn estimates s;(-) for Vlogpx, (-)

2. data generation: sampling w/ the aid of score estimates {s.(-)}
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Score is all you need (Anderson’32)

e score functions of marginals of forward process: Vlogpyx, (X)
—_——

w.r.t. X
= A
PR \\x////’ N
T OASTA
D) ¥ RN
K R learn si(-) = Vlogpx, ()
ZASY Yo kST g
‘é\ \\ f/y>><\< /
SNy ly, _\:\ //
Yo 4‘ Yl 4‘ ng DT 000 i 4‘ YT
si()  s2() st(+)

1. score learning/matching: learn estimates s;(-) for Vlogpx, (-)

2. data generation: sampling w/ the aid of score estimates {s;(-)}

31



Generating materials imagery using diffusion models

Diffusion model generates EBSD imagery

Generated by physical modeling

32



Generating materials imagery using diffusion models

Diffusion model generates EBSD imagery

Generated by physical modeling Generated by diffusion models
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Non-asymptotic complexity of generation

Theorem (Li, Wei, Chen, Chi, ICLR 2024)

Under mild data assumptions, suppose we are given perfect score
estimates: s;(-) = Vlogpx,(-) for all t.
® For the deterministic sampler (DDIM-type/prob. flow ODE),

2

d
TV(px,,pvi) S T up to log factor

® For the stochastic sampler (DDPM-type),
d2

57
VT

TV (p X715 pyl) up to log factor
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Non-asymptotic complexity of generation

Theorem (Li, Wei, Chen, Chi, ICLR 2024)

Under mild data assumptions, suppose we are given perfect score
estimates: s;(-) = Vlogpx,(-) for all t.
® For the deterministic sampler (DDIM-type/prob. flow ODE),

2

d
TV(px,,pvi) S T up to log factor

® For the stochastic sampler (DDPM-type),
d2

57
VT

TV (p X715 pyl) up to log factor

e first polynomial-time bounds for plain probability flow ODE

® Similar rates extend in the presence of score estimation errors.
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Score-based diffusion model for inverse problems

likelihood

—> y~p(|

inverse problem

Posterior sampling: sample from

p(ly) ocp() ply|z) = p(-) exp (L(-; y))
prior log-likelihood

Score-based generative prior E

Xo-o X 000 Pl e PpXp

si()

= Vlogpx, (-)

34



Score-based diffusion model for inverse problems

Score-based generative prior &

SO b I PPN e <

likelihood

xNPXo(')

— | =y~
[ ®s

v’se problem/

Posterior sampling: sample from

si(-) = Vlogpx, ()

p(ly) ocp() ply|z) = p(-) exp (L(-; y))
prior log-likelihood

Score-based implicit prior: the data prior p(-) is accessed through its

unconditional score functions s:(-) = Vlogpx, (-).
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Towards provably efficient and accurate inversion

Compute

Fidelity
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Towards provably efficient and accurate inversion

Compute

Compute cheap, but
low fidelity

@
DPS (Chung et al, 22)

Fidelity

35



Towards provably efficient and accurate inversion

Compute

Compute cheap, but
low fidelity

MCGdiff (Cardoso et al, 23)

()
Asymptotic exact,
compute expensive
(]
DPS (Chung et al, 22)
Fidelity
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Towards provably efficient and accurate inversion

MCGdiff (Cardoso et al, 23)
()

Asymptotic exact,
compute expensive

Compute cheap, but
low fidelity

DPS (Chung et al, 22) High fidelity,

compute efficient

Goal: develop provably compute-efficient and high-fidelity
diffusion-based inversion methods for arbitrary forward model.

35



Our approach: diffusion plug-and-play (DPnP)
Inspired by (Bouman and Buzzard, 2023; Viono et al., 2019; Lee et al., 2021)

p(1y) o exp (logp() + £(5 v))

Given an annealing schedule {7},

Proximal consistency sampler:

1
vy xex (£6 ) = gall-~3ul?)

C 2

Diffusion denoising sampler:

5 1 5
Fin ocoxp (1082() = 531l s )
k
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p(1y) o exp (logp() + £(5 v))

Given an annealing schedule {7},

Proximal consistency sampler: Readily implementable by, e.g
~ 1 ~ 2 T
Ty o X (c(-; D=5l &l MALA
k

C 2

Diffusion denoising sampler:

5 1 5
Fin ocoxp (1082() = 531l s )
k
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Our approach: diffusion plug-and-play (DPnP)
Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

p(-y) oc exp <logp(‘) + L(; y))

Given an annealing schedule {n;},

Proximal consistency sampler: o

1 J Readily implementable by, e.g.,

2
gy xexp (£03) = gl <2l ALy
Diffusion denoising sampler:
How do we implement this step using
()= 5ol &
ZTr41 x exp | logp ) — 7| : —xk+;| diffusion score functions?
2n? 2 @
k

36



Diffusion denoising sampler

Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
’I’]k 2 2

where w ~ N(0, I).

® Key insight: this can be solved by diffusion!
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Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
nk 2 2

where w ~ N(0, I).

e Key insight: this can be solved by diffusion!
® stochastic/deterministic samplers via reversing properly defined
forward processes (e.g., Ornstein-Uhlenbeck process), whose score
functions can be mapped from s;(-).
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Diffusion denoising sampler

Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
T]k 2 2

where w ~ N(0, I).

® Key insight: this can be solved by diffusion!

® stochastic/deterministic samplers via reversing properly defined
forward processes (e.g., Ornstein-Uhlenbeck process), whose score
functions can be mapped from s;(-).

® The resulting update rules are similar to, but not the same as, the
ones used for generation.
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Our theory

Theorem (Xu and Chi, 2024)
Set constant ny, = n > 0. Define a stationary distribution m, by

71—77(3;) X p(x)qn(x), qn(x) = ef05v) *p’l’]ﬁ(x)a

where € ~ N(0,1;) and = denotes convolution. There exists
A:= A(p, L,n) € (0,1), such that for any accuracy level € > 0, with

K =< 15 log(1/e), we have

1 1
TV(pzi. ™) S e/ (pz, | m) + 1_ )\(ﬁDDS + epcs) log (€>7
————

init error
sampler error

where epcs and epps are the total variation error of PCS and DDS.

® A diminishing schedule {7} ensures asymptotic consistency.
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Our theory

Theorem (Xu and Chi, 2024)
Set constant ny, = n > 0. Define a stationary distribution m, by

71—77(33) X p(x)qn(x), qn(x) = ef05v) *pT]E(x)a

where € ~ N(0,1;) and = denotes convolution. There exists
A:= A(p, L,n) € (0,1), such that for any accuracy level € > 0, with

K =< 15 log(1/e), we have

1 1
TV(pzi. ™) S e/ (pz, | m) + 1_ )\(GDDS + epcs) log (€>7
————

init error
sampler error

where epcs and epps are the total variation error of PCS and DDS.

® A diminishing schedule {7} ensures asymptotic consistency.

DPnP is the first provably-robust posterior sampling method for
nonlinear inverse problems using unconditional diffusion priors.

J
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Numerical experiments

Phase retrieval: recover an unknown image from the magnitude of its
masked Fourier transform.

DPS DPnP
(Chung et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. J
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Numerical experiments

Quantized sensing: recover an unknown image from its one-bit
dithered measurements.

DPS DPnP
(Chung et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. )
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Numerical experiments

Super resolution: recover an unknown image from its 4x
downsampled version.

DPS
(Chung et al, 2023)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully.
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Summary: diffusion models

MCGdiff (Cardoso et al, 23)

[
3 ®
o
g Asymptotic exact,
] compute expensive
Compute cheap, but
low fidelity
® h fidell
High fidelity,
DPS (Chung et al, 22) compute efficient
Fidelity

Diffusion models are showing great promise in generative Al for Science.J
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Diffusion models are showing great promise in generative Al for Science.J

Future directions:
® Algorithm and theory for diffusion-based inverse problems:
provable guarantees, compute/fidelity trade-offs.

® Applications in imaging science and beyond: 3D /4D imaging,
sequence reconstruction, scalability.



Thanks!

® Accelerating ill-conditioned low-rank matrix estimation via scaled gradient
descent, Journal of Machine Learning Research, 2021.

® The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing,
short version at ICML 2023.

® Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models, arXiv: 2306.09251, short version at ICLR 2024.

® Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play
Image Reconstruction, arXiv:2403.17042.
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