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Abstract

Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed
agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which
each agent has its own private reward function corresponding to different tasks, while sharing the same
transition kernel of the environment. Focusing on infinite-horizon tabular Markov decision processes, the
goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all
the agents in a decentralized manner, where each agent only communicates with its neighbors over some
prescribed graph topology.

We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods under
softmax parameterization, where gradient tracking is applied to the global Q-function to mitigate the
impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees
under exact policy evaluation, which are nearly independent of the size of the state-action space and
illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the
first time that global convergence is established for federated multi-task RL using policy optimization.
Moreover, the convergence behavior of the proposed algorithms is robust against inexactness of policy
evaluation.

Keywords: federated reinforcement learning, multi-task reinforcement learning, natural policy gradient
methods, entropy regularization, global convergence
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1 Introduction

Federated reinforcement learning (FRL) is an emerging paradigm that combines the advantages of federated
learning (FL) and reinforcement learning (RL) (Qi et al., 2021; Zhuo et al., 2019), allowing multiple agents
to learn a shared policy from local experiences, without exposing their private data to a central server nor
other agents. FRL is poised to enable collaborative and efficient decision making in scenarios where data
is distributed, heterogeneous, and sensitive, which arise frequently in applications such as edge computing,
smart cities, and healthcare (Wang et al., 2023, 2020; Zhuo et al., 2019), to name just a few. As has been
observed (Lian et al., 2017), decentralized training can lead to performance improvements in FL by avoiding
communication congestions at busy nodes such as the server, especially under high-latency scenarios. This
motivates us to design algorithms for the fully decentralized setting, a scenario where the agents can only
communicate with their local neighbors over a prescribed network topology.

In this work, we study the problem of federated multi-task reinforcement learning (Anwar and Raychowd-
hury, 2021; Qi et al., 2021; Yu et al., 2020), where each agent collects its own reward — possibly unknown
to other agents — corresponding to the local task at hand, while having access to the same dynamics (i.e.,
transition kernel) of the environment. The collective goal is to learn a shared policy that maximizes the
total rewards accumulated from all the agents; in other words, one seeks a policy that performs well in
terms of overall benefits, rather than biasing towards any individual task, achieving the Pareto frontier in
a multi-objective context. There is no shortage of application scenarios where federated multi-task RL be-
comes highly relevant. For instance, in healthcare (Zerka et al., 2020), different hospitals may be interested
in finding an optimal treatment for all patients without disclosing private data, where the effectiveness of
the treatment can vary across different hospitals due to demographical differences. As another potential ap-
plication, to enhance ChatGPT’s performance across different tasks or domains (M Alshater, 2022; Rahman
et al., 2023), one might consult domain experts to chat and rate ChatGPT’s outputs for solving different
tasks, and train ChatGPT in a federated manner without exposing private data or feedback of each expert.

Nonetheless, despite the promise, provably efficient algorithms for federated multi-task RL remain sub-
stantially under-explored, especially in the fully decentralized setting. The heterogeneity of local tasks leads
to a higher degree of disagreements between the global value function and local value functions of individual
agents. Due to the lack of global information sharing, care needs to be taken to judiciously balance the use
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of neighboring information (to facilitate consensus) and local data (to facilitate learning) when updating the
policy. To the best of our knowledge, no algorithms are currently available to find the global optimal policy
with non-asymptotic convergence guarantees even for tabular infinite-horizon Markov decision processes.

Motivated by the connection with decentralized optimization, it is tempting to take a policy optimization
perspective to tackle this challenge. Policy gradient (PG) methods, which seek to learn the policy of interest
via first-order optimization methods, play an eminent role in RL due to their simplicity and scalability.
In particular, natural policy gradient (NPG) methods (Amari, 1998; Kakade, 2001) are among the most
popular variants of PG methods, underpinning default methods used in practice such as trust region policy
optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization (PPO) (Schulman et al.,
2017). On the theoretical side, it has also been established recently that the NPG algorithm enjoys fast
global convergence to the optimal policy in an almost dimension-free manner (Agarwal et al., 2021; Cen
et al., 2021), where the iteration complexity is nearly independent of the size of the state-action space.
Inspired by the efficacy of NPG methods, it is natural to ask:

Can we develop federated variants of NPG methods that are easy to implement in the fully decentralized
setting with non-asymptotic global convergence guarantees for multi-task RL?

1.1 Our contributions

Focusing on infinite-horizon Markov decision processes (MDPs), we provide an affirmative answer to the
above question, by developing federated NPG (FedNPG) methods for solving both the vanilla and entropy-
regularized multi-task RL problems with finite-time global convergence guarantees. While entropy regular-
ization is often incorporated as an effective strategy to encourage exploration during policy learning, solving
the entropy-regularized RL problem is of interest in its own right, as the optimal regularized policy possesses
desirable robust properties with respect to reward perturbations (Eysenbach and Levine, 2021; McKelvey
and Palfrey, 1995).

Due to the multiplicative update nature of NPG methods under softmax parameterization, it is more
convenient to work with the logarithms of local policies in the decentralized setting. In each iteration of the
proposed FedNPG method, the logarithms of local policies are updated by a weighted linear combination of
two terms (up to normalization): a gossip mixing (Nedic and Ozdaglar, 2009) of the logarithms of neighboring
local policies, and a local estimate of the global Q-function tracked via the technique of dynamic average
consensus (Zhu and Mart́ınez, 2010), a prevalent idea in decentralized optimization that allows for the use of
large constant learning rates (Di Lorenzo and Scutari, 2016; Nedic et al., 2017; Qu and Li, 2017) to accelerate
convergence. Our contributions are as follows.

• We propose FedNPG methods for both the vanilla and entropy-regularized multi-task RL problems,
where each agent only communicates with its neighbors and performs local computation using its own
reward or task information.

• Assuming access to exact policy evaluation, we establish that the average iterate of vanilla FedNPG
converges globally at a rate of O(1/T 2/3) in terms of the sub-optimality gap for the multi-task RL
problem, and that the last iterate of entropy-regularized FedNPG converges globally at a linear rate
to the regularized optimal policy. Our convergence theory highlights the impacts of all salient problem
parameters (see Table 1 for details), such as the size and connectivity of the communication network.
In particular, the iteration complexities of FedNPG are again almost independent of the size of the
state-action space, which recover prior results on the centralized NPG methods when the network is
fully connected.

• We further demonstrate the stability of the proposed FedNPG methods when policy evaluations are
only available in an inexact manner. To be specific, we prove that their convergence rates remain
unchanged as long as the approximation errors are sufficiently small in the `∞ sense.

To the best of our knowledge, the proposed federated NPG methods are the first policy optimization
methods for multi-task RL that achieve explicit non-asymptotic global convergence guarantees, allowing for
fully decentralized communication without any need to share local reward/task information.
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1.2 Related work

Global convergence of NPG methods for tabular MDPs. Agarwal et al. (2021) first establishes a
O(1/T ) last-iterate convergence rate of the NPG method under softmax parameterization with constant step
size, assuming access to exact policy evaluation. When entropy regularization is in place, Cen et al. (2021)
establishes a global linear convergence to the optimal regularized policy for the entire range of admissible
constant learning rates using softmax parameterization and exact policy evaluation, which is further shown
to be stable in the presence of `∞ policy evaluation errors. The iteration complexity of NPG methods is
nearly independent with the size of the state-action space, which is in sharp contrast to softmax policy
gradient methods that may take exponential time to converge (Li et al., 2023c; Mei et al., 2020). Lan (2023)
proposed a more general framework through the lens of mirror descent for regularized RL with global linear
convergence guarantees, which is further generalized in Zhan et al. (2023); Lan et al. (2023). Earlier analysis
of regularized MDPs can be found in Shani et al. (2020). Besides, Xiao (2022) proves that vanilla NPG
also achieves linear convergence when geometrically increasing learning rates are used; see also Khodadadian
et al. (2021); Bhandari and Russo (2021). Zhou et al. (2022) developed an anchor-changing NPG method
for multi-task RL under various optimality criteria in the centralized setting.

Distributed and federated RL. There have been a variety of settings being set forth for distributed and
federated RL. Mnih et al. (2016); Espeholt et al. (2018); Assran et al. (2019); Khodadadian et al. (2022);
Woo et al. (2023) focused on developing federated versions of RL algorithms to accelerate training, assuming
all agents share the same transition kernel and reward function; in particular, Khodadadian et al. (2022);
Woo et al. (2023) established the provable benefits of federated learning in terms of linear speedup. More
pertinent to our work, Zhao et al. (2023); Anwar and Raychowdhury (2021) considered the federated multi-
task framework, allowing different agents having private reward functions. Zhao et al. (2023) proposed an
empirically probabilistic algorithm that can seek an optimal policy under the server-client setting, while
Anwar and Raychowdhury (2021) developed new attack methods in the presence of adversarial agents.
Different from the FRL framework, Chen et al. (2021, 2022b); Omidshafiei et al. (2017); Kar et al. (2012);
Chen et al. (2022a); Zeng et al. (2021) considered the distributed multi-agent RL setting where the agents
interact with a dynamic environment through a multi-agent Markov decision process, where each agent can
have their own state or action spaces. Zeng et al. (2021) developed a decentralized policy gradient method
where different agents have different MDPs.

Decentralized first-order optimization algorithms. Early work of consensus-based first-order opti-
mization algorithms for the fully decentralized setting include but are not limited to Lobel and Ozdaglar
(2008); Nedic and Ozdaglar (2009); Duchi et al. (2011). Gradient tracking, which leverages the idea of
dynamic average consensus (Zhu and Mart́ınez, 2010) to track the gradient of the global objective function,
is a popular method to improve the convergence speed (Qu and Li, 2017; Nedic et al., 2017; Di Lorenzo and
Scutari, 2016; Pu and Nedić, 2021; Li et al., 2020).

Notation. Boldface small and capital letters denote vectors and matrices, respectively. Sets are denoted
with curly capital letters, e.g., S,A. We let (Rd, ‖·‖) denote the d-dimensional real coordinate space equipped
with norm ‖·‖. The `p-norm of v is denoted by ‖v‖p, where 1 ≤ p ≤ ∞, and the spectral norm of a matrix
M is denoted by ‖M‖2. We let [N ] denote {1, . . . , N}, use 1N to represent the all-one vector of length N ,
and denote by 0 a vector or a matrix consisting of all 0’s. We allow the application of functions such as log(·)
and exp(·) to vectors or matrices, with the understanding that they are applied in an element-wise manner.

2 Model and backgrounds

2.1 Markov decision processes

Markov decision processes. We consider an infinite-horizon discounted Markov decision process (MDP)
denoted by M = (S,A, P, r, γ), where S and A denote the state space and the action space, respectively,
γ ∈ [0, 1) indicates the discount factor, P : S × A → ∆(S) is the transition kernel, and r : S × A → [0, 1]
stands for the reward function. To be more specific, for each state-action pair (s, a) ∈ S × A and any state
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setting algorithms iteration complexity optimality criteria

unregularized

NPG
(Agarwal et al., 2021)

O
(

1
(1−γ)2ε + log |A|

ηε

)
V ? − V π(t) ≤ ε

FedNPG
(ours) O

( √
σN log |A|

(1−γ)
9
2 (1−σ)ε

3
2

+ 1
(1−γ)2ε

)
1
T

∑T−1
t=0

(
V ? − V π(t)) ≤ ε

regularized

NPG
(Cen et al., 2021)

O
(

1
τη log

(
1
ε

))
V ?τ − V π

(t)

τ ≤ ε

FedNPG
(ours)

O
(

max
{

1
τη ,

1
1−σ

}
log
(
1
ε

))
V ?τ − V π

(t)

τ ≤ ε

Table 1: Iteration complexities of NPG and FedNPG (ours) methods to reach ε-accuracy of the vanilla and
entropy-regularized problems, where we assume exact gradient evaluation, and only keep the dominant terms
w.r.t. ε. The policy estimates in the t-iteration are π(t) and π̄(t) for NPG and FedNPG, respectively, where T
is the number of iterations. Here, N is the number of agents, τ ≤ 1 is the regularization parameter, σ ∈ [0, 1]
is the spectral radius of the network, γ ∈ [0, 1) is the discount factor, |A| is the size of the action space, and

η > 0 is the learning rate. For vanilla FedNPG, the learning rate is set as η = η1 = O
(

(1−γ)9(1−σ)2 log |A|
TNσ

)1/3
;

for entropy-regularized FedNPG, the learning rate satisfies 0 < η < η0 = O
(

(1−γ)7(1−σ)2τ
σN

)
. The iteration

complexities of FedNPG reduce to their centralized counterparts when σ = 0.

s′ ∈ S, we denote by P (s′|s, a) the transition probability from state s to state s′ when action a is taken,
and r(s, a) the instantaneous reward received in state s when action a is taken. Furthermore, a policy
π : S → ∆(A) specifies an action selection rule, where π(a|s) specifies the probability of taking action a in
state s for each (s, a) ∈ S ×A.

For any given policy π, we denote by V π : S 7→ R the corresponding value function, which is the expected
discounted cumulative reward with an initial state s0 = s, given by

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
, (1)

where the randomness is over the trajectory generated following the policy at ∼ π(·|st) and the MDP
dynamic st+1 ∼ P (·|st, at). We also overload the notation V π(ρ) to indicate the expected value function of
policy π when the initial state follows a distribution ρ over S, namely, V π(ρ) := Es∼ρ [V π(s)]. Similarly, the
Q-function Qπ : S ×A 7→ R of policy π is defined by

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (2)

which measures the expected discounted cumulative reward with an initial state s0 = s and an initial action
a0 = a, with expectation taken over the randomness of the trajectory. The optimal policy π? refers to the
policy that maximizes the value function V π(s) for all states s ∈ S, which is guaranteed to exist (Puterman,
2014). The corresponding optimal value function and Q-function are denoted as V ? and Q?, respectively.

2.2 Entropy-regularized RL

Entropy regularization (Williams and Peng, 1991; Ahmed et al., 2019) is a popular technique in practice
that encourages stochasticity of the policy to promote exploration, as well as robustness against reward
uncertainties. Mathematically, this can be viewed as adjusting the instantaneous reward based the current
policy in use as

∀(s, a) ∈ S ×A : rτ (s, a) := r(s, a)− τ log π(a|s) , (3)
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where τ ≥ 0 denotes the regularization parameter. Typically, τ should not be too large to outweigh the

actual rewards; for ease of presentation, we assume τ ≤ min
{

1, 1
log |A|

}
(Cen et al., 2022b). Equivalently,

this amounts to the entropy-regularized (also known as “soft”) value function, defined as

∀s ∈ S : V πτ (s) := V π(s) + τH(s, π). (4)

Here, we define

H(s, π) := E

[ ∞∑
t=0

−γt log π(at|st)
∣∣s0 = s

]
=

1

1− γ
Es′∼dπs

[
−
∑
a∈A

π(a|s′) log π(a|s′)

]
, (5)

where dπs0 is the discounted state visitation distribution of policy π given an initial state s0 ∈ S, denoted by

∀s ∈ S : dπs0(s) := (1− γ)

∞∑
t=0

γtP(st = s|s0) , (6)

with the trajectory generated by following policy π in the MDPM starting from state s0. Analogously, the
regularized (or soft) Q-function Qπτ of policy π is related to the soft value function V πτ (s) as

∀(s, a) ∈ S ×A : Qπτ (s, a) = r(s, a) + γEs′∈P (·|s,a) [V πτ (s′)] , (7a)

∀s ∈ S : V πτ (s) = Ea∼π(·|s) [−τπ(a|s) +Qπτ (s, a)] . (7b)

The optimal regularized policy, the optimal regularized value function, and the Q-function are denoted by
π?τ , V ?τ , and Q?τ , respectively.

2.3 Natural policy gradient methods

Natural policy gradient (NPG) methods lie at the heart of policy optimization, serving as the backbone
of popular heuristics such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017). Instead of
directly optimizing the policy over the probability simplex, one often adopts the softmax parameterization,
which parameterizes the policy as

πθ := softmax(θ) or ∀(s, a) ∈ S ×A : πθ(a|s) :=
exp θ(s, a)∑

a′∈A exp θ(s, a′)
(8)

for any θ: S ×A → R.

Vanilla NPG method. In the tabular setting, the update rule of vanilla NPG at the t-th iteration can
be concisely represented as

∀(s, a) ∈ S ×A : π(t+1)(a|s) ∝ π(t)(a|s) exp

(
ηQ(t)(s, a)

1− γ

)
, (9)

where η > 0 denotes the learning rate, and Q(t) = Qπ
(t)

is the Q-function under policy π(t). Agarwal et al.

(2021) shows that: in order to find an ε-optimal policy, NPG takes at most O
(

1
(1−γ)2ε

)
iterations, assuming

exact policy evaluation.

Entropy-regularized NPG method. Turning to the regularized problem, we note that the update rule
of entropy-regularized NPG becomes

∀(s, a) ∈ S ×A : π(t+1)(a|s) ∝ (π(t)(a|s))1−
ητ

1−γ exp

(
ηQ

(t)
τ (s, a)

1− γ

)
, (10)

where η ∈ (0, 1−γτ ] is the learning rate, and Q
(t)
τ = Qπ

(t)

τ is the soft Q-function of policy π(t). Cen et al.
(2022a) proves that entropy-regularized NPG enjoys fast global linear convergence to the optimal regularized

policy: to find an ε-optimal regularized policy, entropy-regularized NPG takes no more than O
(

1
ητ log

(
1
ε

))
iterations.
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3 Federated NPG methods for multi-task RL

3.1 Federated multi-task RL

In this paper, we consider the federated multi-task RL setting, where a set of agents learn collaboratively
a single policy that maximizes its average performance over all the tasks using only local computation and
communication.

Multi-task RL. Each agent n ∈ [N ] has its own private reward function rn(s, a) — corresponding to
different tasks — while sharing the same transition kernel of the environment. The goal is to collectively
learn a single policy π that maximizes the global value function given by

V π(s) =
1

N

N∑
n=1

V πn (s), (11)

where V πn is the value function of agent n ∈ [N ], defined by

∀s ∈ S : V πn (s) := E

[ ∞∑
t=0

γtrn(st, at)|s0 = s

]
. (12)

Clearly, the global value function (11) corresponds to using the average reward of all agents

r(s, a) =
1

N

N∑
n=1

rn(s, a). (13)

The global Q-function Qπ(s, a) and the agent Q-functions Qπn(s, a) can be defined in a similar manner obeying

Qπ(s, a) = 1
N

∑N
n=1Q

π
n(s, a).

In parallel, we are interested in the entropy-regularized setting, where each agent n ∈ [N ] is equipped
with a regularized reward function given by

rτ,n(s, a) := rn(s, a)− τ log π(a|s) , (14)

and we define similarly the regularized value function and the global regularized value function as

∀s ∈ S : V πτ,n(s) := E

[ ∞∑
t=0

γtrτ,n(st, at)|s0 = s

]
, and V πτ (s) =

1

N

N∑
n=1

V πτ,n(s). (15)

The soft Q-function of agent n is given by

Qπτ,n(s, a) = rn(s, a) + γEs′∈P (·|s,a)
[
V πτ,n(s′)

]
, (16)

and the global soft Q-function is given by Qπτ (s, a) = 1
N

∑N
n=1Q

π
τ,n(s, a).

Federated policy optimization in the fully decentralized setting. We consider a federated setting
with fully decentralized communication, that is, all the agents are synchronized to perform information
exchange over some prescribed network topology denoted by an undirected weighted graph G([N ], E). Here,
E stands for the edge set of the graph with N nodes — each corresponding to an agent — and two agents can
communicate with each other if and only if there is an edge connecting them. The information sharing over the
graph is best described by a mixing matrix (Nedic and Ozdaglar, 2009), denoted by W = [wij ] ∈ [0, 1]N×N ,
where wij is a positive number if (i, j) ∈ E and 0 otherwise. We also make the following standard assumptions
on the mixing matrix.

Assumption 1 (double stochasticity). The mixing matrix W = [wij ] ∈ [0, 1]N×N is symmetric (i.e.,
W> = W ) and doubly stochastic (i.e., W1N = 1N , 1>NW = 1>N ).
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The following standard metric measures how fast information propagates over the graph.

Definition 1 (spectral radius). The spectral radius of W is defined as

σ :=
∥∥∥W − 1

N
1N1>N

∥∥∥
2
∈ [0, 1). (17)

The spectral radius σ determines how fast information propagate over the network. For instance, in a
fully-connected network, we can achieve σ = 0 by setting W = 1

N 1N1>N . For control of 1/(1− σ) regarding
different graphs, we refer the readers to paper Nedić et al. (2018). In an Erdös-Rényi random graph, as long
as the graph is connected, one has with high probability σ � 1. Another immediate consequence is that for
any x ∈ RN , letting x = 1

N 1>Nx be its average, we have

‖Wx− x1N‖2 ≤ σ ‖x− x1N‖2 , (18)

where the consensus error contracts by a factor of σ.

3.2 Proposed federated NPG algorithms

Assuming softmax parameterization, the problem can be formulated as decentralized optimization,

(unregularized) max
θ

V πθ (s) =
1

N

N∑
n=1

V πθn (s), (19)

(regularized) max
θ

V πθτ (s) =
1

N

N∑
n=1

V πθτ,n(s), (20)

where πθ := softmax(θ) subject to communication constraints. Motivated by the success of NPG methods,
we aim to develop federated NPG methods to achieve our goal. For notational convenience, let π(t) :=(
π
(t)
1 , · · · , π(t)

N

)>
be the collection of policy estimates at all agents in the t-th iteration. Let

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (21)

which satisfies that π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

)1/N
for each (s, a) ∈ S × A. Therefore, π(t) could be seen

as the normalized geometric mean of {π(t)
n }n∈[N ]. Define the collection of Q-function estimates as

Q(t) :=
(
Q
π
(t)
1

1 , · · · , Qπ
(t)
N

N

)>
, Q(t)

τ :=
(
Q
π
(t)
1
τ,1 , · · · , Q

π
(t)
N

τ,N

)>
.

We shall often abuse the notation and treat π(t), Q
(t)
τ as matrices in RN×|S||A|, and treat π(t)(a|s), Q(t)

τ (a|s)
as vectors in RN , for all (s, a) ∈ S ×A.

Vanilla federated NPG methods. To motivate the algorithm development, observe that the NPG
method (cf. (9)) applied to (19) adopts the update rule

π(t+1)(a|s) ∝ π(t)(a|s) exp

(
ηQπ

(t)

(s, a)

1− γ

)
= π(t)(a|s) exp

(
η
∑N
n=1Q

π(t)

n (s, a)

N(1− γ)

)

for all (s, a) ∈ S × A. Two challenges arise when executing this update rule: the policy estimates are
maintained locally without consensus, and the global Q-function are unavailable in the decentralized setting.
To address these challenges, we apply the idea of dynamic average consensus (Zhu and Mart́ınez, 2010),

where each agent maintains its own estimate T
(t)
n (s, a) of the global Q-function, which are collected as vector

T (t) =
(
T

(t)
1 , · · · , T (t)

N

)>
.
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Algorithm 1 Federated NPG (FedNPG)

1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N .
2: Initialize: π(0), T (0) = Q(0).
3: for t = 0, 1, · · ·T − 1 do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) = W logπ(t)(a|s) +
η

1− γ
T (t)(s, a)− log z(t)(s) , (22)

where z(t)(s) =
∑
a′∈A exp

{
W logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

}
.

5: Evaluate Q(t+1).
6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)(s, a)−Q(t)(s, a)︸ ︷︷ ︸

Q-tracking

)
. (23)

7: end for

At each iteration, each agent updates its policy estimates based on its neighbors’ information via gossip

mixing, in addition to a correction term that tracks the difference Q
π(t+1)
n
n (s, a)−Qπ

(t)
n
n (s, a) of the local Q-

functions between consecutive policy updates. Note that the mixing is applied linearly to the logarithms of
local policies, which translates into a multiplicative mixing of the local policies. Algorithm 1 summarizes the
detailed procedure of the proposed algorithm written in a compact matrix form, which we dub as federated
NPG (FedNPG). Note that the agents do not need to share their reward functions with others, and agent

n ∈ [N ] will only be responsible to evaluate the local policy π
(t)
n using the local reward rn.

Entropy-regularized federated NPG methods. Moving onto the entropy regularized case, we adopt
similar algorithmic ideas to decentralize (10), and propose the federated NPG (FedNPG) method with en-
tropy regularization, summarized in Algorithm 2. Clearly, the entropy-regularized FedNPG method reduces
to the vanilla FedNPG in the absence of the regularization (i.e., when τ = 0).

Algorithm 2 Federated NPG (FedNPG) with entropy regularization

1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N , regularization
coefficient τ > 0.

2: Initialize: π(0), T (0) = Q
(0)
τ .

3: for t = 0, 1, · · · do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) =

(
1− ητ

1− γ

)
W logπ(t)(a|s) +

η

1− γ
T (t)(s, a)− log z(t)(s) , (24)

where z(t)(s) =
∑
a′∈A exp

{(
1− ητ

1−γ

)
W logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

}
.

5: Evaluate Q
(t+1)
τ .

6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)

τ (s, a)−Q(t)
τ (s, a)︸ ︷︷ ︸

Q-tracking

)
. (25)

7: end for

9



4 Theoretical guarantees

4.1 Global convergence of FedNPG

Convergence with exact policy evaluation. We begin with the global convergence of FedNPG (cf. Al-
gorithm 1), stated in the following theorem. The formal statement and proof of this result can be found in
Section A.3.

Theorem 1 (Global sublinear convergence of exact FedNPG (informal)). Suppose π
(0)
n , n ∈ [N ] are set as

the uniform distribution. Then for 0 < η ≤ η1 := (1−σ)2(1−γ)3

16
√
Nσ

, we have

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)
≤

V ?(dπ
?

ρ )

(1− γ)T
+

log |A|
ηT

+
32Nση2

(1− γ)9(1− σ)2
. (26)

Theorem 1 characterizes the average-iterate convergence of the average policy π(t) (cf. (21)) across the
agents, which depends logarithmically on the size of the action space, and independently on the size of

the state space. When T ≥ 128
√
N log |A|σ2

(1−σ)4 , by optimizing the learning rate η =
(

(1−γ)9(1−σ)2 log |A|
32TNσ

)1/3
to

balance the latter two terms, we arrive at

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)
.

V ?(dπ
?

ρ )

(1− γ)T
+

N1/3σ1/3

(1− γ)3(1− σ)2/3

(
log |A|
T

)2/3

. (27)

A few comments are in order.

• Server-client setting. When the network is fully connected, i.e., σ = 0, the convergence rate of FedNPG
recovers the O(1/T ) rate, matching that of the centralized NPG established in Agarwal et al. (2021).

• Well-connected networks. When the network is relatively well-connected in the sense of σ
(1−σ)2 . 1−γ

N1/2 ,

FedNPG first converges at the rate of O(1/T ), and then at the slower O(1/T 2/3) rate after T &
(1−γ)3(1−σ)2

Nσ .

• Poorly-connected networks. In addition, when the network is poorly connected in the sense of σ
(1−σ)2 &

1−γ
N1/2 , we see that FedNPG converges at the slower O(1/T 2/3) rate.

We state the iteration complexity in Corollary 1.

Corollary 1 (Iteration complexity of exact FedNPG). To reach

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)
≤ ε,

the iteration complexity of FedNPG is at most O
((

σ1/2

(1−γ)9/2(1−σ)ε3/2 + σ2

(1−σ)4

)√
N log |A|+ 1

ε(1−γ)2

)
.

Convergence with inexact policy evaluation. In practice, the policies need to be evaluated using
samples collected by the agents, where the Q-functions are only estimated approximately. We are interested in
gauging how the approximation error impacts the performance of FedNPG, as demonstrated in the following
theorem.

Theorem 2 (Global sublinear convergence of inexact FedNPG (informal)). Suppose that an estimate q
π(t)
n
n

are used in replace of Q
π(t)
n
n in Algorithm 1. Under the assumptions of Theorem 1, we have

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)
≤

V ?(dπ
?

ρ )

(1− γ)T
+

log |A|
ηT

+
32Nση2

(1− γ)9(1− σ)2
+C3 max

n∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
n − qπ

(t)
n
n

∥∥∥
∞
, (28)

where C3 := 32
√
Nση

(1−γ)5(1−σ)2

(
η
√
N

(1−γ)3 + 1
)

+ 2
(1−γ)2 .
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The formal statement and proof of this result is given in Section A.4.

As long as maxn∈[N ],t∈[T ]

∥∥Qπ(t)
n
n − qπ

(t)
n
n

∥∥
∞ ≤

ε
C3

, inexact FedNPG reaches 1
T

∑T−1
t=0

(
V ?(ρ)−V π(t)

(ρ)
)
≤

2ε at the same iteration complexity as predicted in Corollary 1. Equipped with existing sample complexity
bounds on policy evaluation, e.g. using a simulator as in Li et al. (2023b) and Li et al. (2023a), this immediate
leads to a sample complexity bound for a federated actor-critic type algorithm for multi-task RL. We detail
this in the following remark.

Remark 1 (sample complexity bound of inexact FedNPG). Recall that Li et al. (2023b) shows that for
any fixed policy π, model-based policy evaluation achieves ‖qπτ −Qπτ ‖∞ ≤ εeval with high probability if the

number of samples per state-action pair exceeds the order of Õ
(

1
(1−γ)3ε2eval

)
. When T &

√
N log |A|σ2

(1−σ)4 and

η =
(

(1−γ)9(1−σ)2 log |A|
32TNσ

)1/3
, we have C3 � 1/(1− γ)2. By employing fresh samples for the policy evaluation

of each agent at every iteration, we can set εeval := maxn∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
n − qπ

(t)
n
n

∥∥∥
∞
� ε

C3
� (1 − γ)2ε, and

invoke the union bound over all iterations to give a (very loose) upper bound of sample complexity of FedNPG
per state-action pair at each agent as follows:

Õ
((

σ1/2

(1− γ)9/2(1− σ)ε3/2
+

σ2

(1− σ)4

)√
N +

1

ε(1− γ)2

)
︸ ︷︷ ︸

iteration complexity

· Õ
(

1

(1− γ)7ε2

)
︸ ︷︷ ︸

sample complexity per iteration

= Õ
(

1

(1− γ)7ε2
·
[(

σ1/2

(1− γ)9/2(1− σ)ε3/2
+

σ2

(1− σ)4

)√
N +

1

ε(1− γ)2

])
.

Hence, the total sample complexity scales linearly with respect to the size of the state-action space up to
logarithmic factors. When σ is close to 1, which corresponds to the case where the network exhibits a high
degree of locality, the above sample complexity becomes

Õ

( √
N

(1− γ)7ε2
·
[(

1

(1− γ)9/2(1− σ)ε3/2
+

1

(1− σ)4

)])
,

which further simplifies to Õ
( √

N
(1−γ)11.5(1−σ)ε3.5

)
for sufficiently small ε.

4.2 Global convergence of FedNPG with entropy regularization

Convergence with exact policy evaluation. Next, we present our global convergence guarantee of
entropy-regularized FedNPG with exact policy evaluation (cf. Algorithm 2).

Theorem 3 (Global linear convergence of exact entropy-regularized FedNPG (informal)). For any γ ∈ (0, 1)

and 0 < τ ≤ 1, there exists η0 = min
{

1−γ
τ ,O

(
(1−γ)7(1−σ)2τ

σN

)}
, such that if 0 < η ≤ η0, then we have

∥∥Q(t)

τ −Q?τ
∥∥
∞ ≤ 2γC1ρ(η)t ,

∥∥ log π?τ − log π(t)
∥∥
∞ ≤

2C1

τ
ρ(η)t , (29)

where Q
(t)

τ := Qπ
(t)

τ , ρ(η) ≤ max{1− τη
2 ,

3+σ
4 } < 1, and C1 is some problem-dependent constant.

The exact expressions of C1 and η0 are specified in Appendix A.1. Theorem 3 confirms that entropy-
regularized FedNPG converges at a linear rate to the optimal regularized policy, which is almost independent
of the size of the state-action space, highlighting the positive role of entropy regularization in federated policy
optimization. When the network is fully connected, i.e. σ = 0, the iteration complexity of entropy-regularized

FedNPG reduces to O
(

1
ητ log 1

ε

)
, matching that of the centralized entropy-regularized NPG established in

Cen et al. (2021). When the network is less connected, one needs to be more conservative in the choice of
learning rates, leading to a higher iteration complexity, as described in the following corollary.
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Corollary 2 (Iteration complexity of exact entropy-regularized FedNPG). To reach
∥∥log π?τ − log π(t)

∥∥
∞ ≤

ε, the iteration complexity of entropy-regularized FedNPG is at most

Õ
(

max

{
2

τη
,

4

1− σ

}
log

1

ε

)
(30)

up to logarithmic factors. Especially, when η = η0, the best iteration complexity becomes

Õ
((

Nσ

(1− γ)7(1− σ)2τ2
+

1

1− γ

)
log

1

τε

)
.

Convergence with inexact policy evaluation. Last but not the least, we present the informal conver-
gence results of entropy-regularized FedNPG with inexact policy evaluation, whose formal version can be
found in Appendix A.2.

Theorem 4 (Global linear convergence of inexact entropy-regularized FedNPG (informal)). Suppose that

an estimate q
π(t)
n
τ,n are used in replace of Q

π(t)
n
τ,n in Algorithm 2. Under the assumptions of Theorem 3, we have∥∥Q(t)

τ −Q?τ
∥∥
∞ ≤ 2γ

(
C1ρ(η)t + C2 max

n∈[N ],t∈[T ]

∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥
∞

)
,∥∥ log π?τ − log π(t)

∥∥
∞ ≤

2

τ

(
C1ρ(η)t + C2 max

n∈[N ],t∈[T ]

∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥
∞

)
,

(31)

where Q
(t)

τ := Qπ
(t)

τ , ρ(η) ≤ max{1− τη
2 ,

3+σ
4 } < 1, and C1, C2 are problem-dependent constants.

5 Conclusions

This work proposes the first provably efficient federated NPG (FedNPG) methods for solving vanilla and
entropy-regularized multi-task RL problems in the fully decentralized setting. The established finite-time
global convergence guarantees are almost independent of the size of the state-action space up to some
logarithmic factor, and illuminate the impacts of the size and connectivity of the network. Furthermore,
the proposed FedNPG methods are robust vis-a-vis inexactness of local policy evaluations, leading to a
finite-sample complexity bound of a federated actor-critic method for multi-task RL. When it comes to
future directions, it would be of great interest to further explore sample-efficient algorithms and examine
if it is possible to go beyond the entrywise approximation error assumption in policy evaluation. Another
interesting direction is to extend the analysis of FedNPG to incorporate function approximations.
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A Convergence analysis

For technical convenience, we present first the analysis for entropy-regularized FedNPG and then for vanilla
FedNPG.

A.1 Analysis of entropy-regularized FedNPG with exact policy evaluation

To facilitate analysis, we introduce several notation below. For all t ≥ 0, we recall π(t) as the normalized

geometric mean of {π(t)
n }n∈[N ]:

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (32)

from which we can easily see that for each (s, a) ∈ S × A, π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

) 1
N

. We denote the

soft Q-functions of π(t) by Q
(t)

τ :

Q
(t)

τ :=


Qπ

(t)

τ,1
...

Qπ
(t)

τ,N

 . (33)

In addition, we define Q̂
(t)
τ , Q

(t)

τ ∈ R|S||A| and V
(t)

τ ∈ R|S| as follows

Q̂(t)
τ :=

1

N

N∑
n=1

Q
π(t)
n
τ,n , (34a)

Q
(t)

τ := Qπ
(t)

τ =
1

N

N∑
n=1

Qπ
(t)

τ,n . (34b)

V
(t)

τ := V π
(t)

τ =
1

N

N∑
n=1

V π
(t)

τ,n . (34c)

For notational convenience, we also denote

α := 1− ητ

1− γ
. (35)

Following Cen et al. (2022a), we introduce the following auxiliary sequence {ξ(t) = (ξ
(t)
1 , · · · , ξ(t)N )> ∈

RN×|S||A|}t=0,1,···, each recursively defined as

∀(s, a) ∈ S ×A : ξ(0)(s, a) :=
‖exp (Q?τ (s, ·)/τ)‖1∥∥∥exp
(

1
N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (36a)

log ξ(t+1)(s, a) = αW log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ , (36b)
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where T (t)(s, a) is updated via (23). Similarly, we introduce an averaged auxiliary sequence {ξ(t) ∈ R|S||A|}
given by

∀(s, a) ∈ S ×A : ξ
(0)

(s, a) := ‖exp (Q?τ (s, ·)/τ)‖1 · π
(0)(a|s) , (37a)

log ξ
(t+1)

(s, a) = α log ξ
(t)

(s, a) + (1− α)Q̂(t)
τ (s, a)/τ. (37b)

We introduces four error metrics defined as

Ω
(t)
1 :=

∥∥u(t)∥∥∞ , (38a)

Ω
(t)
2 :=

∥∥v(t)∥∥∞ , (38b)

Ω
(t)
3 :=

∥∥Q?τ − τ log ξ
(t)∥∥
∞ , (38c)

Ω
(t)
4 := max

{
0,−min

s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)}

, (38d)

where u(t), v(t) ∈ R|S||A| are defined as

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (39)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N
∥∥
2
. (40)

We collect the error metrics above in a vector Ω(t) ∈ R4:

Ω(t) :=
(

Ω
(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)>
. (41)

With the above preparation, we are ready to state the convergence guarantee of Algorithm 2 in Theorem 5
below, which is the formal version of Theorem 3.

Theorem 5. For any N ∈ N+, τ > 0, γ ∈ (0, 1), there exists η0 > 0 which depends only on N, γ, τ, σ, |A|,
such that if 0 < η ≤ η0 and 1− σ > 0, then the updates of Algorithm 2 satisfy∥∥Q(t)

τ −Q?τ
∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
, (42)∥∥ log π?τ − log π(t)

∥∥
∞ ≤

2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
, (43)

where

ρ(η) ≤ max
{

1− τη

2
,

3 + σ

4

}
< 1 .

The dependency of η0 on N, γ, τ, σ, |A| is made clear in Lemma 2 that will be presented momentarily in
this section. The rest of this section is dedicated to the proof of Theorem 5. We first state a key lemma that
tracks the error recursion of Algorithm 2.

Lemma 1. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤


σα η

1−γ 0 0

Sσ
(

1 + ηM
√
N

1−γ

)
σ (2+γ)ηMN

1−γ σ γηMN
1−γ σ

(1− α)M 0 (1− α)γ + α (1− α)γ
2γ+ητ
1−γ M 0 0 α


︸ ︷︷ ︸

=:A(η)

Ω(t) , (44)

where we let

S := M
√
N

(
2α+ (1− α) ·

√
2N +

1− α
τ
·
√
NM

)
, (45)
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and

M :=
1 + γ + 2τ(1− γ) log |A|

(1− γ)2
· γ .

In addition, it holds for all t ≥ 0 that ∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞
≤ γΩ

(t)
3 + γΩ

(t)
4 , (46)∥∥ log π(t) − log π?τ

∥∥
∞ ≤

2

τ
Ω

(t)
3 . (47)

Proof. See Appendix B.1.

Let ρ(η) denote the spectral norm of A(η). As Ω(t) ≥ 0, it is immediate from (44) that∥∥Ω(t)
∥∥
2
≤ ρ(η)t

∥∥Ω(0)
∥∥
2
,

and therefore we have ∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞
≤ 2γ

∥∥Ω(t)
∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
,

and ∥∥ log π(t) − log π?τ
∥∥
∞ ≤

2

τ

∥∥Ω(t)
∥∥
∞ ≤

2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
.

It remains to bound the spectral radius ρ(η), which is achieved by the following lemma.

Lemma 2 (Bounding the spectral norm of A(η)). Let

ζ :=
(1− γ)(1− σ)2τ

8 (τS0σ + 10Mcσ/(1− γ) + (1− σ)2τ2/16)
, (48)

where S0 := M
√
N
(

2 +
√

2N + M
√
N

τ

)
. For any N ∈ N+, τ > 0, γ ∈ (0, 1), if

0 < η ≤ η0 := min
{1− γ

τ
, ζ
}
, (49)

then we have

ρ(η) ≤ max
{3 + σ

4
,

1 + (1− α)γ + α

2

}
< 1 . (50)

Proof. See Appendix B.2.

A.2 Analysis of entropy-regularized FedNPG with inexact policy evaluation

We define the collection of inexact Q-function estimates as

q(t)τ :=
(
q
π
(t)
1
τ,1 , · · · , q

π
(t)
N

τ,N

)>
,

and then the update rule (25) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)

τ (s, a)− q(t)τ (s, a)
)

(51)

in the inexact setting. For notational simplicity, we define en ∈ R as

en := max
t∈[T ]

∥∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥∥
∞
, n ∈ [N ] , (52)

and let e = (e1, · · · , en)>. Define q̂
(t)
τ , the approximation of Q̂

(t)
τ as

q̂(t)τ :=
1

N

N∑
n=1

q
π(t)
n
τ,n . (53)
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With slight abuse of notation, we adapt the auxiliary sequence {ξ(t)}t=0,··· to the inexact updates as

ξ
(0)

(s, a) := ‖exp (Q?τ (s, ·)/τ)‖1 · π
(0)(a|s) , (54a)

ξ
(t+1)

(s, a) :=
[
ξ
(t)

(s, a)
]α

exp

(
(1− α)

q̂
(t)
τ (s, a)

τ

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (54b)

In addition, we define

Ω
(t)
1 :=

∥∥∥u(t)∥∥∥
∞
, (55a)

Ω
(t)
2 :=

∥∥∥v(t)∥∥∥
∞
, (55b)

Ω
(t)
3 :=

∥∥∥Q?τ − τ log ξ
(t)
∥∥∥
∞
, (55c)

Ω
(t)
4 := max

{
0,−min

s,a

(
q(t)τ (s, a)− τ log ξ

(t)
(s, a)

)}
, (55d)

where

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (56)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2
. (57)

We let Ω(t) be

Ω(t) :=
(

Ω
(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)>
. (58)

With the above preparation, we are ready to state the inexact convergence guarantee of Algorithm 2 in
Theorem 6 below, which is the formal version of Theorem 4.

Theorem 6. Suppose that q
π(t)
n
τ,n are used in replace of Q

π(t)
n
τ,n in Algorithm 2. For any N ∈ N+, τ > 0, γ ∈

(0, 1), there exists η0 > 0 which depends only on N, γ, τ, σ, |A|, such that if 0 < η ≤ η0 and 1 − σ > 0, we
have ∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞
≤ 2γ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2

+ C2 max
n∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥∥
∞

)
, (59)∥∥∥log π?τ − log π(t)

∥∥∥
∞
≤ 2

τ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2

+ C2 max
n∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥∥
∞

)
, (60)

where ρ(η) ≤ max{1− τη
2 ,

3+σ
4 } < 1 is the same as in Theorem 5, and C2 := σ

√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

(1−γ)(1−ρ(η)) .

From Theorem 6, we can conclude that if

max
n∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
τ,n − qπ

(t)
n
τ,n

∥∥∥
∞
≤ (1− γ)(1− ρ(η))ε

2γ
(
σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

) , (61)

then inexact entropy-regularized FedNPG could still achieve 2ε-accuracy (i.e.
∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞
≤ 2ε) within

max
{

2
τη ,

4
1−σ

}
log

2γ‖Ω(0)‖
2

ε iterations.

Remark 2. When η = η0 (cf. (49) and (48)) and τ ≤ 1, the RHS of (61) is of the order

O
(

(1− γ)τη0ε

γ(γ2 + σ
√
N(1− γ))

)
= O

(
(1− γ)8τ2(1− σ)2ε

γ(γ2 + σ
√
N(1− γ))(γ2Nσ + (1− σ)2τ2(1− γ)6)

)
,

which can be translated into a crude sample complexity bound when using fresh samples to estimate the soft
Q-functions in each iteration.
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The rest of this section outlines the proof of Theorem 6. We first state a key lemma that tracks the error
recursion of Algorithm 2 with inexact policy evaluation, which is a modified version of Lemma 1.

Lemma 3. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤ A(η)Ω(t) +


0

σ
√
N
(

2 + M
√
Nη

1−γ

)
ητ
1−γ
2γ2

1−γ

 ‖e‖∞
︸ ︷︷ ︸

=:b(η)

, (62)

where A(η) is provided in Lemma 1. In addition, it holds for all t ≥ 0 that∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞
≤ γΩ

(t)
3 + γΩ

(t)
4 , (63)∥∥ log π(t) − log π?τ

∥∥
∞ ≤

2

τ
Ω

(t)
3 . (64)

Proof. See Appendix B.3.

By (62), we have

∀t ∈ N+ : Ω(t) ≤ A(η)tΩ(0) +

t∑
s=1

A(η)t−sb(η) ,

which gives ∥∥∥Ω(t)
∥∥∥
2
≤ ρ(η)t

∥∥∥Ω(0)
∥∥∥
2

+

t∑
s=1

ρ(η)t−s ‖b(η)‖2 ‖e‖∞

≤ ρ(η)t
∥∥∥Ω(0)

∥∥∥
2

+
σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

(1− γ)(1− ρ(η))
‖e‖∞ . (65)

Here, (65) follows from ‖b(η)‖2 ≤ ‖b(η)‖1 = σ
√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

1−γ ‖e‖∞ and
∑t
s=1 ρ(η)t−s ≤ 1/(1 −

ρ(η)). Recall that the bound on ρ(η) has already been established in Lemma 2. Therefore we complete the
proof of Theorem 6 by combining the above inequality with (63) and (64) in a similar fashion as before. We
omit further details for conciseness.

A.3 Analysis of FedNPG with exact policy evaluation

We state the formal version of Theorem 1 below.

Theorem 7. Suppose all π
(0)
n in Algorithm 1 are initialized as uniform distribution. When

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ

,

we have

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)
≤

V ?(dπ
?

ρ )

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2 (66)

for any fixed state distribution ρ.

The rest of this section is dedicated to prove Theorem 7. Similar to (33), we denote the Q-functions of

π(t) by Q
(t)

:

Q
(t)

:=


Qπ

(t)

1
...

Qπ
(t)

N

 . (67)
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In addition, similar to (34), we define Q̂(t), Q
(t) ∈ R|S||A| and V

(t) ∈ R|S| as follows

Q̂(t) :=
1

N

N∑
n=1

Q
π(t)
n
n , (68a)

Q
(t)

:= Qπ
(t)

=
1

N

N∑
n=1

Qπ
(t)

n . (68b)

V
(t)

:= V π
(t)

=
1

N

N∑
n=1

V π
(t)

n . (68c)

Following the same strategy in the analysis of entropy-regularized FedNPG, we introduce the auxiliary

sequence {ξ(t) = (ξ
(t)
1 , · · · , ξ(t)N )> ∈ RN×|S||A|} recursively:

ξ(0)(s, a) :=
1∥∥∥exp

(
1
N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (69a)

log ξ(t+1)(s, a) = W log ξ(t)(s, a) +
η

1− γ
T (t)(s, a), (69b)

as well as the averaged auxiliary sequence {ξ(t) ∈ R|S||A|}:

ξ
(0)

(s, a) := π(0)(a|s) , (70a)

log ξ
(t+1)

(s, a) := log ξ
(t)

(s, a) +
η

1− γ
Q̂(t)(s, a) , ∀(s, a) ∈ S ×A, t ≥ 0 . (70b)

As usual, we collect the consensus errors in a vector Ω(t) = (
∥∥u(t)∥∥∞,∥∥v(t)∥∥∞)>, where u(t), v(t) ∈ R|S||A|

are defined as:

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (71)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
. (72)

Step 1: establishing the error recursion. The next key lemma establishes the error recursion of
Algorithm 1.

Lemma 4. The updates of FedNPG satisfy

Ω(t+1) ≤

(
σ η

1−γ

Jσ σ
(

1 + (1+γ)γ
√
Nη

(1−γ)3

))
︸ ︷︷ ︸

=:B(η)

Ω(t) +

(
0

(1+γ)γNσ
(1−γ)4 η

)
︸ ︷︷ ︸

=:d(η)

(73)

for all t ≥ 0, where

J :=
2(1 + γ)γ

(1− γ)2

√
N . (74)

In addition, we have

φ(t+1)(η) ≤ φ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)∥∥∞ − η (V ?(ρ)− V (t)

(ρ)
)
, (75)

where
φ(t)(η) := Es∼dπ?ρ

[
KL
(
π?(·|s) ‖π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

?

ρ ) , ∀t ≥ 0 . (76)

Proof. See Appendix B.4.
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Step 2: bounding the value functions. Let p ∈ R2 be defined as:

p(η) =

(
p1(η)
p2(η)

)
:=

2(1 + γ)γ

(1− γ)4

 (1−γ)(1−σ−(1+γ)γ
√
Nση/(1−γ)3)η

(1−γ)(1−σ−(1+γ)γ
√
Nση/(1−γ)3)(1−σ)−Jση
η2

(1−γ)(1−σ−(1+γ)γ
√
Nση/(1−γ)3)(1−σ)−Jση

 ; (77)

the rationale for this choice will be made clear momentarily. We define the following Lyapunov function

Φ(t)(η) = φ(t)(η) + p(η)>Ω(t) , ∀t ≥ 0 , (78)

which satisfies

Φ(t+1)(η) = φ(t+1)(η) + p(η)>Ω(t+1)

≤ φ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)∥∥∞ − η (V ?(ρ)− V (t)

(ρ)
)

+ p(η)>
(
B(η)Ω(t) + d(η)

)
= Φ(t)(η) +

[
p(η)> (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
Ω(t) − η

(
V ?(ρ)− V (t)

(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η . (79)

Here, the second inequality follows from (75). One can verify that the second term vanishes due to the choice
of p(η):

p(η)> (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)
= (0, 0) . (80)

Therefore, we conclude that

V ?(ρ)− V (t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+ p2(η)

(1 + γ)γNσ

(1− γ)4
.

Averaging over t = 0, · · · , T − 1,

1

T

T−1∑
t=0

(
V ?(ρ)− V (t)

(ρ)
)

≤ Φ(0)(η)− Φ(T )(η)

ηT
+

2(1 + γ)2γ2

(1− γ)8
· Nση2

(1− γ)(1− σ − (1 + γ)γ
√
Nση/(1− γ)3)(1− σ)− σJη

. (81)

Step 3: simplifying the expression. We first upper bound the first term in the RHS of (81). Assuming

uniform initialization for all π
(0)
n in Algorithm 1, we have

∥∥u(0)∥∥∞ =
∥∥v(0)∥∥∞ = 0, and

Es∼dπ?ρ
[
KL
(
π?(·|s) ‖π(0)(·|s)

)]
≤ log |A|.

Therefore, putting together relations (78) and (158) we have

Φ(0)(η)− Φ(T )(η)

ηT
≤ log |A|

Tη
+

1

T

(
p(η)>Ω(0)/η +

V ?(dπ
?

ρ )

1− γ

)
=

log |A|
Tη

+
V ?(dπ

?

ρ )

T (1− γ)
, (82)

To continue, we upper bound the second term in the RHS of (81). Note that

η ≤ η1 ≤
(1− σ)(1− γ)3

2(1 + γ)γ
√
Nσ

,

which gives
(1 + γ)γ

√
Nσ

(1− γ)3
η ≤ 1− σ

2
. (83)
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Thus we have

(1− γ)(1− σ − (1 + γ)γ
√
Nση/(1− γ)3)(1− σ)− Jση

≥ (1− γ)(1− σ)2/2− Jση1
≥ (1− γ)(1− σ)2/4 , (84)

where the first inequality follows from (83) and the second inequality follows from the definition of η1 and
J . By (84), we deduce

2(1 + γ)2γ2

(1− γ)8
· Nση2

(1− γ)(1− σ − (1 + γ)γ
√
Nση/(1− γ)3)(1− σ)− Jση

≤ 8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2 , (85)

and our advertised bound (66) thus follows from plugging (82) and (85) into (81).

A.4 Analysis of FedNPG with inexact policy evaluation

We state the formal version of Theorem 2 below.

Theorem 8. Suppose that q
π(t)
n
n are used in replace of Q

π(t)
n
n in Algorithm 1. Suppose all π

(0)
n in Algorithm 1

set to uniform distribution. Let

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ

,

we have

1

T

T−1∑
t=0

(
V ?(ρ)− V π

(t)

(ρ)
)

≤
V ?(dπ

?

ρ )

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
max

n∈[N ],t∈[T ]

∥∥∥Qπ(t)
n
n − qπ

(t)
n
n

∥∥∥
∞

for any fixed state distribution ρ.

We next outline the proof of Theorem 8. With slight abuse of notation, we again define en ∈ R as

en := max
t∈[T ]

∥∥∥Qπ(t)
n
n − qπ

(t)
n
n

∥∥∥
∞
, n ∈ [N ] , (86)

and let e = (e1, · · · , en)>. We define the collection of inexact Q-function estimates as

q(t) :=
(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)>
,

and then the update rule (23) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)

)
(87)

in the inexact setting. Define q̂(t), the approximation of Q̂(t) as

q̂(t) :=
1

N

N∑
n=1

q
π(t)
n
n , (88)

we adapt the averaged auxiliary sequence {ξ(t) ∈ R|S||A|} to the inexact updates as follows:

ξ
(0)

(s, a) := π(0)(a|s) , (89a)
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ξ
(t+1)

(s, a) := ξ
(t)

(s, a) exp

(
η

1− γ
q̂(t)(s, a)

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (89b)

As usual, we define the consensus error vector as Ω(t) = (
∥∥u(t)∥∥∞,∥∥v(t)∥∥∞)>, where u(t), v(t) ∈ R|S||A|

are given by

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (90)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥∥
2
. (91)

The following lemma characterizes the dynamics of the error vector Ω(t), perturbed by additional approxi-
mation error.

Lemma 5. The updates of inexact FedNPG satisfy

Ω(t+1) ≤ B(η)Ω(t) + d(η) +

(
0√

Nσ
(

(1+γ)γη
√
N

(1−γ)3 + 2
))∥∥e∥∥∞︸ ︷︷ ︸

=:c(η)

. (92)

In addition, we have

φ(t+1)(η) ≤ φ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)∥∥∥

∞
+

2η

(1− γ)2
‖e‖∞ − η

(
V ?(ρ)− V (t)

(ρ)
)
, (93)

where φ(t)(η) is defined in (76).

Proof. See Appendix B.5.

Similar to (79), we can recursively bound Φ(t)(η) (defined in (78)) as

Φ(t+1)(η) = φ(t+1)(η) + p(η)>Ω(t+1)

(93)

≤ φ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)∥∥∥

∞
+

2η

(1− γ)2
‖e‖∞ − η

(
V ?(ρ)− V (t)

(ρ)
)

+ p(η)>
(
B(η)Ω(t) + d(η) + c(η)

)
= Φ(t)(η) +

[
p(η)> (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
︸ ︷︷ ︸

=(0,0) via (80)

Ω(t) − η
(
V ?(ρ)− V (t)

(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η +

[
p2(η)

√
Nσ

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2η

(1− γ)2

]
‖e‖∞ . (94)

From the above expression we know that

V ?(ρ)−V (t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+p2(η)

(1 + γ)γNσ

(1− γ)4
+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
‖e‖∞ ,

which gives

1

T

T−1∑
t=0

(
V ?(ρ)− V (t)

(ρ)
)
≤ Φ(0)(η)− Φ(T )(η)

ηT
+ p2(η)

(1 + γ)γNσ

(1− γ)4

+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
‖e‖∞ (95)
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via telescoping. Combining the above expression with (82), (84) and (85), we have

1

T

T−1∑
t=0

(
V ?(ρ)− V (t)

(ρ)
)
≤ log |A|

Tη
+
V ?(dπ

?

ρ )

T (1− γ)
+

8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
‖e‖∞ , (96)

which establishes (86).

B Proof of key lemmas

B.1 Proof of Lemma 1

Before proceeding, we summarize several useful properties of the auxiliary sequences (cf. (36) and (37)),
whose proof is postponed to Appendix C.1.

Lemma 6 (Properties of auxiliary sequences {ξ(t)} and {ξ(t)}). {ξ(t)} and {ξ(t)} have the following prop-
erties:

1. ξ(t) can be viewed as an unnormalized version of π(t), i.e.,

π(t)
n (·|s) =

ξ
(t)
n (s, ·)∥∥ξ(t)n (s, ·)

∥∥
1

, ∀n ∈ [N ], s ∈ S . (97)

2. For any t ≥ 0, log ξ
(t)

keeps track of the average of log ξ(t), i.e.,

1

N
1>N log ξ(t) = log ξ

(t)
. (98)

It follows that

∀s ∈ S, t ≥ 0 : π(t)(·|s) =
ξ
(t)

(s, ·)∥∥ξ(t)(s, ·)∥∥
1

. (99)

Lemma 7 ((Cen et al., 2022a, Appendix. A.2)). For any vector θ = [θa]a∈A ∈ R|A|, we denote by πθ ∈ R|A|
the softmax transform of θ such that

πθ(a) =
exp(θa)∑

a′∈A exp(θa′)
, a ∈ A . (100)

For any θ1, θ2 ∈ R|A|, we have∣∣ log(‖exp(θ1)‖1)− log(‖exp(θ2)‖1)
∣∣ ≤ ‖θ1 − θ2‖∞ , (101)

‖log πθ1 − log πθ2‖∞ ≤ 2 ‖θ1 − θ2‖∞ . (102)

Step 1: bound u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥
2
. By (36b) and (37b) we have

u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥
2

=
∥∥∥α(W log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
T (t)(s, a)− Q̂(t)

τ (s, a)1N

)
/τ
∥∥∥
2

≤ σα
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2

+
1− α
τ

∥∥T (t)(s, a)− Q̂(t)
τ (s, a)1N

∥∥
2

≤ σα
∥∥u(t)∥∥∞ +

1− α
τ

∥∥v(t)∥∥∞, (103)

where the penultimate step results from the averaging property of W (property (18)). Taking maximum

over (s, a) ∈ S ×A establishes the bound on Ω
(t+1)
1 in (44).
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Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂(t+1)

τ (s, a)1N
∥∥
2
. By (25) we have∥∥T (t+1)(s, a)− Q̂(t+1)

τ (s, a)1N
∥∥
2

=
∥∥∥W (

T (t)(s, a) +Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
− Q̂(t+1)

τ (s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− Q̂(t)

τ (s, a)1N

)
+W

(
Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)

+
(
Q̂(t)
τ (s, a)− Q̂(t+1)

τ (s, a)
)

1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N
∥∥
2

+ σ
∥∥∥(Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

)
+
(
Q̂(t)
τ (s, a)− Q̂(t+1)

τ (s, a)
)

1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N
∥∥
2

+ σ
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥
2
, (104)

where the penultimate step uses property (18), and the last step is due to∥∥∥(Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)

+
(
Q̂(t)
τ (s, a)− Q̂(t+1)

τ (s, a)
)

1N

∥∥∥2
2

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2

+N
(
Q̂(t)
τ (s, a)− Q̂(t+1)

τ (s, a)
)2

− 2

N∑
n=1

(
Q
π(t+1)
n
τ,n (s, a)−Qπ

(t)
n
τ,n (s, a)

)(
Q̂(t+1)
τ (s, a)− Q̂(t)

τ (s, a)
)

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
−N

(
Q̂(t)
τ (s, a)− Q̂(t+1)

τ (s, a)
)2

≤
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
.

Step 3: bound
∥∥Q?τ − τ log ξ

(t+1)∥∥
∞. We decompose the term of interest as

Q?τ − τ log ξ
(t+1)

= Q?τ − τα log ξ
(t) − (1− α)Q̂(t)

τ

= α(Q?τ − τ log ξ
(t)

) + (1− α)(Q?τ −Q
(t)

τ ) + (1− α)(Q
(t)

τ − Q̂(t)
τ ),

which gives∥∥Q?τ − τ log ξ
(t+1)∥∥

∞ ≤ α
∥∥Q?τ − τ log ξ

(t)∥∥
∞ + (1− α)

∥∥Q?τ −Q(t)

τ

∥∥
∞ + (1− α)

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ . (105)

Note that we can upper bound
∥∥Q(t)

τ − Q̂
(t)
τ

∥∥
∞ by

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n
τ,n −

1

N

N∑
n=1

Qπ
(t)

τ,n

∥∥∥∥∥
∞

≤ 1

N

N∑
n=1

∥∥Qπ(t)
n
τ,n −Qπ

(t)

τ,n

∥∥
∞

≤ M

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥
∞6M

∥∥u(t)∥∥∞. (106)

The last step is due to
∣∣ log ξ

(t)
n (s, a) − log ξ

(t)
(s, a)

∣∣ ≤ u(t)(s, a), while the penultimate step results from
writing

π(t)(·|s) = softmax
(

log ξ
(t)

(s, ·)
)
,

π(t)
n (·|s) = softmax

(
log ξ(t)n (s, ·)

)
,

and applying the following lemma.
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Lemma 8 (Lipschitz constant of soft Q-function). Assume that r(s, a) ∈ [0, 1],∀(s, a) ∈ S × A and τ ≥ 0.
For any θ, θ′ ∈ R|S||A|, we have

‖Qπθ′τ −Qπθτ ‖∞ ≤
1 + γ + 2τ(1− γ) log |A|

(1− γ)2
· γ︸ ︷︷ ︸

=:M

‖θ′ − θ‖∞ . (107)

Plugging (106) into (105) gives∥∥Q?τ − τ log ξ
(t+1)∥∥

∞ ≤ α
∥∥Q?τ − τ log ξ

(t)∥∥
∞ + (1− α)

∥∥Q?τ −Q(t)

τ

∥∥
∞ + (1− α)M

∥∥u(t)∥∥∞ . (108)

Step 4: bound
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥
2
. Let w(t) : S ×A → R be defined as

∀(s, a) ∈ S ×A : w(t)(s, a) :=
∥∥ log ξ(t+1)(s, a)− log ξ(t)(s, a)− (1− α)V ?τ (s)1N/τ

∥∥
2
. (109)

Again, we treat w(t) as vectors in R|S||A| whenever it is clear from context. For any (s, a) ∈ S × A and
n ∈ [N ], by Lemma 8 it follows that∣∣∣Qπ(t+1)

n
τ,n (s, a)−Qπ

(t)
n
τ,n (s, a)

∣∣∣ ≤M max
s∈S

∥∥ log ξ(t+1)
n (s, ·)− log ξ(t)n (s, ·)− (1− α)V ?τ (s)1|A|/τ

∥∥
∞

≤M max
s∈S

max
a∈A

w(t)(s, a) ≤M
∥∥w(t)

∥∥
∞ , (110)

and consequently ∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
≤M

√
N
∥∥w(t)

∥∥
∞ . (111)

It boils down to control
∥∥w(t)

∥∥
∞. To do so, we first note that for each (s, a) ∈ S ×A, we have

w(t)(s, a)

=
∥∥αW log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ − log ξ(t)(s, a)− (1− α)V ?τ (s)1N/τ

∥∥
2

(a)
=
∥∥∥α(W − IN )

(
log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
T (t)(s, a)/τ − log ξ(t)(s, a)− V ?τ (s)1N/τ

)∥∥∥
2

(b)

≤ 2α
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2

+
1− α
τ

∥∥T (t)(s, a)− τ log ξ(t)(s, a)− V ?τ (s)1N
∥∥
2

(112)

where (a) is due to the doubly stochasticity property of W and (b) is from the fact ‖W − IN‖2 ≤ 2. We
further bound the second term as follows:∥∥∥T (t)(s, a)− τ log ξ(t)(s, a)− V ?τ (s)1N

∥∥∥
2

=
∥∥∥T (t)(s, a)− τ log ξ(t)(s, a)−

(
Q?τ (s, a)− τ log π?τ (a|s)

)
1N

∥∥∥
2

≤
∥∥T (t)(s, a)−Q?τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π?τ (a|s)1N

∥∥
2

≤
∥∥T (t)(s, a)− Q̂τ (s, a)1N

∥∥
2

+
∥∥Q̂τ (s, a)1N −Q?τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2

+ τ
∥∥ log π(t)(a|s)1N − log π?τ (a|s)1N

∥∥
2

=
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N
∥∥
2

+
√
N
∣∣Q̂(t)

τ (s, a)−Q?τ (s, a)
∣∣

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2

+ τ
√
N
∣∣ log π(t)(a|s)− log π?τ (a|s)

∣∣ . (113)

Here, the first step results from the following relation established in Nachum et al. (2017):

∀(s, a) ∈ S ×A : V ?τ (s) = −τ log π?τ (a|s) +Q?τ (s, a) , (114)

which also leads to ∥∥ log π(t) − log π?τ
∥∥
∞ ≤

2

τ

∥∥Q?τ − τ log ξ
(t)∥∥
∞ (115)
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by Lemma 7. For the remaining terms in (113), we have∣∣Q̂(t)
τ (s, a)−Q?τ (s, a)

∣∣ ≤ ∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q?τ
∥∥
∞ , (116)

and

∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N
∥∥
2

=

√√√√ N∑
n=1

(
log ξ

(t)
n (s, a)− log π(t)(a|s)

)2

≤

√√√√ N∑
n=1

2
∥∥ log ξ

(t)
n − log ξ

(t)∥∥2
∞

≤

√√√√ N∑
n=1

2
∥∥u(t)∥∥2∞ =

√
2N
∥∥u(t)∥∥∞ , (117)

where the first inequality again results from Lemma 7. Plugging (115), (116), (117) into (113) and using the
definition of u(t), v(t), we arrive at

w(t)(s, a) ≤
(

2α+ (1− α) ·
√

2N
)∥∥u(t)∥∥∞ +

1− α
τ

∥∥v(t)∥∥∞ +
1− α
τ
·
√
N
(∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q?τ
∥∥
∞

)
+

1− α
τ
· 2
√
N
∥∥Q?τ − τ log ξ

(t)∥∥
∞ .

Using previous display, we can write (111) as∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2

≤M
√
N

{(
2α+ (1− α) ·

√
2N
)∥∥u(t)∥∥∞ +

1− α
τ

∥∥v(t)∥∥∞
+

1− α
τ
·
√
N
(
M
∥∥u(t)∥∥∞ +

∥∥Q(t)

τ −Q?τ
∥∥
∞

)
+

1− α
τ
· 2
√
N
∥∥Q?τ − τ log ξ

(t)∥∥
∞

}
. (118)

Combining (104) with the above expression (118), we get

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α
τ
·
√
NM

)∥∥u(t)∥∥∞
+

1− α
τ
·
√
N
∥∥Q(t)

τ −Q?τ
∥∥
∞ +

1− α
τ
· 2
√
N
∥∥Q?τ − τ log ξ

(t)∥∥
∞

}
. (119)

Step 5: bound
∥∥Q(t+1)

τ −Q?τ
∥∥
∞. For any state-action pair (s, a) ∈ S ×A, we observe that

Q?τ (s, a)−Q(t+1)

τ (s, a)

= r(s, a) + γ E
s′∼P (·|s,a)

[V ?τ (s′)]−
(
r(s, a) + γ E

s′∼P (·|s,a)

[
V π

(t+1)

τ (s′)
])

= γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp

(
Q?τ (s′, ·)

τ

)∥∥∥∥
1

)]
− γ E

s′∼P (·|s,a),
a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ log π(t+1)(a′|s′)
]
, (120)

where the first step invokes the definition of Qτ (cf. (7a)), and the second step is due to the following
expression of V ?τ established in Nachum et al. (2017):

V ?τ (s) = τ log

(∥∥∥∥exp

(
Q?τ (s, ·)

τ

)∥∥∥∥
1

)
. (121)
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To continue, note that by (99) and (37b) we have

log π(t+1)(a|s) = log ξ
(t+1)

(s, a)− log
(∥∥ξ(t+1)

(s, ·)
∥∥
1

)
= α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ
− log

(∥∥ξ(t+1)
(s, ·)

∥∥
1

)
. (122)

Plugging (122) into (120) and (118) establishes the bounds on

Q?τ (s, a)−Q(t+1)

τ (s, a) = γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp

(
Q?τ (s′, ·)

τ

)∥∥∥∥
1

)
− τ log

(∥∥∥ξ(t+1)
(s′, ·)

∥∥∥
1

)]
− γ E

s′∼P (·|s,a),
a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ

(
α log ξ

(t)
(s′, a′) + (1− α)

Q̂
(t)
τ (s′, a′)

τ

)
︸ ︷︷ ︸

=log ξ
(t+1)

(s′,a′)

]

(123)

for any (s, a) ∈ S × A. In view of property (101), the first term on the right-hand side of (123) can be
bounded by

τ log

(∥∥∥∥exp

(
Q?τ (s′, ·)

τ

)∥∥∥∥
1

)
− τ log

(∥∥ξ(t+1)
(s′, ·)

∥∥
1

)
≤
∥∥Q?τ − τ log ξ

(t+1)∥∥
∞ .

Plugging the above expression into (123), we have

0 ≤ Q?τ (s, a)−Q(t+1)

τ (s, a) ≤ γ
∥∥Q?τ − τ log ξ

(t+1)∥∥
∞ − γmin

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
,

which gives∥∥Q?τ −Q(t+1)

τ

∥∥
∞ ≤ γ

∥∥Q?τ − τ log ξ
(t+1)∥∥

∞ + γmax
{

0,−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)}

. (124)

Plugging the above inequality into (108) and (119) establishes the bounds on Ω
(t+1)
3 and Ω

(t+1)
2 in (44),

respectively.

Step 6: bound −mins,a
(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
. We need the following lemma which is adapted

from Lemma 1 in Cen et al. (2022a):

Lemma 9 (Performance improvement of FedNPG with entropy regularization). Suppose 0 < η ≤ (1−γ)/τ .
For any state-action pair (s0, a0) ∈ S ×A, one has

V
(t+1)

τ (s0)− V (t)

τ (s0) ≥ 1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ‖π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ‖π(t+1)(·|s0)

)]
− 2

1− γ
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ , (125)

Q
(t+1)

τ (s0, a0)−Q(t)

τ (s0, a0) ≥ − 2γ

1− γ
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ . (126)

Proof. See Appendix C.3.

Using (126), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
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≥ Q(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)
− 2γ + ητ

1− γ
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ , (127)

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)

+
2γ + ητ

1− γ
M
∥∥u(t)∥∥∞

≤ αmax
{

0,min
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)}

+
2γ + ητ

1− γ
M
∥∥u(t)∥∥∞ . (128)

This establishes the bounds on Ω
(t+1)
4 in (44).

B.2 Proof of Lemma 2

Let f(λ) denote the characteristic function. In view of some direct calculations, we obtain

f(λ) = (λ− α)

{
(λ− σα)(λ− σ(1 + bη))(λ− (1− α)γ − α)︸ ︷︷ ︸

=:f0(λ)

− ησ

1− γ
[S(λ− (1− α)γ − α) + γcdMη + (1− α)(2 + γ)Mcdη]︸ ︷︷ ︸

=:f1(λ)

}

− τη3γ

(1− γ)2
· 2cdMσ ,

(129)

where, for the notation simplicity, we let

b :=
M
√
N

1− γ
, (130a)

c :=
MN

1− γ
=
√
Nb , (130b)

d :=
2γ + ητ

1− γ
. (130c)

Note that among all these new notation we introduce, S, d are dependent of η. To decouple the dependence,
we give their upper bounds as follows

d0 :=
1 + γ

1− γ
M ≥ d , (131)

S0 := M
√
N

(
2 +
√

2N +
M
√
N

τ

)
≥ S , (132)

where (131) follows from η ≤ (1− γ)/τ , and (132) uses the fact that α ≤ 1 and 1− α ≤ 1.
Let

λ? := max
{3 + σ

4
,

1 + (1− α)γ + α

2

}
. (133)

Since A(ρ) is a nonnegative matrix, by Perron-Frobenius Theorem (see Horn and Johnson (2012), The-
orem 8.3.1), ρ(η) is an eigenvalue of A(ρ). So to verify (50), it suffices to show that f(λ) > 0 for any
λ ∈ [λ?,∞). To do so, in the following we first show that f(λ?) > 0, and then we prove that f is non-
decreasing on [λ?,∞).
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• Showing f(λ?) > 0. We first lower bound f0(λ?). Since λ? ≥ 3+σ
4 , we have

λ? − σ(1 + bη) ≥ 1− σ
4

, (134)

and from λ? ≥ 1+(1−α)γ+α
2 we deduce

λ? − (1− α)γ − α ≥ (1− γ)(1− α)

2
(135)

and

λ? >
1 + α

2
, (136)

which gives

λ? − σα ≥ 1 + α

2
− σα . (137)

Combining (137), (134), (135), we have that

f0(λ?) ≥ 1− σ
8

(
1 + α

2
− σα

)
ητ . (138)

To continue, we upper bound f1(λ?) as follows.

f1(λ?) ≤ Sτη + γcdMη +
2 + γ

1− γ
cMτη2

= η

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ γcdM

)
. (139)

Plugging (138),(139) into (129) and using (136), we have

f(λ?) >
1− α

2

(
f0(λ?)− ησ

1− γ
f1(λ?)

)
− τη3γ

(1− γ)2
· 2cdMσ

≥ τη2

2(1− γ)

[
1− σ

8
τ

(
1− σ + (1− α)(σ − 1

2
)

)
− ησ

1− γ

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ 5γcdM

)]
=

τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
Sτσ +

2 + γ

1− γ
Mcστη + τ2

(
1

2
− σ

)
· 1− σ

8
+ 5γcdMσ

)]
≥ τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
S0τσ +

(1− σ)2

16
τ2 + (2 + γ + 5γd0) cMσ

)]
≥ 0 ,

where the penultimate inequality uses 1
2 − σ ≤

1−σ
2 , and the last inequality follows from the definition

of ζ (cf. (48)).

• Proving f is non-decreasing on [λ?,∞). Note that

η ≤ ζ ≤ (1− γ)(1− σ)2

8S0σ
,

thus we have

∀λ ≥ λ? : f ′0(λ)− ησ

1− γ
f ′1(λ) ≥ (λ− σα)(λ− σ(1 + bη))− η

1− γ
Sσ ≥ 0 ,

which indicates that f0 − f1 is non-decreasing on [λ?,∞). Therefore, f is non-decreasing on [λ?,∞).
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B.3 Proof of Lemma 3

Note that bounding u(t+1)(s, a) is identical to the proof in Appendix B.1 and shall be omitted. The rest of
the proof also follows closely that of Lemma 1, and we only highlight the differences due to approximation
error for simplicity.

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a) − q̂(t+1)

τ (s, a)1N
∥∥
2
. Let q

(t)
τ :=

(
q
π
(t)
1
τ,1 , · · · , q

π
(t)
N

τ,N

)>
. Similar to

(104) we have ∥∥T (t+1)(s, a)− q̂(t+1)
τ (s, a)1N

∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2

+ σ
∥∥q(t+1)

τ (s, a)− q(t)τ (s, a)
∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2

+ σ
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥
2

+ 2 ‖e‖2 . (140)

Step 3: bound
∥∥Q?τ − τ log ξ

(t+1)∥∥
∞. In the context of inexact updates, (105) writes∥∥Q?τ − τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q?τ − τ log ξ
(t)∥∥
∞ + (1− α)

∥∥Q?τ −Q(t)

τ

∥∥
∞ + (1− α)

∥∥Q(t)

τ − q̂(t)τ
∥∥
∞ .

For the last term, following a similar argument in (106) leads to

∥∥Q(t)

τ − q̂(t)τ
∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n
τ,n −

1

N

N∑
n=1

Qπ
(t)

τ,n

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
n=1

(
Q
π(t)
n
τ,n − qπ

(t)
n
τ,n

)∥∥∥∥∥
∞

≤M · 1

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥
∞ +

1

N

N∑
n=1

en

≤M
∥∥u(t)∥∥∞ + ‖e‖∞ .

Combining the above two inequalities, we obtain∥∥Q?τ − τ log ξ
(t+1)∥∥

∞ ≤ α
∥∥Q?τ − τ log ξ

(t)∥∥
∞+ (1−α)

∥∥Q?τ −Q(t)

τ

∥∥
∞+ (1−α)

(
M
∥∥u(t)∥∥∞ +

∥∥e∥∥∞) . (141)

Step 4: bound
∥∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥∥
2
. We remark that the bound established in (111) still holds in

the inexact setting, with the same definition for w(t):∥∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥∥
2
≤M

√
N
∥∥∥w(t)

∥∥∥
∞
. (142)

To deal with the approximation error, we rewrite (113) as∥∥∥T (t)(s, a)− τ log ξ(t)(s, a)− V ?τ (s)1N

∥∥∥
2

=
∥∥∥T (t)(s, a)− τ log ξ(t)(s, a)−

(
Q?τ (s, a)− τ log π?τ (a|s)

)
1N

∥∥∥
2

≤
∥∥T (t)(s, a)−Q?τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π?τ (a|s)1N

∥∥
2

≤
∥∥T (t)(s, a)− q̂τ (s, a)1N

∥∥
2

+
∥∥q̂τ (s, a)1N −Q?τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2

+ τ
∥∥ log π(t)(a|s)1N − log π?τ (a|s)1N

∥∥
2

≤
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2

+
√
N
∣∣q̂(t)τ (s, a)−Q?τ (s, a)

∣∣
+ τ

∥∥∥log ξ(t)(s, a)− log π(t)(a|s)1
∥∥∥
2

+ τ
√
N
∣∣ log π(t)(a|s)− log π?τ (a|s)

∣∣ , (143)

where the second term can be upper-bounded by∣∣q̂(t)τ (s, a)−Q?τ (s, a)
∣∣ ≤ ∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q?τ
∥∥
∞ +

∥∥∥q̂(t)τ (s, a)− Q̂(t)
τ (s, a)

∥∥∥
∞
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≤
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q?τ
∥∥
∞ + ‖e‖∞ . (144)

Combining (144), (143) and the established bounds in (112), (115), (117) leads to

w(t)(s, a) ≤
(

2α+ (1− α) ·
√

2N
)∥∥∥u(t)∥∥∥

∞
+

1− α
τ

∥∥∥v(t)∥∥∥
∞

+
1− α
τ
·
√
N
(∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

+
∥∥∥Q(t)

τ −Q?τ
∥∥∥
∞

+ ‖e‖∞
)

+
1− α
τ
· 2
√
N
∥∥∥Q?τ − τ log ξ

(t)
∥∥∥
∞
.

Combining the above inequality with (142) and (140) gives

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α
τ
·
√
NM

)∥∥u(t)∥∥∞
+

1− α
τ
·
√
N
(∥∥Q(t)

τ −Q?τ
∥∥
∞ +

∥∥e∥∥∞)+
1− α
τ
· 2
√
N
∥∥Q?τ − τ log ξ

(t)∥∥
∞

}
+ 2σ

√
N ‖e‖∞ .

(145)

Step 5: bound
∥∥∥Q(t+1)

τ −Q?τ
∥∥∥
∞

. It is straightforward to verify that (124) applies to the inexact updates

as well: ∥∥∥Q?τ −Q(t+1)

τ

∥∥∥
∞
≤ γ

∥∥∥Q?τ − τ log ξ
(t+1)

∥∥∥
∞

+ γ

(
−min

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
))

.

Plugging the above inequality into (141) and (145) establishes the bounds on Ω
(t+1)
3 and Ω

(t+1)
2 in (62),

respectively.

Step 6: bound −mins,a
(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
. We obtain the following lemma by interpreting

the approximation error e as part of the consensus error
∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

in Lemma 9.

Lemma 10 (inexact version of Lemma 9). Suppose 0 < η ≤ (1− γ)/τ . For any state-action pair (s0, a0) ∈
S ×A, one has

V
(t+1)

τ (s0)− V (t)

τ (s0) ≥ 1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ‖π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ‖π(t+1)(·|s0)

)]
− 2

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ‖e‖∞
)
, (146)

Q
(t+1)

τ (s0, a0)−Q(t)

τ (s0, a0) ≥ − 2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ‖e‖∞
)
. (147)

Using (147), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)

≥ Q(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ‖e‖∞
)

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)
− 2γ + ητ

1− γ

∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞
− 2γ

1− γ
‖e‖∞ , (148)

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)

(s, a)
)

+
2γ + ητ

1− γ
M
∥∥∥u(t)∥∥∥

∞
+

2γ

1− γ
‖e‖∞ .

(149)
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B.4 Proof of Lemma 4

Step 1: bound u(t+1)(s, a) =
∥∥∥log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥∥
2
. Following the same strategy in es-

tablishing (103), we have∥∥∥log ξ(t+1)(s, a)− log ξ
(t+1)

(s, a)1N

∥∥∥
2

=

∥∥∥∥(W log ξ(t)(s, a)− log ξ
(t)

(s, a)1N

)
+

η

1− γ

(
T (t)(s, a)− Q̂(t)(s, a)1N

)∥∥∥∥
2

≤ σ
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2

+
η

1− γ

∥∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥∥
2
, (150)

or equivalently ∥∥u(t+1)
∥∥
∞ ≤ σ

∥∥u(t)∥∥∞ +
η

1− γ
∥∥v(t)∥∥∞ . (151)

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N

∥∥
2
. In the same vein of establishing (104), we

have ∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N
∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2

+ σ
∥∥Q(t+1)(s, a)−Q(t)(s, a)

∥∥
2
, (152)

The term
∥∥Q(t+1)(s, a)−Q(t)(s, a)

∥∥
2

can be bounded in a similar way in (111):∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥w(t)

0

∥∥
∞ , (153)

where the coefficient (1+γ)γ
(1−γ)2 comes from M in Lemma 8 when τ = 0, and w

(t)
0 ∈ R|S||A| is defined as

∀(s, a) ∈ S ×A : w
(t)
0 (s, a) :=

∥∥∥∥log ξ(t+1)(s, a)− log ξ(t)(s, a)− η

1− γ
V ?(s)1N

∥∥∥∥
2

. (154)

It remains to bound
∥∥w(t)

0

∥∥
∞. Towards this end, we rewrite (112) as

w
(t)
0 (s, a)

=
∥∥W log ξ(t)(s, a) +

η

1− γ
T (t)(s, a)− log ξ(t)(s, a)− η

1− γ
V ?(s)1N

∥∥
2

=

∥∥∥∥(W − I)
(

log ξ(t)(s, a)− log ξ
(t)

(s, a)1N

)
+

η

1− γ

(
T (t)(s, a)− V ?(s)1N

)∥∥∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2

+
η

1− γ
∥∥T (t)(s, a)− V ?(s)1N

∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2

+
η

1− γ
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2

+
η

1− γ
·
√
N
∣∣Q̂(t)(s, a)− V ?(s)

∣∣ .
(155)

Note that it holds for all (s, a) ∈ S ×A:∣∣Q̂(t)(s, a)− V ?(s)
∣∣ ≤ 1

1− γ

since Q̂(t)(s, a) and V ?(s) are both in [0, 1/(1− γ)]. This along with (155) gives

w
(t)
0 (s, a) ≤ 2

∥∥u(t)∥∥∞ +
η

1− γ
∥∥v(t)∥∥∞ +

η
√
N

(1− γ)2
.

Combining the above inequality with (153) and (152), we arrive at

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3

)∥∥v(t)∥∥∞ +
(1 + γ)γ

(1− γ)2

√
Nσ

{
2
∥∥u(t)∥∥∞ +

η

(1− γ)2
·
√
N

}
. (156)
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Step 3: establish the descent equation. The following lemma characterizes the improvement in φ(t)(η)
for every iteration of Algorithm 1, with the proof postponed to Appendix C.4.

Lemma 11 (Performance improvement of exact FedNPG). For all starting state distribution ρ ∈ ∆(S), we
have the iterates of FedNPG satisfy

φ(t+1)(η) ≤ φ(t)(η) +
2η

(1− γ)2
∥∥Q̂(t) −Q(t)∥∥

∞ − η
(
V ?(ρ)− V (t)

(ρ)
)
, (157)

where
φ(t)(η) := Es∼dπ?ρ

[
KL
(
π?(·|s) ‖π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

?

ρ ) , ∀t ≥ 0 . (158)

It remains to control the term
∥∥Q(t) − Q̂(t)

∥∥
∞. Similar to (106), for all t ≥ 0, we have

∥∥Q(t) − Q̂(t)
∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n
n − 1

N

N∑
n=1

Qπ
(t)

n

∥∥∥∥∥
∞

(a)

≤ (1 + γ)γ

(1− γ)2
· 1

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥
∞

(b)

≤ (1 + γ)γ

(1− γ)2
∥∥u(t)∥∥∞ , (159)

where (a) invokes Lemma 8 with τ = 0 and (b) stems from the definition of u(t). This along with (157) gives

φ(t+1)(η) ≤ φ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)∥∥∞ − η (V ?(ρ)− V (t)

(ρ)
)
.

B.5 Proof of Lemma 5

The bound on u(t+1)(s, a) is already established in Step 1 in Appendix B.1 and shall be omitted. As usual
we only highlight the key differences with the proof of Lemma 4 due to approximation error.

Step 1: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥
2
. Let q(t) :=

(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)>
. From (87),

we have∥∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥W (

T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)
)
− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− q̂(t)(s, a)1N

)
+W

(
q(t+1)(s, a)− q(t)(s, a)

)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2

+ σ
∥∥∥(q(t+1)(s, a)− q(t)(s, a)

)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2

+ σ
∥∥q(t+1)(s, a)− q(t)(s, a)

∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2

+ σ
∥∥Q(t+1)(s, a)−Q(t)(s, a)

∥∥
2

+ 2σ
√
N ‖e‖∞ . (160)

Note that (153) still holds for inexact FedNPG:∥∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥∥w(t)

0

∥∥∥
∞
, (161)

where w
(t)
0 is defined in (154). We rewrite (155), the bound on w

(t)
0 (s, a), as

w
(t)
0 (s, a) ≤ 2

∥∥ log ξ(t)(s, a)− log ξ
(t)

(s, a)1N
∥∥
2
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+
η

1− γ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2

+
η

1− γ
·
√
N
∣∣q̂(t)(s, a)− V ?(s)

∣∣ . (162)

With the following bound

∀(s, a) ∈ S ×A :
∣∣q̂(t)(s, a)− V ?(s)

∣∣ ≤ ∥∥q̂(t) −Q(t)∥∥
∞ +

1

1− γ

in mind, we write (155) as

w
(t)
0 (s, a) ≤ 2

∥∥u(t)∥∥∞ +
η

1− γ
∥∥v(t)∥∥∞ +

η

1− γ
·
√
N

(∥∥q̂(t) − q(t)∥∥∞ +
1

1− γ

)
.

Putting all pieces together, we obtain

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3

)∥∥v(t)∥∥∞
+

(1 + γ)γ

(1− γ)2

√
Nσ

{(
2 +

(1 + γ)γ
√
Nη

(1− γ)3

)∥∥u(t)∥∥∞ +
η
√
N

(1− γ)2
+
η
√
N

1− γ
‖e‖∞

}
+ 2σ

√
N ‖e‖∞ .

(163)

Step 2: establish the descent equation. Note that Lemma 11 directly applies by replacing Q̂(t) with
q̂(t):

φ(t+1)(η) ≤ φ(t)(η) +
2η

(1− γ)2

∥∥∥q̂(t) −Q(t)
∥∥∥
∞
− η

(
V ?(ρ)− V (t)

(ρ)
)
.

To bound the middle term, for all t ≥ 0, we have

∥∥∥Q(t) − q̂(t)
∥∥∥
∞

=

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n
n − 1

N

N∑
n=1

Qπ
(t)

n

∥∥∥∥∥
∞

≤ (1 + γ)γ

(1− γ)2
· 1

N

N∑
n=1

∥∥∥log ξ(t)n − log ξ
(t)
∥∥∥
∞

+
1

N

∥∥∥∥∥
N∑
n=0

(
q
π(t)
n
n −Qπ

(t)
n
n

)∥∥∥∥∥
∞

+
1

N

N∑
n=1

en

≤ (1 + γ)γ

(1− γ)2

∥∥∥u(t)∥∥∥
∞

+ ‖e‖∞ . (164)

Hence, (93) is established by combining the above two inequalities.

C Proof of auxiliary lemmas

C.1 Proof of Lemma 6

The first claim is easily verified as log ξ
(t)
n (s, ·) always deviate from log π

(t)
n (·|s) by a global constant shift, as

long as it holds for t = 0:

log ξ(t+1)
n (s, ·) = α

N∑
n′=1

[W ]n,n′ log ξ
(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ

= α

N∑
n′=1

[W ]n,n′
(

log π
(t)
n′ (s, ·) + c

(t)
n′ (s)1|A|

)
+ (1− α)T (t)

n (s, ·)/τ

= α

N∑
n′=1

[W ]n,n′ log π
(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ − z(t)n (s)1|A| + c(t+1)
n (s)1|A|

= log π(t+1)
n (·|s) + c(t+1)

n (s)1|A|,
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where z
(t)
n is the normalization term (cf. line 5, Algorithm 2) and {c(t)n (s)} are some constants. To prove the

second claim, ∀t ≥ 0,∀(s, a) ∈ S ×A, let

T
(t)

(s, a) :=
1

N
1>T (t)(s, a) . (165)

Taking inner product with 1
N 1 for both sides of (25) and using the double stochasticity property of W ,

we get

T
(t+1)

(s, a) = T
(t)

(s, a) + Q̂(t+1)
τ (s, a)− Q̂(t)

τ (s, a) . (166)

By the choice of T (0) (line 2 of Algorithm 2), we have T
(0)

= Q̂
(0)
τ and hence by induction

∀t ≥ 0 : T
(t)

= Q̂(t)
τ . (167)

This implies

log ξ
(t+1)

(s, a)− α log ξ
(t)

(s, a) = (1− α)Q̂(t)
τ (s, a)/τ

= (1− α)T
(t)

(s, a)/τ

=
1

N
1> log ξ(t+1)(s, a)− α 1

N
1> log ξ(t)(s, a).

Therefore, to prove (98), it suffices to verify the claim for t = 0:

1

N
1> log ξ(0)(s, a) = log ‖exp (Q?τ (s, ·)/τ)‖1 +

1

N
1> logπ(0)(a|s)− log

∥∥∥∥∥exp

(
1

N

N∑
n=1

log π(0)
n (·|s)

)∥∥∥∥∥
1

= log ‖exp (Q?τ (s, ·)/τ)‖1 + log π(0)(a|s) = log ξ
(0)

(s, a) .

By taking logarithm over both sides of the definition of π(t+1) (cf. (24)), we get

log π(t+1)(a|s) = α log π(t)(a|s) + (1− α)Q̂(t)(s, a)/τ − z(t)(s) (168)

for some constant z(t)(s), which deviate from the update rule of log ξ
(t+1)

by a global constant shift and
hence verifies (99).

C.2 Proof of Lemma 8

For notational simplicity, we let Qθ
′

τ and Qθτ denote Q
πθ′
τ and Qπθτ , respectively. From (7a) we immediately

know that to bound
∥∥∥Qθ′τ −Qθτ∥∥∥∞, it suffices to control

∣∣V θτ (s)− V θ′τ (s)
∣∣ for each s ∈ S. By (4) we have∣∣V θτ (s)− V θ

′

τ (s)
∣∣ ≤ ∣∣V θ(s)− V θ′(s)∣∣+ τ

∣∣H(s, πθ)−H(s, πθ′)
∣∣ , (169)

so in the following we bound both terms in the RHS of (169).

Step 1: bounding
∣∣H(s, πθ)−H(s, πθ′)

∣∣. We first bound
∣∣H(s, πθ)−H(s, πθ′)

∣∣ using the idea in the proof
of Lemma 14 in Mei et al. (2020). We let

θt = θ + t(θ′ − θ) , ∀t ∈ R , (170)

and let ht ∈ R|S| be

∀s ∈ S : ht(s) := −
∑
a∈A

πθt(a|s) log πθt(a|s) . (171)

Note that ‖ht‖∞ ≤ log |A|. We also denote Ht : S → R|A|×|A| by:

∀s ∈ S : Ht(s) :=
∂πθ(·|s)
∂θ

∣∣∣∣
θ=θt

= diag{πθt(·|s)} − πθt(·|s)πθt(·|s)> , (172)
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then we have

∀s ∈ S :

∣∣∣∣dht(s)dt

∣∣∣∣ =

∣∣∣∣〈 ∂ht(s)

∂θt(·|s)
, θ′(s, ·)− θ(s, ·)

〉∣∣∣∣
= |〈Ht(s) log πθt(·|s), θ′(s, ·)− θ(s, ·)〉|
≤ ‖Ht(s) log πθt(·|s)‖1 ‖θ

′(s, ·)− θ(s, ·)‖∞ , (173)

where ∂ht(s)
∂θt(·|s) stands for ∂ht(s)

∂θ(·|s)
∣∣
θ=θt

. The first term in (173) is further upper bounded as

‖Ht(s) log πθt(·|s)‖1 =
∑
a∈A

πθt(a|s)
∣∣log πθt(a|s)− πθt(·|s)> log πθt(·|s)

∣∣
≤
∑
a∈A

πθt(a|s)
(
|log πθt(a|s)|+

∣∣πθt(·|s)> log πθt(·|s)
∣∣)

= −2
∑
a∈A

πθt(a, s) log πθt(a|s) ≤ 2 log |A| .

By Lagrange mean value theorem, there exists t ∈ (0, 1) such that

|h1(s)− h0(s)| =
∣∣∣∣dht(s)dt

∣∣∣∣ ≤ 2 log |A| ‖θ′(s, ·)− θ(s, ·)‖∞ ,

where the inequality follows from (173) and the above inequality. Combining (5) with the above inequality,
we arrive at ∣∣H(s, πθ)−H(s, πθ′)

∣∣ ≤ 2 log |A|
1− γ

‖θ′ − θ‖∞ . (174)

Step 2: bounding
∣∣V θ(s)−V θ′(s)∣∣. Similar to the previous proof, we bound

∣∣V θ(s)−V θ′(s)∣∣ by bounding∣∣∣dV θtdt (s)
∣∣∣. By Bellman’s consistency equation, the value function of πθt is given by

V θt(s) =
∑
a∈A

πθt(a|s)r(s, a) + γ
∑
a

πθα(a|s)
∑
s′∈S
P(s′|s, a)V θt(s′) ,

which can be represented in a matrix-vector form as

V θt(s) = e>sMtrt , (175)

where es ∈ R|S| is a one-hot vector whose s-th entry is 1,

Mt := (I − γPt)−1 , (176)

with Pt ∈ R|S|×|S| denoting the induced state transition matrix by πθt

Pt(s, s
′) =

∑
a∈A

πθt(a|s)P(s′|s, a) , (177)

and rt ∈ R|S| is given by

∀s ∈ S : rt(s) :=
∑
a∈A

πθt(a|s)r(s, a) . (178)

Taking derivative w.r.t. t in (175), we obtain (Petersen and Pedersen, 2008)

dV θt(s)

dt
= γ · e>sMt

dPt
dt
Mtrt + e>sMt

drt
dt

. (179)

We now calculate each term respectively.
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• For the first term, it follows that∣∣∣∣γ · e>sMt
dPt
dt
Mtrt

∣∣∣∣ ≤ γ ∥∥∥∥Mt
dPt
dt
Mtrt

∥∥∥∥
∞

≤ γ

1− γ

∥∥∥∥dPtdt Mtrt

∥∥∥∥
∞

≤ 2γ

1− γ
‖Mtrt‖∞ ‖θ

′ − θ‖∞ (180)

≤ 2γ

(1− γ)2
‖rt‖∞ ‖θ

′ − θ‖∞

≤ 2γ

(1− γ)2
‖θ′ − θ‖∞ . (181)

where the second and fourth lines use the fact ‖Mt‖1 ≤ 1/(1 − γ) (Li et al., 2023b, Lemma 10), and
the last line follow from

‖rt‖∞ = max
s∈S

∣∣∣∣∣∑
a∈A

πθt(a|s)r(s, a)

∣∣∣∣∣ ≤ 1.

We defer the proof of (180) to the end of proof.

• For the second term, it follows that∣∣∣∣e>sMt
drt
dt

∣∣∣∣ ≤ 1

1− γ

∥∥∥∥drtdt
∥∥∥∥
∞
≤ 1

1− γ
‖θ′ − θ‖∞ . (182)

where the first inequality follows again from ‖Mt‖1 ≤ 1/(1−γ), and the second inequality follows from∥∥∥∥drtdt
∥∥∥∥
∞

= max
s∈S

∣∣∣∣drt(s)dt

∣∣∣∣ = max
s∈S

∣∣∣∣〈∂πθt(·|s)>r(s, ·)∂θt(s, ·)
, θ′(s, ·)− θ(s, ·)

〉∣∣∣∣
≤ max

s∈S

∥∥∥∥∂πθt(·|s)>∂θt(s, ·)
r(s, ·)

∥∥∥∥
1

‖θ′(s, ·)− θ(s, ·)‖∞

= max
s∈S

(∑
a∈A

πθt(a|s)
∣∣r(s, a)− πθt(·|s)>r(s, ·)

∣∣) ‖θ′(s, ·)− θ(s, ·)‖∞
≤ max

s∈S
max
a∈A

∣∣r(s, a)− πθt(·|s)>r(s, ·)
∣∣︸ ︷︷ ︸

≤1 since r(s,a)∈[0,1]

‖θ′(s, ·)− θ(s, ·)‖∞

≤ max
s∈S
‖θ′(s, ·)− θ(s, ·)‖∞ = ‖θ′ − θ‖∞ .

Plugging the above two inequalities into (179) and using Lagrange mean value theorem, we have∣∣V θ(s)− V θ′(s)∣∣ ≤ 1 + γ

(1− γ)2
‖θ′ − θ‖∞ . (183)

Step 3: sum up. Combining (183), (174) and (169), we have

∀s ∈ S :
∣∣V θτ (s)− V θ

′

τ (s)
∣∣ ≤ 1 + γ + 2τ(1− γ) log |A|

(1− γ)2
‖log π − log π′‖∞ . (184)

Combining (184) and (7a), (107) immediately follows.
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Proof of (180). For any vector x ∈ R|S|, we have[
dPt
dt

x

]
s

=
∑
s′∈S

∑
a∈A

dπθt(a|s)
dt

P(s′|s, a)x(s′) ,

from which we can bound the l∞ norm as∥∥∥∥dPtdt x
∥∥∥∥
∞
≤ max

s

∑
a∈A

∑
s′∈S
P(s′|s, a)

∣∣∣∣dπθt(a|s)dt

∣∣∣∣ ‖x‖∞
= max

s

∑
a∈A

∣∣∣∣dπθt(a|s)dt

∣∣∣∣ ‖x‖∞
≤ 2 ‖θ′ − θ‖∞ ‖x‖∞

as desired, where the last line follows from the following fact:∑
a∈A

∣∣∣∣dπθt(a|s)dt

∣∣∣∣ =
∑
a∈A

∣∣∣∣〈∂πθt(a|s)∂θt
, θ′ − θ

〉∣∣∣∣
=
∑
a∈A

∣∣∣∣〈∂πθt(a|s)∂θt(s, ·)
, θ′(s, ·)− θ(s, ·)

〉∣∣∣∣
=
∑
a∈A

πθt(a|s)
∣∣(θ′(s, a)− θ(s, a))− πθt(·|s)> (θ′(s, ·)− θ(s, ·))

∣∣
≤ max

a
|θ′(s, a)− θ(s, a)|+

∣∣πθt(·|s)> (θ′(s, ·)− θ(s, ·))
∣∣

≤ 2 ‖θ′ − θ‖∞ .

C.3 Proof of Lemma 9

To simplify the notation, we denote

δ(t) := Q̂(t)
τ −Q

(t)

τ . (185)

We first rearrange the terms of (168) and obtain

− τ log π(t)(a|s) +
(
Q

(t)

τ (s, a) + δ(t)(s, a)
)

=
1− γ
η

(
log π(t+1)(a|s)− log π(t)(a|s)

)
+

1− γ
η

z(t)(s) . (186)

This in turn allows us to express V
(t)

τ (s0) for any s0 ∈ S as follows

V
(t)

τ (s0) = E
a0∼π(t)(·|s0)

[
−τ log π(t)(a0|s0) +Q

(t)

τ (s0, a0)
]

= E
a0∼π(t)(·|s0)

[
1− γ
η

z(t)(s0)

]
+ E
a0∼π(t)(·|s0)

[
1− γ
η

(
log π(t+1)(a0|s0)− log π(t)(a0|s0)

)
− δ(t)(s0, a0)

]
=

1− γ
η

z(t)(s0)− 1− γ
η

KL
(
π(t)(·|s0) ‖π(t+1)(·|s0)

)
− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
= E
a0∼π(t+1)(·|s0)

[
1− γ
η

z(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ‖π(t+1)(·|s0)

)
− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
,

(187)

where the first identity makes use of (7b), the second line follows from (186). Invoking (7b) again to rewrite
the z(s0) appearing in the first term of (187), we reach

V
(t)

τ (s0)

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q

(t)

τ (s0, a0) +

(
τ − 1− γ

η

)(
log π(t+1)(a0|s0)− log π(t)(a|s)

)]
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− 1− γ
η

KL
(
π(t)(·|s0) ‖π(t+1)(·|s0)

)
− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E
a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
= E

a0∼π(t+1)(·|s0),

s1∼P (·|s0,a0)

[
−τ log π(t+1)(a0|s0) + r(s0, a0) + γV

(t)

τ (s0)
]

−
(

1− γ
η
− τ
)
KL
(
π(t+1)(·|s0) ‖π(t)(·|s0)

)
− 1− γ

η
KL
(
π(t)(·|s0) ‖π(t+1)(·|s0)

)
− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E
a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
. (188)

Note that for any (s0, a0) ∈ S ×A, we have

− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E
a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
=
∑
a0∈A

(
π(t+1)(a0|s0)− π(t)(a0|s0)

)
δ(t)(s0, a0)

≤
∥∥π(t+1)(·|s0)− π(t)(·|s0)

∥∥
1

∥∥δ(t)∥∥∞ ≤ 2
∥∥δ(t)∥∥∞ . (189)

To finish up, applying (188) recursively to expand V
(t)

τ (si), i ≥ 1 and making use of (189), we arrive at

V
(t)

τ (s0)

≤
∞∑
i=1

γi · 2
∥∥∥δ(t)∥∥∥

∞
+ E

ai∼π(t+1)(·|si),
si+1∼P (·|si,ai),∀i≥0

[ ∞∑
i=1

γi
{
r(si, ai)− τ log π(t+1)(ai|si)

}

−
∞∑
i=1

γi
{(

1− γ
η
− τ
)
KL
(
π(t+1)(·|si) ‖π(t)(·|si)

)
+

1− γ
η

KL
(
π(t)(·|si) ‖π(t+1)(·|si)

)}]

=
2

1− γ

∥∥∥δ(t)∥∥∥
∞

+ V
(t+1)

τ (s0)

− E
s∼dπ(t+1)

s0

[(
1

η
− τ

1− γ

)
KL
(
π(t+1)(·|si) ‖π(t)(·|si)

)
+

1

η
KL
(
π(t)(·|si) ‖π(t+1)(·|si)

)]
, (190)

where the third line follows since V
(t+1)

τ can be viewed as the value function of π(t+1) with adjusted rewards
r(t+1)(s, a) := r(s, a)− τ log π(t+1)(s|a). And (125) follows immediately from the above inequality (190). By
(7a) we can easily see that (126) is a consequence of (125).

C.4 Proof of Lemma 11

We first introduce the famous performance difference lemma which will be used in our proof.

Lemma 12 (Performance difference lemma). For all policies π, π′ and state s0, we have

V π(s0)− V π
′
(s0) =

1

1− γ
Es∼dπs0Ea∼π(·|s)

[
Aπ
′
(s, a)

]
. (191)

The proof of Lemma 12 can be found in, for example, Appendix A of Agarwal et al. (2021).

For all t ≥ 0, we define the advantage function A
(t)

as:

∀(s, a) ∈ S ×A : A
(t)

(s, a) := Q
(t)

(s, a)− V (t)
(s) . (192)

Then for Alg. 1, the update rule of π (Eq. (168)) can be written as

log π(t+1)(a|s) = log π(t)(a|s) +
η

1− γ

(
A

(t)
(s, a) + δ(t)(s, a)

)
− log ẑ(t)(s) , (193)
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where δ(t) is defined in (185) and

log ẑ(t)(s) = log
∑
a′∈A

π(t)(a′|s) exp

{
η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
≥
∑
a′∈A

π(t)(a′|s) log exp

{
η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
=

η

1− γ
∑
a′∈A

π(t)(a′|s)
(
A

(t)
(s, a′) + δ(t)(s, a′)

)
=

η

1− γ
∑
a′∈A

π(t)(a′|s)δ(t)(s, a′) ≥ − η

1− γ

∥∥∥δ(t)∥∥∥
∞
, (194)

where the first inequality follows by Jensen’s inequality on the concave function log x and the last equality

uses
∑
a′∈A π

(t)(a′|s)A(t)
(s, a′) = 0.

For all starting state distribution µ, we use d(t+1) as shorthand for dπ
(t+1)

µ , the performance difference
lemma (Lemma 12) implies:

V
(t+1)

(µ)− V (t)
(µ)

=
1

1− γ
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s) log
π(t+1)(a|s)ẑ(t)(s)

π(t)(a|s)
− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)KL

(
π(t+1)(·|s) ‖π(t)(·|s)

)
+

1

η
Es∼d(t+1) log ẑ(t)(s)− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
≥ 1

η
Es∼d(t+1)

(
log ẑ(t)(s) +

η

1− γ
∥∥δ(t)∥∥∞)− 2

1− γ
∥∥δ(t)∥∥∞ ,

from which we can see that

V
(t+1)

(µ)− V (t)
(µ) ≥ − 2

1− γ
∥∥δ(t)∥∥∞ , (195)

where we use (194), and that

V
(t+1)

(µ)− V (t)
(µ) ≥ 1− γ

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ
∥∥δ(t)∥∥∞)− 2

1− γ
∥∥δ(t)∥∥∞ , (196)

which follows from d(t+1) = dπ
(t+1)

µ ≥ (1− γ)µ and the fact that log ẑ(t)(s) + η
1−γ

∥∥δ(t)∥∥∞ ≥ 0 (by (194)).

For any fixed ρ, we use d? as shorthand for dπ
?

ρ . By the performance difference lemma (Lemma 12),

V ?(ρ)− V (t)
(ρ)

=
1

1− γ
Es∼d?

∑
a∈A

π?(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d?Ea∼π?(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d?

∑
a∈A

π?(a|s) log
π(t+1)(a|s)ẑ(t)(s)

π(t)(a|s)
− 1

1− γ
Es∼d?Ea∼π?(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d?

(
KL
(
π?(·|s) ‖π(t)(·|s)

)
− KL

(
π?(·|s) ‖π(t+1)(·|s)

)
+ log ẑ(t)(s)

)
− 1

1− γ
Es∼d?Ea∼π?(·|s)

[
δ(t)(s, a)

]
≤ 1

η
Es∼d?

(
KL
(
π?(·|s) ‖π(t)(·|s)

)
− KL

(
π?(·|s) ‖π(t+1)(·|s)

)
+

(
log ẑ(t)(s) +

η

1− γ
∥∥δ(t)∥∥∞)) , (197)

where we use (193) in the second equality.
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By applying (196) with µ = d? as the initial state distribution, we have

1

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ
∥∥δ(t)∥∥∞) ≤ 1

1− γ

(
V

(t+1)
(d?)− V (t)

(d?)
)

+
2

(1− γ)2
∥∥δ(t)∥∥∞ .

Plugging the above equation into (197), we obtain

V ?(ρ)− V (t)
(ρ) ≤ 1

η
Es∼d?

(
KL
(
π?(·|s) ‖π(t)(·|s)

)
− KL

(
π?(·|s) ‖π(t+1)(·|s)

))
+

1

1− γ

(
V

(t+1)
(d?)− V (t)

(d?)
)

+
2

(1− γ)2
∥∥δ(t)∥∥∞ ,

which gives Lemma 11.
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