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Abstract

When the data used for reinforcement learning (RL) are collected by multiple agents in a distributed
manner, federated versions of RL algorithms allow collaborative learning without the need for agents
to share their local data. In this paper, we consider federated Q-learning, which aims to learn an
optimal Q-function by periodically aggregating local Q-estimates trained on local data alone. Focusing
on infinite-horizon tabular Markov decision processes, we provide sample complexity guarantees for both
the synchronous and asynchronous variants of federated Q-learning. In both cases, our bounds exhibit
a linear speedup with respect to the number of agents and near-optimal dependencies on other salient
problem parameters.

In the asynchronous setting, existing analyses of federated Q-learning, which adopt an equally
weighted averaging of local Q-estimates, require that every agent covers the entire state-action space.
In contrast, our improved sample complexity scales inverse proportionally to the minimum entry of the
average stationary state-action occupancy distribution of all agents, thus only requiring the agents to
collectively cover the entire state-action space, unveiling the blessing of heterogeneity in enabling col-
laborative learning by relaxing the coverage requirement of the single-agent case. However, its sample
complexity still suffers when the local trajectories are highly heterogeneous. In response, we propose a
novel federated Q-learning algorithm with importance averaging, giving larger weights to more frequently
visited state-action pairs, which achieves a robust linear speedup as if all trajectories are centrally pro-
cessed, regardless of the heterogeneity of local behavior policies.

Keywords: federated Q-learning, periodic averaging, sample complexity, linear speedup, blessing of hetero-
geneity
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1 Introduction

Reinforcement Learning (RL) (Sutton and Barto, 2018) is an area of machine learning for sequential decision
making, aiming to learn an optimal policy that maximizes the total rewards via interactions with an unknown
environment. RL is widely used in many real-world applications, such as autonomous driving, games, clinical
trials, and recommendation systems. However, due to the high dimensionality of the state-action space,
training of RL agents typically requires a significant amount of computation and data to achieve desirable
performance. Moreover, data collection can be extremely time-consuming with limited access in the wild,
especially when performed by a single agent. On the other hand, it is possible to leverage multiple agents to
collect data simultaneously, under the premise that they can learn a global policy collaboratively with the
aid of a central server without the need of sharing local data. As a result, there is a growing need to conduct
RL in a distributed or federated fashion.

Although there have been many studies analyzing federated learning (Kairouz et al., 2021) in other areas
such as supervised machine learning (Bonawitz et al., 2019; McMahan et al., 2017; Wang et al., 2020b), there
are only a few recent works focused on federated RL. They consider issues such as robustness to adversarial
attacks (Fan et al., 2021; Wu et al., 2021), environment heterogeneity (Jin et al., 2022), as well as sample and
communication complexities (Doan et al., 2021; Khodadadian et al., 2022; Shen et al., 2022). Encouragingly,
some of these prior works offer non-asymptotic sample complexity analyses of federated RL algorithms that
highlight a linear speedup of the required sample size in terms of the number of agents. However, the
performance characterization of these federated algorithms is still far from complete.



1.1 Federated Q-learning: prior art and limitations

This paper focuses on Q-learning (Watkins and Dayan, 1992), one of the most celebrated model-free RL
algorithms, which aims to learn the optimal Q-function directly without forming an estimate of the model.
Two sampling protocols are typically studied: synchronous sampling and asynchronous sampling. With
synchronous sampling, all state-action pairs are updated uniformly assuming access to a generative model
or a simulator (Kearns and Singh, 1999). With asynchronous sampling, only the state-action pair that is
visited by the behavior policy is updated at each time (Tsitsiklis, 1994). Despite its long history of theoretical
investigation, the tight sample complexity of Q-learning in the single-agent setting has only recently been
pinned down in Li et al. (2023). As we shall elucidate, there remains a large gap in terms of the sample
complexity requirement between the federated setting and the single-agent setting in terms of dependencies
on salient problem parameters.

To harness the power of multiple agents, Khodadadian et al. (2022) proposed and analyzed a federated
variant of Q-learning with asynchronous sampling that periodically aggregates the local Q-estimates trained
on local Markovian trajectories collected over K agents. To set the stage, consider an infinite-horizon tabular
Markov decision process (MDP) with state space S, action space A, and a discount factor v € [0,1). To
learn an e-optimal Q-function estimate (in the £, sense), Khodadadian et al. (2022) requires a per-agent
sample size on the order of
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for sufficiently small €, where pmin 1= minj<z<x ming q)esx.A ,u’,;(s, a) is the minimum entry of the stationary

state-action occupancy distributions u’é of the sample trajectories over all agents, and O hides logarithmic
terms. On the other hand, the sample requirement of single-agent Q-learning (Li et al., 2023) for learning
an e-optimal Q-function is

e — @

for sufficiently small e. Comparing the two sample complexity bounds reveals several drawbacks of existing
analyses and raises the following natural questions.

e Near-optimal sample size. Despite the appealing linear speedup in terms of the number of agents K shown
in Khodadadian et al. (2022), it has unfavorable dependencies on other salient problem parameters. In

particular, since 1/pimin > |S||A|, the sample complexity in (1) will be better than that of the single-agent
IS1°1A]*
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large state-action space and long effective horizon. Can we improve the dependency on the salient problem
parameters for federated Q-learning while maintaining linear speedup?

case in (2) only if K is at least above the order of which may not be practically feasible with

e Benefits of heterogeneity. Existing analyses in Khodadadian et al. (2022) require that each agent has a
full coverage of the state-action space (i.e., min > 0), which is as stringent as the single-agent setting.
However, given that the insufficient coverage of individual agents can be complemented by each other
when agents have heterogeneous local trajectories, it may not be necessary to require full coverage of the
state-action space from every agent. Can we exploit the heterogeneity in the agents’ local trajectories and
relax the coverage requirement on individual agents?

1.2 Summary of our contributions

In this paper, we answer these questions in the affirmative, by providing a sample complexity analysis of
federated Q-learning under both the synchronous and asynchronous settings. The main contributions are
summarized as follows, with Table 1 providing a comparison with the prior art.

o Sample complexity of federated synchronous Q-learning with equal averaging. We show that with high
probability, the sample complexity of federated synchronous Q-learning (FedSynQ) to learn an e-optimal



samplin reference number of coverage sample
ping agents & complexity
Chen et al. (2020); Wainwright (2019a) 1 full (1‘511;53‘52
synchronous
(Li et al., 2023) 1 full sl
ISIIA]
FedSynQ (Theorem 1) K full R(1—y)5e2
Qu and Wierman (2020) 1 full W
- 1
asynchronous Li et al. (2023) 1 full Hmin (1—7) %2
FedAsynQ-EqAvg (Khodadadian et al., 2022) K full ﬁi)%?
FedAsynQ-EqAvg (Theorem 2) K partial W
FedAsynQ-ImAvg (Theorem 3) K partial W

Table 1: Comparison of sample complexity upper bounds of single-agent and federated Q-learning algorithms
under synchronous and asynchronous sampling protocols to learn an e-optimal Q-function in the /., sense,
where logarithmic factors and burn-in costs are hidden. Here, S is the state space, A is the action space, ~y
is the discount factor, K is the total number of agents, and %, is the mixing time of the behavior policy.
In addition, pmin = ming s q ,u’g(s,a) denotes the minimum entry of the stationary state-action occupancy
distributions ;/,j of all agents, flayg := ming, % Zszl ,u]g(&a) denotes the minimum entry of the average

stationary state-action occupancy distribution of all agents, and Chet := maxy, s,o Kpuf (s, a)/( Zszl i (s, a))
captures the heterogeneity across the agents.

Q-function in the ¢, sense is (see Theorem 1)

o(wnrz) ®

which exhibits a linear speedup with respect to the number of agents K and nearly matches the tight
sample complexity bound of single-agent synchronous Q-learning up to a factor of 1/(1 — ) in Li et al.
(2023) for K = 1.

o Sample complexity of federated asynchronous Q-learning with equal averaging. We provide a sharpened
sample complexity analysis of the algorithm developed in Khodadadian et al. (2022) for federated asyn-
chronous Q-learning with equal averaging (FedAsynQ-EqAvg) that leads to new insights. To learn an
e-optimal Q-function in the ¢, sense, FedAsynQ-EqAvg requires at most (see Theorem 2)

O (Rt 7) W

samples per agent for sufficiently small ¢ (ignoring the burn-in cost that depends on the mixing times of
the Markovian trajectories over all agents), where p.,z = ming, % Zle /ﬂg(s,a) > Umin is the min-

imum entry of the average stationary state-action occupancy distribution of all agents, and Che =
Ky (s,a)

@R i (s)

sample complexity not only proves a linear speedup with respect to the number of agents, but also greatly

sharpens the dependency on all the salient problem parameters — including 1/(1 — ), |S|, and 1/ min
— by orders of magnitudes compared to the bound obtained in Khodadadian et al. (2022). More im-
portantly, it uncovers that as long as the agents collectively cover the entire state-action space (i.e.,

maxy s, € [1,1/pavg] captures the heterogeneity of the behavior policies across agents. This



Havg > 0), FedAsynQ-EqAvg still enables learning even when individual agents fail to cover the entire
state-action space (i.e., fimin = 0), unveiling the blessing of heterogeneity that was not elucidated in prior
work (Khodadadian et al., 2022).

e Sample complexity of federated asynchronous Q-learning with importance averaging. Although heteroge-
neous behavior policies at agents may induce local trajectories covering different parts of the state-action
space and relax the coverage requirement, equally weighting the local Q-estimates may hinder the con-
vergence which is bottlenecked by the slowest converging agent. This is evident by the dependency on
Chet in the sample complexity of FedAsynQ-EqAvg, which becomes larger when the local behavior policies
are highly disparate. To address this issue, we propose a novel importance averaging scheme in federated
Q-learning (FedAsynQ-ImAvg) that averages the local Q-estimates by assigning larger weights to more
frequently updated local estimates. To learn an e-optimal Q-function in the ¢, sense, FedAsynQ-ImAvg
requires at most (see Theorem 3)

0 (W) (5)

samples per agent for sufficiently small € (ignoring the burn-in cost that depends on the mixing times of
the Markovian trajectories over all agents). This improves over that of FedAsynQ-EqAvg by removing the
dependency on Chet, which can be as large as 1/pavg. More importantly, this suggests that FedAsynQ-ImAvg
achieves stable linear speedup with respect to the profile of the local behavior policies while maintaining
the blessing of heterogeneity that eases the burden of individual agents’ coverage.

1.3 Related work

Analysis of single-agent Q-learning. There has been extensive research on the convergence guarantees
of Q-learning, focusing on the single-agent case. Many initial studies have analyzed the asymptotic conver-
gence of Q-learning (Borkar and Meyn, 2000; Jaakkola et al., 1994; Szepesvari, 1998; Tsitsiklis, 1994). Later,
Beck and Srikant (2012); Chen et al. (2020); Even-Dar and Mansour (2003); Li et al. (2023); Wainwright
(2019a) have studied the sample complexity of Q-learning under synchronous sampling, and Beck and Srikant
(2012); Chen et al. (2021b); Even-Dar and Mansour (2003); Li et al. (2023, 2021b); Qu and Wierman (2020)
have investigated the finite-time convergence of Q-learning under asynchronous sampling (also referred to as
Markovian sampling). In addition, Bai et al. (2019); Jin et al. (2018); Li et al. (2021a); Yang et al. (2021);
Zhang et al. (2020) studied Q-learning with optimism for online RL, and Shi et al. (2022); Yan et al. (2022)
dealt with Q-learning with pessimism for offline RL.

Distributed and federated RL. Several recent works have developed distributed versions of RL algo-
rithms to accelerate training (Assran et al., 2019; Espeholt et al., 2018; Mnih et al., 2016). Theoretical
analysis of convergence and communication efficiency of these distributed RL algorithms have also been
considered in recent works. For example, a collection of works (Chen et al., 2022a; Doan et al., 2019;
Sun et al., 2020; Wai, 2020; Wang et al., 2020a; Zeng et al., 2021) have analyzed the convergence of de-
centralized temporal difference (TD) learning. Furthermore, Chen et al. (2022b); Shen et al. (2022) have
analyzed the finite-time convergence of distributed actor-critic algorithms and Chen et al. (2021a) proposed
a communication-efficient policy gradient algorithm with provable convergence guarantees.

Notation. Throughout this paper, we denote by A(S) the probability simplex over a set S, and [K] :=
{1,---, K} for any positive integer K > 0. In addition, f(-) = O(g(-)) or f < g (resp. f(-) = Q(g(-)) or
f 2 g) means that f(-) is orderwise no larger than (resp. no smaller than) g(-) modulo some logarithmic
factors. The notation f =< g means f < g and f 2 ¢ hold simultaneously.

2 Model and background

In this section, we introduce the mathematical model and background of Markov decision processes.



Infinite-horizon Markov decision process. We consider an infinite-horizon Markov decision process
(MDP), which is represented by M = (S, A, P,r,7). Here, S and A denote the state space and the action
space, respectively, P : § x A x § — [0, 1] indicates the transition kernel such that P(s’|s,a) denotes the
probability that action a in state s leads to state ', r : § x A — [0,1] denotes a deterministic reward
function, where r(s,a) is the immediate reward for action a in state s, and v € [0, 1) is the discount factor.

Policy, value function, and Q-function. A policy is an action-selection rule denoted by the mapping
m: S — A(A), such that 7(a|s) is the probability of taking action a in state s. For a given policy 7, the
value function V™ : § — R, which measures the expected discounted cumulative reward from an initial state
s, is defined as

VseS: VT(s) =E lz V(s ar) | so = 31 . (6)

t=0

Here, the expectation is taken with respect to the randomness of the trajectory {s;, as, r+}32,, sampled based
on the transition kernel (i.e., s;41 ~ P(-|s;,a;)) and the policy 7 (i.e., a; ~ 7(-|s;)) for any ¢ > 0. Similarly,
the state-action value function (i.e., @Q-function) Q™ : S x A — R, which measures the expected discounted
cumulative reward from an initial state-action pair (s, a), is defined as

V(s,a) e S x A: Q" (s,a) =r(s,a) + E

oo
Zwtr(st,at) ’ S0 = 8,00 = a] .

t=1

Again here, the expectation is taken with respect to the randomness of the trajectory {s:, as, 7152, generated
similarly as above. Since the rewards lie within [0, 1], it follows that for any policy ,

1 1
0<V" < —— <R < ——. 7
SV 0@ S ™

Optimal policy and Bellman’s principle of optimality. A policy that maximizes the value function
uniformly over all states is called an optimal policy and denoted by 7*. Note that the existence of such an
optimal policy is always guaranteed (Puterman, 2014), which also maximizes the Q-function simultaneously.
The corresponding optimal value function and Q-function are denoted by V* := V™ and Q* := Q™ ,
respectively. It is well-known that the optimal Q-function Q* can be determined as the unique fixed point
of the Bellman operator T, given by

max Q(s',a’)|. (8)

TQ)sa)=rsa)+y  E [a’eA

Q-learning (Watkins and Dayan, 1992), perhaps the most widely used model-free RL algorithm, seeks to
learn the optimal Q-function based on samples collected from the underlying MDP without estimating the
model.

3 Federated synchronous Q-learning: algorithm and theory

In this section, we begin with understanding federated synchronous Q-learning, where all the state-action
pairs are updated simultaneously assuming access to a generative model or simulator at all the agents.

3.1 Problem setting
In the synchronous setting, each agent k € [K] has access to a generative model, and generates a new sample
Sf(saa) NP('lsaa) (9)

for every state-action pair (s,a) € S x A independently at every iteration t. Our goal is to learn the optimal
Q-function @Q* collaboratively by aggregating the local Q-learning estimates periodically.



Review: synchronous Q-learning with a single agent. To facilitate algorithmic development, let us
recall the synchronous Q-learning update rule with a single agent. Starting with certain initialization Qg, at
every iteration ¢ > 1, the Q-function is updated according to

Vo) €S X A5 Qulov) = (L= mQea(5:0) 41 (r(5,0) + 1 mxQa(selsa)a)) (10

where s.(s,a) ~ P(:|s,a) is drawn independently for every state-action pair (s,a) € § x A, and 7 denotes
the constant learning rate. The sample complexity of synchronous Q-learning has been recently investigated
and sharpened in a number of works, e.g. Chen et al. (2020); Li et al. (2023); Wainwright (2019a).

3.2 Algorithm description

We propose a natural federated synchronous Q-learning algorithm called FedSynQ that alternates between
local updates at agents and periodic averaging at a central server. The complete description is summarized
in Algorithm 1. FedSynQ initializes a local Q-function as Qf = Qg at each agent k € [K]. Suppose at the
beginning of each iteration ¢ > 1, each agent maintains a local Q-function estimate QF ; and a local value
function estimate V;* |, which are related via

VseS: ViF(s) := max QF (s, a). (11)

acA
FedSynQ proceeds according to the following steps in the rest of the t-th iteration.

1. Local updates: Each agent first independently updates all entries of its Q-estimate QF _; to reach some
intermediate estimate following the update rule:

V(s,a) €S x A Qi (s,0) = (1=n)Qf 1(s,a) + 1 (r(s,a) + V24 (57(s,a))) (12)

where s¥(s, a) is drawn according to (9), and 1 > 0 is the learning rate.

2. Periodic averaging: These intermediate estimates will be periodically averaged by the server to form the
updated estimate Qf at the end of the t-th iteration. Formally, denoting 7 > 1 as the synchronization
period, it follows

+ Zle iné(s,a) if t =0 (mod 7)

13
Qf_l (s,a) otherwise (13)
2

V(s,a) e Sx A: Qf(s,a){

Denoting the number of total iterations by 7', the algorithm outputs the final Q-estimate as the average of
all local estimates, i.e. Qr = % ok Q%. Without loss of generality, we assume the total number of iterations
T is divisible by 7, where Cioung = T'/7 is the rounds of communication.

Algorithm 1: Federated Synchronous Q-learning (FedSynQ)

1: inputs: learning rate 7, discount factor 7, number of agents K, synchronization period 7, number of
iterations 7.

2: initialization: Qf = Qg for all k.

3: fort=1,---,T do

4. for k € [K] do

5: Draw sf(s,a) ~ P(-|s,a) for all (s,a) €S x A.
6: Compute Qf_% according to (12).

7: Compute QF according to (13).

8: end for

9: end for

10: return: Qr = % > Q.




3.3 Performance guarantee

We are ready to provide the finite-time convergence analysis of Algorithm 1.

Theorem 1 (Finite-time convergence of FedSynQ). Consider any given § € (0,1) and € € (0, ﬁ] Suppose
that the initialization of Algorithm 1 satisfies 0 < Qo < ﬁ, and the synchronization period T obeys
1 1-— 1

There exist some sufficiently large constant cr > 0 and sufficiently small constant ¢, > 0, such that with
probability at least 1 — 4, the output of Algorithm 1 satisfies ||Qr — Q|00 < €, provided that the sample size
per agent T and the learning rate n satisfy

er 9 wao.  |SI|AIKT
>_ 4 _ Lol L bnlntntl
T ooty (los((1— 7)) log ==
1

log SIAIKT

(14b)

n= eyl (1—7)'e (14c)

Theorem 1 suggests that to achieve an e-accurate Q-function estimate in an ¢, sense, the number of
samples required at each agent is no more than

~ S|l A
5( sl
K1)
given that the agent collects |S||.A| samples at each iteration. A few implications are in order.

Linear speedup. The sample complexity exhibits an appealing linear speedup with respect to the number
of agents K. In comparison, the sharpest upper bound known for single-agent Q-learning (Li et al., 2023) is
0] (%), which matches with its algorithmic-dependent lower bound when ¢ € (0, 1). Therefore,
our federated setting enables faster learning as soon as the number of agents satisfies

1

K= (I —~)max{l,e}

up to logarithmic factors. When K = 1, our bound nearly matches with the lower bound of single-agent
Q-learning up to a factor of 1/(1 — v), indicating its near-optimality.

Communication efficiency. One key feature of our federated setting is the use of periodic averaging with
the hope to improve communication efficiency. According to (14a), our theory requires that the synchroniza-
tion period 7 be inversely proportional to the learning rate 7, which suggests that more frequent communi-
cation is needed to compensate the discrepancy of local updates when the learning rate is large. To provide
insights, consider the parameter regime when K 2 ﬁ and £ < ﬁ Plugging the choice of the learning

rate (14c) into the upper bound of 7 in (14a), we can choose the synchronization period as 7 < m

up to logarithmic factors, leading to a communication complexity no larger than Cioyng = % < %, which
is almost independent of the final accuracy e.

4 Federated asynchronous Q-learning: algorithm and theory

In this section, we study the sample complexity of federated asynchronous Q-learning, where K agents sample
local trajectories using different behavior policies. In particular, we propose a novel aggregation algorithm
FedAsynQ-ImAvg that leverages the heterogeneity of these policies and dramatically improves the sample
complexity.



4.1 Problem setting

In the asynchronous setting, each agent k € [K] independently collects a sample trajectory {s¥, af ¥},
from the same underlying MDP M following some stationary local behavior policy 7 such that

a’? NW};("S?% Tf :r(sf,af), Serl NP('|S§7G§) (15)
for all £ > 0, where the initial state is initialized as 30 for each agent k. Note that the behavior policies
{ﬂ'b }re[k] are heterogeneous across agents and can be different from the optimal policy 7*. Contrary to
the generative model considered in the synchronous setting, the samples collected under the asynchronous
setting are no longer independent across time but are Markovian, making the analysis significantly more
challenging. The sample trajectory at each agent can be viewed as sampling a time-homogeneous Markov
chain over the set of state-action pairs. Throughout this paper, we make the following standard uniform
ergodicity assumption (Li et al., 2021b; Paulin, 2015).

Assumption 1 (Uniform ergodicity). For every agent k € [K|, the Markov chain induced by the stationary
behavior policy wF is uniformly ergodic over the entire state-action space S x A.

Uniform ergodicity guarantees that the distribution of the state-action pair (s, a¢) of a trajectory con-
verges to the stationary distribution of the Markov chain geometrically fast regardless of the initial state-
action pair, and eventually, each state-action pair is visited in proportion to the stationary distribution.

Key parameters. Two important quantities concerning the resulting Markov chains will govern the per-
formance guarantees. The first one is the stationary state-action distribution ub, which is the stationary

distribution of the Markov chain induced by mf over all state-action pairs; the second one is ¥, , which is
the mixing time of the same Markov chain given by
1
k. :=min {t ‘ max  d S0, @ } 16
mix (50,a0) €S X A TV( ( | 0 0) iu’b) 4 ( )

where PF(-|sg,ag) denote the distribution of (ss,a;) conditioned on (sg,ag) for agent k, and dyv(-,-) is
the total variation distance. Further, let the largest mixing time of all the Markov chains induced by local
behavior policies be

tM = max k. (17)
ke[K]

In words, tm=* approximately indicates the time that the transition of every agent starts to follow its stationary
distribution regardless of its initial state.
Let us further define a few key parameters that measure the coverage and heterogeneity of the stationary
state-action distribution puff across agents. First, define
‘= min , where k=  min k(s a). 18
Mmin ke[K] :u’mm Hmin (s,a)GSXAMb( ) ( )
State-action pairs with small stationary probabilities are visited less frequently, and therefore can become
bottlenecks in improving the quality of Q-function estimates. Clearly, pimin < m In addition, denote

o= e w

In words, ptavg is the minimum entry of the average stationary state-action distribution of all agents. The
difference between ftayg and pmin stands out when an individual agent fails to cover the entire state-action
space. While fimin = 0 in such a case, pa.g can still be positive as long as each state-action pair is explored
by at least one of the agents, i.e., Zle pE(s,a) > 0. Note that fiayg is always greater than or equal to fimin
since

. 1 k . k
avg — - ) > y = HUmin- 20
Hag = Sesxa K kZ:le(S @) (s.0)E8 X A kE[K] Mo (s, a) = p (20)



Parameter server

Qt(s7 a) = Z af(s, a)Qf_%(s, a)

k=1
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Figure 1: Federated asynchronous Q-learning with K agents and a parameter server. Each agent k performs
7 local updates on its local Q-table along a Markovian trajectory induced by behavior policy f and sends
the Q-table to the server. The server averages and synchronizes the local Q-tables every 7 iterations. For
importance averaging, the agents additionally send the number of visits over all the state-action pairs within
each synchronization period, which is not pictured.

Last but not least, we measure the heterogeneity of the stationary state-action distributions across agents
by

k
Chet '= max max M (21)

Re[K] (s,a)eSxA LSV k(s )’

which satisfies 1 < Cher < min{K, 1/ptavg}, and in particular, Cher = 1 when pff = p;, are all equal.

Review: asynchronous Q-learning with a single agent. Recall the update rule of asynchronous Q-
learning with a single agent, where at each iteration ¢ > 1, upon receiving a transition (s;_1,a;—1,s¢), the
Q-estimate is updated via

Q:(s,a) = { (1 =m)Qt-1(s,a) + 1 (r(s,a) + ymaxayea Qr—1(st,a’)), if (s,a) = (s¢-1,a:-1), (22)

Q+(s,a) otherwise,

where 7 denotes the learning rate and V; is defined in (11). The sample complexity of asynchronous Q-
learning has been recently investigated in Li et al. (2023, 2021b); Qu and Wierman (2020).

4.2 Algorithm description

Similar to the synchronous setting, we describe a federated asynchronous Q-learning algorithm, called
FedAsynQ (see Algorithm 2), that learns the optimal Q-function by periodically averaging the local Q-
estimates with the aid of a central server. See Figure 1 for an illustration. Inheriting the notation of Q¥ and
V[ from the synchronous setting (cf. (11)), FedAsynQ proceeds as follows in the rest of the ¢-th iteration.

1. Local updates: Each agent k samples a transition (sf_;,af ;,7F | s¥) from its Markovian trajectory
generated by the behavior policy ﬁf according to (15) and updates a single entry of its local Q-estimate

Qf—f

Q% (s,a) = {(1 —mQF_1(s,a) +n(rfy + 9V (sF))  if (s,a) = (sf_y,af ) , (23)

7 fol (s,a), otherwise
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Algorithm 2: Federated Asynchronous Q-learning (FedAsynQ)

1: inputs: learning rate {1}, discount factor v, number of agents K, synchronization period 7, total
number of iterations 7.

2: initialization: Qf = Q, for all k € [K].
3: fort=1,---,T do
4:  for k € [K] do
5: Draw action af_; ~ mf(sf_,), observe reward rf_; = r(sf_;,aF ), and draw next state
sk~ P(-|sF ,,ak )
¢ t—110¢—1)-
6: Compute Qf_l according to (23).
2
7: Compute QF according to (24).
8: end for
9: end for

10: return: Qr(s,a) = Zszl ok (s,a)Qk(s,a), for all (s,a) € S x A.

where 7 denotes the learning rate.

2. Periodic averaging: The intermediate local estimates will be averaged every 7 iterations, where 7 > 1
is the synchronization period. Here, we consider a more general weighted averaging scheme, where the
updated estimate QF is:

Zszl ak (s, a)Qf_l (s,a) ift=0 (mod 7)

; 24
Qf_ 1(s,a) otherwise (24)
2

V(s,a) e S x A: Qf(S,a):{

where af = [aF(s,a)]ses.ac4 € [0,1]I5I14 is an entry-wise weight assigned to agent k such that

K
V(s,a) e S x A: Zaf(s,a):l.
k=1

After a total of T iterations, FedAsynQ outputs a global Q-estimate Qr(s,a) = Zszl ak.(s,a)Qk(s,a) for
all (s,a) € S x A. In the subsections below, we provide two possible ways (equal and importance weighting)
to choose af and their corresponding sample complexity analyses.

4.3 Performance guarantees with equal averaging
We begin with the most natural choice, which equally weights the local Q-estimates, that is,

1
ozf(s, a) =

. 25
N (25)
We call the resulting scheme FedAsynQ-EqAvg, which is also analyzed in Khodadadian et al. (2022). We
have the following improved performance guarantee in the next theorem.

Theorem 2 (Finite-time convergence of FedAsynQ-EqAvg). Consider any given § € (0,1) and € € (0, ﬁ]

Suppose that the initialization of FedAsynQ-EqAvg satisfies 0 < Qg < ﬁ There exist some sufficiently
large constant cp > 0 and sufficiently small constant c, > 0, such that with probability at least 1 — ¢, the
output of FedAsynQ-EqAvg satisfies ||Qr — Q*||co < &, provided that the synchronization period T, the sample

size per agent T, and the learning rate n satisfy

R (5 R |
<7< = S
TO_T_4nm1n{ 1 ’K}’ (26a)
Chet 9 2 |S||A|T? K
T> 4Ty ) (log((1 — log (TK)log 122 = 26b
> cr (Kuavg(1_7)5€2+ o)(og(( 7)¢€))" log (T'K) log 5 (26b)

11



S m_n{K(lfy)‘ls2 77} 1
= 1 > 710 )
K Chet log (TK) log W

(26¢)

2176tm 4|8||A|T? in{1—, K1} .
where 7o = == log 8K log %, Ty = m, and ny = %, independent of .
avg avg mix

Theorem 2 implies that to achieve an e-accurate estimate (in the £, sense), the sample complexity per
agent of FedAsynQ-EqAvg is no more than

~ C’het
© <Kuavg(1 = ww)

for sufficiently small e, when the burn-in cost Ty — representing the impact of the mixing times — is
amortized over time. A few implications are in order.

Linear speedup without full coverage. The sample complexity of FedAsynQ-EqAvg shows linear speedup
with respect to the number of agents, which is especially pronounced when the local behavior policies are
similar, i.e., Chet = 1. Notably, the guarantee holds as long as all agents collectively cover the entire
state-action space (i.e., ftayg > 0), unveiling the benefit of heterogeneity in local behavior policies. This is
surprising in view of the convergence guarantee provided in Khodadadian et al. (2022), which requires each
agent visits the entire state-action space (i.e., gmin = 0). Moreover, our sample complexity has sharpened

dependency on nearly all problem-dependent parameters compared to the bound 9] (#ﬁv)%z) obtained
in Khodadadian et al. (2022) by at least a factor of

min

ﬂavg|8|2 > |S|5|A|3 )
Chetbmin(1=7)* = (1 =7)*

For K = 1, the bound nearly matches with the sharpest upper bound 6<m> for the single-agent
case (Li et al., 2023) up to a factor of 1/(1 — v), when ignoring the burn-in cost.

Communication efficiency. To provide further insights on the communication complexity of FedAsynQ-
EqAvg, consider the regime when ¢ is sufficiently small and the number of agents is sufficiently large such
that K = ﬁ By plugging the choice of the learning rate (26¢) into the upper bound of 7 in (26a), we can

select the synchronization period as large as 7 < m up to logarithmic factors, which ensures the

communication complexity Cyound = T'/7 is no more than 6(%)

4.4 Performance guarantees with importance averaging

In the asynchronous setting, heterogeneous behavior policies induce local trajectories that cover the state-
action space in a non-uniform manner. As a result, agents may update the Q-estimate for a state-action
pair at different frequencies, resulting in noisier Q-estimates of state-action pairs that an agent rarely visits.
Equally-weighted averaging of such local Q-estimates is not efficient, because the convergence speed to the
optimal Q-function for each state-action pair is bottlenecked with the slowest converging agent that visits it
least frequently. This is highlighted by the impact of the heterogeneity factor Che in the sample complexity
of FedAsynQ-EqAvg, which scales linearly with Cle, implying that increased heterogeneity among agents’
trajectories may impede the convergence. For example, if only one agent exclusively visits a certain state-
action pair (s,a) with probability one, while other agents never visit that particular state-action pair, the
heterogeneity factor becomes Chet = K when K < 1/p,.g, canceling out the linear speedup.

Our key idea to prevent such inefficiency is to increase the contribution of frequently updated local Q-
estimates, which are likely to have smaller errors. By assigning a weight inversely proportional to the error of
the corresponding local estimate, we can balance the heterogeneous training progress of the local estimates
and obtain an average estimate with much lower error. Combining this idea with the property that the local

12



error decreases exponentially with the number of local visits, we propose an importance averaging scheme
FedAsynQ-ImAvg with weights given by

(1 — T})_Ntkf-r.t(sva)
25:1(1 _ n)—N,f‘iT,t(sya)

for all (s,a) € S x A and k € [K], where Nf* _,(s,a) represents the number of iterations between [t — 7,1)
when the agent k visits (s,a). The weights in (27) can be calculated at the server based on the number of
visits to each state-action pair by the agents in one synchronization period. Therefore, each agent needs to
send its Ntk;ryt(s, a) for each (s,a) along with its local Q-estimate, and FedAsynQ-ImAvg incurs twice the
communication cost of FedAsynQ-EqAvg per iteration.

We have the following theorem on the finite-time convergence of FedAsynQ-ImAvg.

af(s, a) =

(27)

Theorem 3 (Finite-time convergence of FedAsynQ-ImAvg). Consider any given § € (0,1) and ¢ € (0, ﬁ]
Suppose that the initialization of FedAsynQ-ImAvg satisfies 0 < Qo < ﬁ, and the synchronization period T
obeys

TSjmin{M 1}. (28a)

There exist some sufficiently large constant cr > 0 and sufficiently small constant ¢, > 0, such that with
probability at least 1 — §, the output of FedAsynQ-ImAvg satisfies ||Qr — Q*||oo < €, provided that the sample
size per agent T and the learning rate n satisfy

|S||AIT?K

5 , (28b)

T>cr ( ! 5+ fo) (log((1 —v)%¢))? log (TK) log

K ptavg(1 — )%

n:cnmin{K(1—7)452,ﬁ0} L

log (TK) log w 7

(28¢)

where Ty = and 7jp = min {t%, 1—7, K*I}, independent of €.

mix

N S
.U‘SVg(l _7)770

Theorem 3 implies that to achieve an e-accurate estimate (in the £, sense), the sample complexity per
agent of FedAsynQ-ImAvg is no more than

~ 1
© (Kuavg(l - 7)562>

for sufficiently small ¢, when the burn-in cost To — representing the impact of the mixing times — is
amortized over time. A few implications are in order.

Linear speedup without the curse of heterogeneity. The sample complexity of FedAsynQ-ImAvg is
better than that of FedAsynQ-EqAvg, since it no longer depends on Chey which can be as large as 1/ftayg.
FedAsynQ-ImAvg not only overcomes potential insufficient local coverage by exploiting the complementary
coverage of agents’ behavior policies, but also achieves linear speedup with respect to the number of agents
without suffering from the potential performance degradation due to the associated statistical heterogeneity
as in FedAsynQ-EqAvg. In fact, the performance of FedAsynQ-ImAvg matches with centralized Q-learning as
if we collect and process all data trajectories at the central server, up to the burn-in cost and logarithmic
factors.

Communication efficiency. To provide further insights on the communication complexity of FedAsynQ-
ImAvg, consider again the regime when ¢ is sufficiently small and K 2> ﬁ To minimize the communication

frequency while preserving the sample efficiency, we again plug the choice of the learning rate (28¢) into
(28a) and select the synchronization period as large as 7 < m up to logarithmic factors. Then, this

ensures the communication complexity Cyound = 7'/7 is no more than 6(%)
ave
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5 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the performance of the asynchronous
Q-learning algorithms (FedAsynQ-EqAvg and FedAsynQ-ImAvg).

Experimental setup. Consider an MDP M = (S, A, P,r,~) described in Figure 2, where S = {0,1} and
A ={1,2,--- ,m}. The reward function r is set as r(s = 1,a) = 1 and r(s = 0,a) = 0 for any action
a € A, and the discount factor is set as v = 0.9. We now describe the transition kernel P. Here, we set
the self-transitioning probabilities p, := P(0]0,a) and g, := P(1]1,a) uniformly at random from [0.4, 0.6] for
each a € A, and set the probability of transitioning to the other state as P(1 — s|s,a) = 1 — P(s|s,a) for
each s € S.

We evaluate the proposed federated asynchronous Q-learning algorithms on the above MDP with K
agents selecting their behavior policies from II = {m1, ma, -+, 7y}, where the i-th policy always chooses
action ¢ for any state, i.e., m;(i|s) = 1 for all s € S. Here, we assign m; to agent k € [K] if i = k (mod m).
Note that if an agent has a behavior policy m;, it can visit only two state-action pairs, (s = 0,a = 4) and
(s = 1,a = 1), as described in Figure 2. Thus, each agent covers a subset of the state-action space, and
at least K = m agents are required to obtain local trajectories collectively covering the entire state-action
space. Under this setting with m = 20, we run the algorithms for 100 simulations using samples randomly
generated from the MDP and policies assigned to the agents. The Q-function is initialized with entries
uniformly at random from (0, ﬁ] for each state-action pair.

a=1 a=1i a=m
P p: = P(0]0,1) Pm
1-p 1—p; 1—pm

1-¢q, = 1—gq; = 1-qm

o2 q; = P(1|1,1) m

The state-action coverage of m;
{s=0,a=10,(s=1a=10)}

Figure 2: An illustration of the constructed synthetic MDP M. The red arrows represent transitioning paths
when action a = i is taken in s = 0 and s = 1. A trajectory induced by 7;, which executes only action i for
any state, can cover only two state-action pairs, (s =0,a =14) and (s = 1,a = 3).

Faster convergence of FedAsynQ-ImAvg. Figure 3 shows the normalized Q-estimate error (1 —)||Qr —
Q|| with respect to the sample size T', with K = 20 and 7 = 50. Given the trajectories of agents collectively
cover the entire state-action space, the global Q-estimates of both FedAsynQ-EqAvg and FedAsynQ-ImAvg
converge to the optimal Q-function, yet at different speeds. Although FedAsynQ-EqAvg converges in the end,
we can see that it converges much slower compared to FedAsynQ-ImAvg, because each entry of the Q-function
is trained by only one agent while the other m — 1 agents never contribute useful information. However, the
vacuous values of the m — 1 agents significantly slow down the global convergence under equal averaging.

Convergence speedup. Figure 4 demonstrates the impact of the number of agents on the convergence
speed of FedAsynQ-EqAvg and FedAsynQ-ImAvg. It can be observed that there is indeed a speedup in terms of
the number of agents K with respect to the squared /., error ||Qr — Q*|| %2, which is poised to scale linearly
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0.200 —@— FedAsynQ-EqAvg (K =20, n =0.2)
FedAsynQ-ImpAvg (K =20, n =0.05)

0.175 4

0.150

0.125 4

0.100 4

Normalized /4, error
(1 =NQr — Q"ll)
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Number of samples (T')

Figure 3: The normalized ¢ error of the Q-estimates (1 — 7)||Qr — Q*||s Wwith respect to the number of
samples T' for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with K = 20 and 7 = 50. Here, the learning rates
of FedAsynQ-ImAvg and FedAsynQ-EqAvg are set as n = 0.05 and n = 0.2, where each algorithm converges
to the same error floor at the fastest speed, respectively.

with respect to the number of agents. In particular, the speedup is more rapid with FedAsynQ-ImAvg as K
increases, while it increases much slower with FedAsynQ-EqAvg. This shows that FedAsynQ-ImAvg achieves
much better convergence speedup in terms of the number of agents.

—@— FedAsynQ-EqAvg
FedAsynQ-ImpAvg

2.5

)

-2
00

(1Qr — |l

The inverse squared £, error

T T T T T T T T T
20 30 40 50 60 70 80 90 100

Number of agents (K)

Figure 4: The inverse squared /o, error ||Qr — Q*||52 with respect to the number of agents K =
20,40, 60, 80,100 for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with T'= 300 and 7 = 50.

Communication efficiency. Figure 5 demonstrates the impact of the synchronization period 7 on the
convergence of FedAsynQ-ImAvg and FedAsynQ-EqAvg. With frequent averaging (7 = 1), FedAsynQ-ImAvg
slightly outperforms FedAsynQ-EqAvg, but there is no significant difference because the heterogeneity between
local Q-functions after just one local update is very small. The performance of FedAsynQ-EqAvg degrades as
we increase 7 since FedAsynQ-EqAvg cannot cope with the increased heterogeneity between local Q-estimates
as we increase the number of local steps. On the other end, the performance of FedAsynQ-ImAvg improves
first (i.e., 7 = 10, 25, 50) as it balances the heterogeneity much better than FedAsynQ-EqAvg, but drops
later if 7 is too large (i.e., 7 = 75, 100) due to the high variance of the averaged Q-estimates.
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Figure 5: The normalized £, error of the Q-estimates (1—7)||Q1 — Q*|| o With respect to the synchronization
period 7 = 1,10, 25,50, 75, 100 for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with K = 20 and T' = 300.

6 Analysis outline

Let the matrix P € RISIMIXIAl represent the transition kernel of the underlying MDP, where P(s,a) =
P(-|s,a) is the probability vector corresponding to the state transition at the state-action pair (s,a). For
any vector V € RISl we define the variance parameter Var, (V) with respect to the probability vector
P(s,a) as
2

Var, (V) == Egp(|s,a)[V(s) = P(s,a)V]” = P(s,a)(V o V) = [P(s,a)V] o [P(s,a)V]. (29)
Here, o denotes the Hadamard product such that aob = [a;b;]?_ for any vector a = [a;]?_1,b = [b;]7_, € R™.
With slight abuse of notation, we shall also assume V* € RISI VF € RISI Q* ¢ RISIAIL QF ¢ RISIAL
Qerl e RISIAI and 7 € RISIAI represent the corresponding functions in the matrix/vector form.

2

6.1 Basic facts

We first state a few basic facts that hold both for the synchronous and the asynchronous settings. It is easy
to establish, by induction, that all iterates satisfy for all 1 < k < K and ¢ > 0 that
0<Q’f<L 0<VE< 1 (30)
= t 1 _ 'Y, = t = 1 . ,yv

as long as 0 < Qo = QF < ﬁ; see a similar argument, e.g., in Li et al. (2023, Lemma 4). In addition,
observe that
IVF =Vl < 11QF = Q"o (31)

since

[VE = Voo = max | max Q¥(s. ) ~ max Q" (s,)| < _max |QF(s. )~ Q" (s5,)| < QF = Q.

Letting Q; be the average of the local Q-estimates at the end of the ¢-th iteration, i.e., Q; = % Zszl QFr,
it follows from (13) and (24) that for all ¢ > 0 that

1 & 1 &
_ E_ L k
Q; = K;;:th - K;:th_%. (32)

Denote the error between Q; and Q* by
At = Q* - Qtv
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which is the quantity we aim to control. From (30), it holds immediately that for all ¢ > 0,

1
Apllee < ——. 33
1Al < 7= (33)

Next, we also introduce the following functions pertaining to periodic averaging. For any t,
e define «(t) := 7| £] as the most recent synchronization step until ¢;

e define ¢(t) := [ L] as the number of synchronization steps until ¢.

6.2 Proof outline of Theorem 1

Define the local empirical transition matrix at the t-th iteration P} € {0, 1}ISIAIXISI a5

1

0, otherwise

, if 8’ = sF(s,a)

PF((s,a),s') = { , (34)

then the local update rule (12) can be rewritten as
Qf_% =(1-nQi_,+n (r+ ’VPthtk—l) : (35)

The proof of Theorem 1 consists of the following steps.

Step 1: error decomposition. To analyze the error A;, we first decompose the error into three terms,
each of which can be bounded in a simple form. From (32), it follows that

K K
1 * . (1) 1 * 7 *
A= 2@ -0 1) = 22 (1=-m@Q = QL) +n(Q —r —FVEY)
— k=1
o iR
= (L= mAe g S (PV - PRV
k=1
Y iR
=(1=mA1+05: > (P=POVE +n > PV =VE),
k=1 k=1

where (i) follows from (35), and (ii) follows from Bellman’s optimality equation Q* = r+~yPV*. By recursion
over the above relation, we obtain

t K t K
v —i v —i *
A== Do+nge D (L=m)' " Y (P =POVE 40y (1=n) ™'Y P(V*=VE). (36)
i=1 k=1 i=1 k=1
::Etl ::Etz ::Ef’

Here, the first term E} denotes the initialization error stemming from the disparity between the initial Q-
values and the optimal Q-values, which diminishes exponentially throughout iterations. The second term,
E?, comprises a weighted sum accounting for the difference between the true transition probability and the
realized transition in each iteration, where the difference arises from the randomness of transitions. Lastly,
the final term, E}, represents a weighted sum of value estimation errors from preceding iterations, which
introduces a recursive relation.

Step 2: bounding the error terms. Now, we obtain a bound of each of the error terms in (36) separately.

e Bounding || E}| . Using the fact that all agents start with the same initial Q-values, i.e., Q% = Qo,
the first error term is bounded as follows:

1— t
122 = (1= ) sl < G2 (37)

where the last inequality follows from (33).
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e Bounding ||E?||.. Exploiting conditional independence across transitions in different iterations and
applying Freedman’s inequality (Freedman, 1975), the second error term is bounded using Lemma 1
below, whose proof is provided in Appendix B.1.

Lemma 1. For any given § € (0, 1), the following holds

8 [, JSIAT

2
220, < 1y 2 tos

for all 0 < t < T with probability at least 1 — &, as long as n satisfies n < %(log |SHA|T)

e Bounding ||E}| . For E}, we obtain the following recursive relation using Lemma 2 below, whose
proof is provided in Appendix B.2.

Lemma 2. Let 8 be any integer that satisfies 0 < 8 < ¢(T'). For any given ¢ € (0,1), the following
holds

2y

- 16ynyT —1 2|S||A|IKT
188 < 0=+ BT o BT g1 a8

(1—=7) d L(t)—Br<i<t

for all B <t < T with probability at least 1 — &, as long as n satisfies Tn < 1/2.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together,
for any 87 <t < T, the total error bound can be written in a simple recursive form as follows:

1+~
A < 14+4n(r—1 m Ailloo < m Allso, 39
8 S CHa(tan - 1) maxAdw < ¢+ (F5Y) | max IAd (@9

where in the first inequality we introduce the short-hand notation

41 =n)P" 8y [n . [SIIAIT | 16ynv/T — 2|S||A|KT
= —1 1 4
q T +1_7\/Kog 5 T as ) og PR (40)

and the second inequality follows from the assumption 7 — 1 <

8777
By invoking the recursive relation in (39) L times, where the choices of 5 and L will be made momentarily,

it follows that for any LT <t < T,

L-1 i L
1+~ 1+~
A < E — — m A;
1A:lo = ( 2 ) C+( 2 ) L(t)ng§§i<t|| loc

=0

e (5 ()

where the second line uses the crude bound in (33).
Setting f = {1/ a 2Z)TJ and L = [ % , which ensures LA7T < T, and plugging their choices into
(40) and (41) at t = T, we obtain that

8(1 —n)h™ 16~ n [S|IA|T  32yny/T —1 2|S||A|KT 1+~ L 1
Arlo < + — lo + 1 +
[zl 1—9)? (1=7) K & J (1-7) o8 0 2 1-
32 (=1 n |S|-A[1 |S||A|KT
< 7= _ v T _ L R it bt
e <exp ( B + v log 5 +ynv T — 14/log 5

]
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where the second line follows from

2

(5) = (1-152) <o (-1520) <o (52T,

and the third line follows from the choice of the synchronization period such that

(1—n)PT < exp(—nBr) < exp (—“_W> ,

1 1-— 1
T—1 f;‘ﬁ nlin{égyﬂy, l{_} . (43)

L), we can guarantee that ||Az|s < ¢ if

Thus, for any given ¢ € (0, 7=

T Z cr 210g |S||"4|KT

1
m(log((l —7)%)) 3

9 1

n=cyK (1 =)' — g
" log BSIAIKT

for some sufficiently large cr and sufficiently small c,).

6.3 Proof outline of Theorem 2

For simplicity, we introduce the following notation. Let 24} 0, (8,a) represent a set of iteration indices between

[v1,v2) for some 0 < vy < wy < T where agent k visits (s, a), i.e.,
Uy, 0 (5,0) = {u € [vr,02) = (55, a) = (5,0)},
and N (s,a) denotes the number of visits of agent k on (s, a) during iterations between [v1,2), i.e.,

Ny (5.0) = U, (5, 0)].

V1,02

Define the local empirical transition matrix at the t-th iteration PF € {0, 1}ISIIAIXISI a5

1 if (s,a,8") = (sF_;,af |, sF)
Pk ,a), N — s Wy t—1) %t—15 ¢ 45
e ((5,0),5) {O otherwise (45)
Then the local update rule (23) can be rewritten as
Q" L (s,a) = (1—n)QF ((s,a) +n(rF | +~vPE(s,a)VE ) if (s,a) = (s¥ |,aF ) . 6)
A QF_1(s,a), otherwise

The proof of Theorem 2 consists of the following steps.

Step 1: error decomposition. Consider any 0 <t < T such that t = 0 (mod 7), i.e., t is a synchronization
step. To analyze A, we first decompose the error for each (s,a) € S x A as follows:

A¢(s,a) = (Q*(s,a) — Qf,%(sa a))

I
=|
[~

—
-
|
=
=
Ed
2
0
s
N——
>
T
]
—
\.CIJ
&

K
f)/ k S,a
+ ? Z Z 7’(1 - 77)N”+1‘t( ’ )(P(Sv a) - P?]1,€+1('97a))‘/u]C
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K
l _ Nllf 1,¢(s,a) *x _ 1k
SN N (s a) (v - V), (47)

where we invoke the following recursive relation of the local error at iteration w such that (s,—1,a,-1) = (s, a):
Q*(s,a) = Q4 1 (s,a)
2
(1= m(Q"(s,a) = Qu_1(s,0) + n(Q"(s,0) = r4_y — VP (s, a)V, )
= (1=n)(Q"(5,0) = Qu_1(s,0)) +n(YP(s,a)V* = 7Py (s, a)V, 1)
(1= m(Q*(s,a) = Qu_1(s,@)) + (P (s,a) = Pi(s,a)Vyy +7P(s,a)(V* = VL), (48)

Here, the second equality follows from Bellman’s optimality equation. Denoting

K

1 k s,a
Noan(5:0) 5= 22 S (1= ) Mea () (49)
k=1

for any integer 0 < vq < v < T, we apply recursion to the relation (47) over the synchronization periods,
and obtain

Ay(s,a)
o(t)—1
= H /\h‘n(h-i-l)'r(s?a’) AO(Saa)
h=0
o(t)— o(t)—1 K
+ Z H Negine(sia) | 250 3 n@—m)Veesr GO (P(s a) - Pl (s, @)V

=(h+1) k=luelUy_ 1), (s:a)

d(t)—=1 [ ¢(t)-1

K
fy k s,a * o
3 [T N m | 5305 0 PG v - 1)

=(h+1) k=1ueuf_ (h+1)_,_(s,a)

K
=wou(s,a)Bo(s,a) +7Y D whi(s,0)(P(s,a) = Ply(s,a))Vy
k=1 ueu&t(s,a)

=:Ej(s.a) =:E2(s,a)

K
+yY. Y whsa)Pls,a)(VT =V, (50)

k=1 uelf ,(s,a)

=:E3(s,a)

which is decomposed in a similar manner as (36). Here, we define

B(t)—1
wo,t(s,a) = H A, (h+1)7 (8, @), (51a)
h=0
) $(t)—1
k
wﬁ"t(s,a) = ?77(1 — ) Nut1. @+ (50) H Az (1417 (8, @). (51b)

I=¢(u)+1
We record the following useful lemma whose proof is provided in Appendix C.2.

Lemma 3. Consider integers v1 and vy such that 0 < v; < vy <t < T, where t = 0 (mod 7), and a
state-action pair (s,a) € S x A. Suppose that nt < 1. The parameters defined in (51) satisfy

Avy (8, 0) < exp ( Z S ) , (52a)
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wo(s,a) + Z Z wit(s,a) =1, (52b)

EI/{O +(s,a)

K K
o> whis,a)<exp (—27}( ZN;’f/T,t(s,@) ;YOS <o), (52¢)
k=1

k= 1u61/{0 win(8,0)

K
YooY Widsa)’<

k=1 uEZ/{(’fyt(s,a)

=) ¥

(52d)

Step 2: bounding the error terms. Here, we derive the bound of the error terms in (50) separately for
all the state-action pairs (s,a) € § x A.

e Bounding |FE}(s,a)|. Using the initialization condition that Qo(s,a) = Qf(s,a) for every agent
k € [K], we bound the first term for any (s,a) € S x A as follows:

N M) 2w ¢(s,a) () 2 avel
B (50 < s, ) ([ Qull + Q") £ 22000 2o (sl sy

where (i) holds because ||Qo|loos [|@*]loo < m (cf. (30)) and (ii) follows from the fact that

K
wo,t(s,a) < exp ( Z (s,a) ) < exp <_77,u;,£_,;t> ’ (54)

where the first inequality holds according to (52a) of Lemma 3, and the last inequality follows from
the fact that Zszl N§ (s a) > % for all (s,a,k,h) € S x A x [K] x [T] at least with probability
1 — 4 according to Lemma 10 and the union bound, as long as t > ty,.

e Bounding |E?(s,a)|. By carefully treating the statistical dependency via a decoupling argument
and applying Freedman’s inequality, we can obtain the following bound, whose proof is provided in
Appendix C.3.

Lemma 4. For any given 6 € (0, 1), the following holds for any (s,a) € Sx A and 1 <t <T:

2
1) o SIATE )

241
|Et2(8 S 7 B \/Chem log

ith probability at least 1—46, as | >ty and 3 < n < mi {L 1 1
with prodaduity at teas ; ASLONG AST Z lth GNG 75 = 7 S MDY 1675 7R 128K Chet log (T K) log ASIAITZK

e Bounding |E}(s,a)|. For E, we can obtain the following recursive relation, whose proof is provided
in Appendix C.4.

Lemma 5. Let 8 be any integer that satisfies 0 < 8 < ¢(T). For any given ¢ € (0,1), the following
holds

2y MaveBT | 8yyT -1 [ 2AS[AITK  1+9
E3 < =0 _ g 1
B (s, @)l < 7= exp ( s )T T, VT T T s

||AhTHOO)

(56)

for all BT <t < T with probability at least 1 — 9§, as long as BT >ty and n < mln{ 477 , 2r
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Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together,
for any 7 <t < T, the total error bound can be written in a simple recursive form as follows:

1+~

A < A
A <0+ 5T max Al (57
where we define
4 v 7241 C 4 T2K 8 -1 2 TK
b e [ MHaBT ’y\/ et o (71c) log USIATPK | 8ymvT =T Jy 2ASIAITE
L=y 8 0 1—7 1)
(58)

Then, by invoking the recursive relation for L; times, where the choices of 8 and L; will be made
momentarily, it follows that for any L1087 <t < T,

Li—1 ! Ly =

1+~ L+ 2 Lty
Al < 17, (LY Airlloo < — 0+ | —L ; 59
1Al < ( 2 > +( 2 ) o(t)—BLEISo(t)— H oo < 11—~ ( +( 2 (%)

1=0
where the last inequality follows from (33).

Setting 8 = {j / %J and L; = E 7?5775 , which ensures L, 87 < T, and plugging the choices
into (58) and (59) at t = T, we obtain

nHavgB
o _sew (-2 144817 \/Cheml ) 1og USIAITK
YR T
L 1697 1 2\S||A\TK+ 2 1+7 L
Tz Vs 1~
1- av, T e 2
.16 Cexp (- (1 — ) paven 144817 \/ch N g (TK) log HSIAITE
(1-—7) 8 5
16yny/T— 1 1 2\S||A\TK
(1—y2 V'
14497 uav C . 4|S||AT2K
L (exp (— o ) Chel o (7.1 10g WA ) (60)

where the second line follows from

exp (_nﬂaég67> < Xp< Navgn )
Ly
1 1-— 1-— el
(22)" = (s- 27) <o (1570) o0 <_<1M7> |

and the third line follows from the choice of the synchronization period such that
1 1-— 1
tth§7'§4nmin{’y } (61)

Thus, for any given ¢ € (0, ﬁ], we can guarantee that [|Ap|le < e if

4|S||AIT?K 1 Chet tmax
T > er(log((1 —7)2%€))?log (TK) log — 7=~ mix
> cr(log((1 —v)%¢))? log (TK) log 5 ooe K= )72 (1 = 7) min{1 =7, K1

2R\ )42 o 1
n=cy <10g (TK)log 4|S|“;l|TK> min { K(lc 7)*e Hove mmf;}nax v, K }}
het

mix

for some sufficiently large cr and sufficiently small ¢,,.
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6.4 Proof outline of Theorem 3
The proof of Theorem 3 consists of the following steps.
Step 1: error decomposition. Consider any 0 < ¢ < T such that ¢ = 0 (mod 7), i.e., t is a synchronization

step. To analyze A, invoking the recursive relation of the local error (cf. (48)), we first decompose the error
for each (s,a) € S x A as follows:

k=1
K
= (Z ok (s,a)(1 —n)Ni=rels “)> A, (s,a)
k=1
K
+9Y af(s,a) Y0 g =N (P(s,a) - Py (s,a)) VY
k=1 ueUy _,(s,a)

K
k *
+y ) ai(sa) Y =N O P(s ) (V- V)
k=1

uelf__ (s,a)

K
- = N o) A (s,a)
D= 1(1 — ) e

—N’t (s,a)
77 1 — 7’] t—7,u+1
iy > U= 7o p a) — PR, (s, 0)VE

_Nk s,
™ oy T (L) Vo)

1 — 7Ntk—r,u+1(sva)
+WZ 3 n(l = n) : P(s,a)(V* — V), (62)

- k Ss,a
k=lueul _,(s.a) Zk’ ((L=n) Nemru(59)

where the last line uses the definition of af(s,a) in (27). Denoting
~ K
>\’U1,’L)2 (S7a) = (s,a)
S =¥

for any integer 0 < vy < vy < T, we apply recursion to the relation (62) over the synchronization period,
and obtain

(63)

Ai(s,a)

o(t)—1

= H XhT,(h-i—l)T(S?a’) A0(57a)
h=0

d(t)—-1 [ ¢(H)-1

77(1 — n)_N}}fr,u+1(sva) & k
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K i, (het )7 (5
h=0 I=(h+1) k=1uecuk (s,a) Zk’:l(l -n hr ()
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— ) NVirus1(s,0)
+ Z T S te 3D ) 2o b ey - v
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K
Y. Y @hlsa)Pls,a)(VF = V), (64)

k=lueuy ,(s,a)

=:E}(s,a)
which is again decomposed similarly as (36). Here, we define

B(t)—1

Gors:a) = I Mnrurn(s,a), (65a)
h=0
—-Nk s,a o(t)—1
~ 77(1 — T]) N¢(u)7.u+1( s )
@y (s, a) = % Yy oa) H Air i1y (s,a) | - (65b)
Ek’:1(1 — 77) d(u)T,(p(u)+1)7\7? W41

We record the following useful lemma whose proof is provided in Appendix C.5.

Lemma 6. Consider any integers 0 < v1 < vo < t < T where t = 0 (mod 7) and any state-action pair
(s,a) € S x A. Suppose that n < 1, then the parameters defined in (65) satisfy

1 3
3K e (8’ a) = K7 (663)
Go.4(s,a) < (1 — )% Tica Vo), (66b)

K
Wo.t(s,a) Z Z (.T)ﬁ’t(s,a) =1, (66¢)

k=1 GMOt(S a)

K
SN BE(sa) < (1-p)F NG9 yo < i < (), (66d)
k=1 Z/{O,h,_r(s,a)

K 6n
~k 2
oY @hisa)’ < (66¢)

k=1 uelf ,(s,a)

Step 2: bounding the error terms. Here, we derive the bound of each error term in (64) separately for
all the state-action pairs (s,a) € S x A.

e Bounding |E](s,a)|. Using the initialization condition that Qq(s,a) = Qf(s,a) for every client

k € [K], we bound the first term for any (s,a) € S x A as follows:

~ N () 200 () 2 1K a2 )
B} (s,0)] < Bo.(IQolloe + 1Q% 1) < 1_(”; < m(kn)fmﬂo* )< ﬁufn)iﬂwa
(67)
where (i) holds because ||Qoloo, [|Q*|loo < f (cf. (30)), (ii) follows from (66b) of Lemma 6, and (iii)
holds for all (s,a,t) € S x A x [T] with probability at least 1 — ¢ according to Lemma 10, as long as

U2 teh.

e Bounding |E?(s,a)|. By carefully treating the statistical dependency via a decoupling argument
and applying Freedman’s inequality, we can obtain the following bound, whose proof is provided in
Appendix C.6.

Lemma 7. For any given ¢ € (0, 1), the following holds for any (s,a) € Sx A and 1 <t <T:

2
2064y \/nlog( K)log4|8|\¢§|TK

|Et2(s,a)’ <

with probability at least 1 — 20, as long as

3 K 1
—<n< min{ }
T 167" 256 1og (TK) log w 34816tmalog (8K) log ASLAT® ‘;‘sz
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e Bounding |E}(s,a)|. For E}, similarly to Lemma 5, we can obtain the following recursive relation,
whose proof is provided in Appendix C.7.

Lemma 8. Let 8 be any integer that satisfies 7" < B < @(T). For any given § € (0,1), the following
holds

201 — )5 8777\/7 T g 2S[ATK | 14+

A T |[00) 69
1—7v 1—7 9 2 ¢(t)fﬁr£f?§¢(t)*1” wl (69)

|EP(s,a)| <
for all pr <t < T with probability at least 1 — 9§, as long as n < mln{ 477 , 2T

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together,
for any 7 <t < T, the total error bound can be written in a simple recursive form as follows:

+
1Al <0+ 57 max A, (70)
¢(t)—B<h<o(t)—1

where we define

~ 4 cavg B 2064 418 T2K 8 — 2|8 TK
G gy, 200 W o (11 1og 15114 G e -
1—7 K é 1— 1)
Then, by invoking the recursive relation for Lo times, where the choices of § and Lo will be made
momentarily, it follows that for any Lofr <t < T,

Lo—1 L2 L
I+9\ 5, (1+~ 2 Lty
1A < I+ Airlle < —— | 6 1 72
[At]loo < E ( ) ( 2 ) ¢(t)fﬁ£n§%};¢(t)—1 [Birfloo = 1—7 ( +( 2 (72

where the last inequality follows from (33).

Setting Ly = H ’(‘ifg and 3 = H %J, which ensures Lo37 < T, and plugging the choices
avg

into (71) and (72) at t = T, we obtain

Havg BT
8(1—n) ™% 4128 4|S[|AIT? K
< STy M g iy g HIAITE
16v7v/7 — 2|S\|A|TK 2 /1 + 7\ "
+ log +
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where the second line follows from

Havg BT V. 1 - av, T
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L2 L2
1 1—~ - T — ) ptavg T
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and the third line follows from the choice of the synchronization period such that

7'§41min{1_ry 1}. (74)

n 4 'K
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Thus, for any given ¢ € (0, ﬁ

we can guarantee that ||Ar|e < e if

), optimizing i and T to make (73) bounded by ¢ and recalling 7 > ti,

4]S||AIT?*K 1 1 tmax 1
T > cr(log((1 — v)%¢))?log (TK) log ————— —— mix
> cr(log((1 —)%e))” log (T'K) log 5 Jlave max K1 -2 (1-7) (1 -y min{l—~ K1}
1 1 1
n=c,min{ K(1 —v)%? , ,
" { ( ) log (TK) log w Havgltn tm2x log (TK) log w

2 —1
=cy <log (TK)log W) min {K(l —7)4e?, tm%ﬂnin {1 — 'y,Kl}}
mix

for some sufficiently large cr and sufficiently small c,,.

7 Discussions

We presented a sample complexity analysis of federated Q-learning in both synchronous and asynchronous
settings. Our sample complexity not only leads to linear speedup with respect to the number of agents,
but also significantly improves the dependencies on other salient problem parameters over the prior art.
For federated asynchronous Q-learning, we proposed a novel importance averaging scheme that weighs the
agents’ local Q-estimates according to the number of visits to each state-action pair. This allows agents to
leverage the blessing of heterogeneity of their local behavior policies and collaboratively learn the optimal
Q-function that otherwise would not be possible, without requiring each individual agent to cover the entire
state-action space. Looking ahead, this work opens up many exciting future directions, some outlined below.

o Improved sample complexity. While our sample complexity bounds are near-optimal with respect to
the size of the state-action space, it is still sub-optimal with respect to the effective horizon length as
well as the mixing time when benchmarking with the sample complexity in the single-agent setting (Li
et al., 2023). It will be interesting to close this gap, and further improve the sample complexity with
variance reduction techniques (Li et al., 2021b; Wainwright, 2019b) in the federated setting.

e Understanding communication asynchrony across agents. As a starting point, our work assumes that all
agents communicate with the server in a synchronous manner to perform periodic averaging. However,
in practical federated networks, some agents might be stragglers due to communication slowdowns,
which warrants further investigation (Kairouz et al., 2021).

e Other RL settings and function approximation. Besides the infinite-horizon tabular MDPs, it will be
of great interest to extend our analysis framework to other RL settings including but not limited to
the finite-horizon setting, the average reward setting, heterogeneous environments across the agents
(Yang et al., 2023), as well as incorporating function approximation.

e Federated offline RL. In many applications, offline RL is attracting a growing amount of interest, which
aims to explore history datasets to improve the learned policy without exploration, e.g. via pessimistic
variants of Q-learning (Shi et al., 2022). It will be appealing to develop federated offline Q-learning
algorithms to enable learning from geographically distributed history datasets.

Acknowledgements

This work is supported in part by the grants NSF CCF-2007911, CCF-2106778, CNS-2148212, and ONR
N00014-19-1-2404 to Y. Chi, NSF-CCF 2007834, CCF-2045694, CNS-2112471, and ONR N00014-23-1-2149
to G. Joshi, and the Hsu Chang Memorial Fellowship at Carnegie Mellon University to J. Woo.
References

Assran, M., Romoff, J., Ballas, N., Pineau, J., and Rabbat, M. (2019). Gossip-based actor-learner architec-
tures for deep reinforcement learning. In Advances in Neural Information Processing Systems, volume 32.

26



Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. (2019). Provably efficient Q-learning with low switching cost.
In Advances in Neural Information Processing Systems, volume 32.

Beck, C. L. and Srikant, R. (2012). Error bounds for constant step-size Q-learning. Systems & control letters,
61(12):1203-1208.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Kone¢ny,
J., Mazzocchi, S., McMahan, B., et al. (2019). Towards federated learning at scale: System design. In
Proceedings of Machine Learning and Systems, pages 374—388.

Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469.

Chen, T., Zhang, K., Giannakis, G. B., and Bagar, T. (2021a). Communication-efficient policy gradi-
ent methods for distributed reinforcement learning. IEEE Transactions on Control of Network Systems,
9(2):917-929.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2020). Finite-sample analysis of contractive
stochastic approximation using smooth convex envelopes. In Advances in Neural Information Processing
Systems, volume 33, pages 8223-8234.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2021b). A Lyapunov theory for finite-sample
guarantees of asynchronous Q-learning and TD-learning variants. arXiv preprint arXiv:2102.01567.

Chen, Z., Zhou, Y., and Chen, R. (2022a). Multi-agent off-policy TDC with near-optimal sample and
communication complexities. Transactions on Machine Learning Research.

Chen, Z., Zhou, Y., Chen, R.-R., and Zou, S. (2022b). Sample and communication-efficient decentralized
actor-critic algorithms with finite-time analysis. In International Conference on Machine Learning, volume
162, pages 3794-3834. PMLR.

Doan, T., Maguluri, S., and Romberg, J. (2019). Finite-time analysis of distributed TD(0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 1626-1635.

Doan, T. T., Maguluri, S. T., and Romberg, J. (2021). Finite-time performance of distributed temporal-
difference learning with linear function approximation. SIAM Journal on Mathematics of Data Science,
3(1):298-320.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley,
T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018). IMPALA: Scalable distributed deep-RL with

importance weighted actor-learner architectures. In International Conference on Machine Learning, pages
1406-1415.

Even-Dar, E. and Mansour, Y. (2003). Learning rates for Q-learning. Journal of machine learning Research,
5(Dec):1-25.

Fan, X., Ma, Y., Dai, Z., Jing, W., Tan, C., and Low, B. K. H. (2021). Fault-tolerant federated reinforcement
learning with theoretical guarantee. In Advances in Neural Information Processing Systems, volume 34,
pages 1007-1021.

Freedman, D. A. (1975). On tail probabilities for martingales. The Annals of Probability, 3(1):100-118.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative dynamic program-
ming algorithms. In Advances in Neural Information Processing Systems, pages 703—710.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018). Is Q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863—4873.

27



Jin, H., Peng, Y., Yang, W., Wang, S., and Zhang, Z. (2022). Federated reinforcement learning with
environment heterogeneity. In International Conference on Artificial Intelligence and Statistics, pages
18-37.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning. Foundations
and Trends®) in Machine Learning, 14(1-2):1-210.

Kearns, M. J. and Singh, S. P. (1999). Finite-sample convergence rates for Q-learning and indirect algorithms.
In Advances in Neural Information Processing Systems, pages 996—1002.

Khodadadian, S., Sharma, P., Joshi, G., and Maguluri, S. T. (2022). Federated reinforcement learning:
Linear speedup under Markovian sampling. In International Conference on Machine Learning, pages
10997-11057.

Li, G., Cai, C., Chen, Y., Wei, Y., and Chi, Y. (2023). Is Q-learning minimax optimal? a tight sample
complexity analysis. Operations Research.

Li, G., Shi, L., Chen, Y., and Chi, Y. (2021a). Breaking the sample complexity barrier to regret-optimal
model-free reinforcement learning. In Advances in Neural Information Processing Systems, volume 34.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2021b). Sample complexity of asynchronous Q-learning:
Sharper analysis and variance reduction. IEEE Transactions on Information Theory, 68(1):448-473.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data. In International Conference on Artificial Intelligence
and Statistics.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In International Conference on Machine
Learning, volume 48, pages 1928-1937. PMLR.

Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electronic Journal of Probability, 20.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley

& Sons.

Qu, G. and Wierman, A. (2020). Finite-time analysis of asynchronous stochastic approximation and Q-
learning. In Conference on Learning Theory, pages 3185-3205. PMLR.

Shen, H., Zhang, K., Hong, M., and Chen, T. (2022). Towards understanding asynchronous advantage
actor-critic: convergence and linear speedup. arXiv preprint arXiw:2012.15511.

Shi, L., Li, G., Wei, Y., Chen, Y., and Chi, Y. (2022). Pessimistic Q-learning for offline reinforcement
learning: Towards optimal sample complexity. In International Conference on Machine Learning, volume
162, pages 19967-20025. PMLR.

Sun, J., Wang, G., Giannakis, G. B., Yang, Q., and Yang, Z. (2020). Finite-time analysis of decentralized
temporal-difference learning with linear function approximation. In International Conference on Artificial
Intelligence and Statistics, pages 4485-4495. PMLR.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Szepesvéari, C. (1998). The asymptotic convergence-rate of Q-learning. In Advances in Neural Information
Processing Systems, pages 1064—1070.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine learning, 16(3):185—
202.

28



Wai, H.-T. (2020). On the convergence of consensus algorithms with Markovian noise and gradient bias. In
Conference on Decision and Control, pages 4897-4902. IEEE.

Wainwright, M. J. (2019a). Stochastic approximation with cone-contractive operators: Sharp ¢».-bounds for
Q-learning. arXiv preprint arXiw:1905.06265.

Wainwright, M. J. (2019b). Variance-reduced Q-learning is minimax optimal. arXiv preprint
arXiw:1906.04697.

Wang, G., Lu, S., Giannakis, G., Tesauro, G., and Sun, J. (2020a). Decentralized TD tracking with linear
function approximation and its finite-time analysis. In Advances in Neural Information Processing Systems,
volume 33.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. (2020b). Tackling the objective inconsistency
problem in heterogeneous federated optimization. In Advances in Neural Information Processing Systems,
volume 33.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279-292.

Wu, Z., Shen, H., Chen, T., and Ling, Q. (2021). Byzantine-resilient decentralized policy evaluation with
linear function approximation. IEEE Transactions on Signal Processing, 69:3839-3853.

Yan, Y., Li, G., Chen, Y., and Fan, J. (2022). The efficacy of pessimism in asynchronous Q-learning. arXiv
preprint arXiw:2203.07368.

Yang, K., Yang, L., and Du, S. (2021). Q-learning with logarithmic regret. In International Conference on
Artificial Intelligence and Statistics, pages 1576-1584. PMLR.

Yang, T., Cen, S., Wei, Y., Chen, Y., and Chi, Y. (2023). Federated natural policy gradient methods for
multi-task reinforcement learning. arXiv preprint arXiv:2311.00201.

Zeng, S., Doan, T. T., and Romberg, J. (2021). Finite-time analysis of decentralized stochastic approximation
with applications in multi-agent and multi-task learning. In Conference on Decision and Control, pages
2641-2646. IEEE.

Zhang, Z., Zhou, Y., and Ji, X. (2020). Almost optimal model-free reinforcement learning via reference-
advantage decomposition. In Advances in Neural Information Processing Systems, volume 33.

A Preliminaries

We record a few useful inequalities that will be used throughout our analysis. To start with, our analysis
leverages Freedman’s inequality (Freedman, 1975), which we record a user-friendly version as follows.

Theorem 4 (Theorem 6 in Li et al. (2023)). Suppose that Y,, = > ;_, X € R, where {Xy} is a real-valued
scalar sequence obeying

X/ <R and E[Xm{xj} ) for all k> 1.

j:j<k:|
Define

Wn = ZEk—l [Xlz] )
k=1

where we write Ex_q for the expectation conditional on {X;} Then for any given o > 0, one has

jii<k:

72/2
P{|Y,| > 7 and W, < 0?} < 2exp (—02_’_27/3) . (75)
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In addition, suppose that W,, < o? holds deterministically. For any positive integer m > 1, with probability
at least 1 — § one has

2
1Y,| < \/Smax{Wn, 2m}1 g7+ 331 g” (76)

Another useful relation concerns the concentration of empirical distributions of uniformly ergodic Markov
chains, which is rephrased from Li et al. (2021b).

Lemma 9 ((Li et al., 2021b, Lemma 8)). Consider any time homogeneous and uniformly ergodic Markov
chain (Xo, X1, Xa,...) with transition kernel P, finite state space X, and stationary distribution p. Let tmix
be the mizing time of the Markov chain and pmin be the minimum entry of the stationary distribution pu.
Consider any 0 < 0 < 1. Foranyx € X, if t > 44‘%""* log 4‘2(‘ for v > u(x), then

)
<.
} ]

Remark 1. Lemma 9 is a slightly generalized version of in Li et al. (2021b, Lemma 8), where the concen-
tration bound is characterized in terms of any given threshold v > u(x), not scaling with the stationary
distribution p(z). It can be shown using the Bernstein’s inequality for Markov chains (Paulin, 2015, Theo-

rem 3.11) in the same manner as Li et al. (2021b, Lemma 8), except that the threshold is set to ”—t instead

w\}—*

DX =} —tu(r)| >

i=1

VyeXx: IP’XI_y{

of £ (‘r . We omit further details for conciseness and refer interested readers to the proof in Li et al (2021b).

In addition, we provide the concentration bound of the total number of visits of multiple agents agents
with independent uniformly ergodic Markov chains, whose proof is provided in Appendix C.1. Denote

2176tmx log 8K log USIAIT® 2176102 log SK log ST
and ty = .

7
/,La\,g(s, CL) Havg ( )

tn(s,a) =

Here, pavg(s,a) = % Zéil pE (s, a) is the average behavior policy over all agents.

Lemma 10. Consider any 6 € (0,1). Under the asynchronous sampling, for any (s,a) € S x A and
0 <u<wv<T such that v — u > tw(s,a), the following holds :

K
1
4(1} —w) K plavg(s,a) < Z (s,a) < 2(v — u)K pavg (s, @) (78)
k=1
with probability at least 1 — W.

B Proofs for federated synchronous Q-learning (Section 3)

Define the following actions

a*(s) = argmax Q*(s,a), af(s) = argmaxQ¥(s,a), a;(s)= argmax— ZQ s, a) (79)

acA acA acA
for any state s € S, which will be useful throughout the proof.

B.1 Proof of Lemma 1

For notation simplicity, let 25 (s, a) :== n(1 —n)*~*(P(s,a) — P¥(s,a))V}¥ |, then the entries of E? = [E2(s,a)]
can be written as

t K
Ezsa 717%217 ) ’Z s, a) Pk(sa Vkl—%zzzf(&a), (80)

i=1 k=1 i=1 k=1
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which we plan to bound by invoking Freedman’s inequality (cf. Theorem 4) using the fact zf(s, a) is inde-
pendent of the transition events of other agents k' # k at ¢ and has zero mean conditioned on the events

before iteration 1, i.e.,

E[zF(s,a)|VE,,..., VL, ... VE, ... Vi =0, VkelK], 1<i<t. (81)

i
Before applying Freedman’s inequality, we first derive the following properties of the variable z¥(s, a).

e First, we can bound

277
t(saa) ke[K],a1<i§t|Zl (Sva)| = ke[K],a1<i§t1](H (570')”1 ” [ (Saa)Hl)” z—lHOO =1 ) (8 )

where the first inequality uses (1 — 7))~ < 1, and the last inequality follows from ||P(s,a)||; < 1,
1P (s, a)ll < 1, and [V, oo < 115 (cf. (30)).

e Next, we have

E[(2F(s,a))? ViR, .o Vb g, VLV

Var(2F(s,a)|Vi%y, .. Vb g, VW)

%

% 71

t K .
= Z Z (1 - W)Q(t_z)varsﬁa(vik—l)

t
2K 2 2(t—1i) 2nK 2
E 1-— < = 83

where we recall the definition of Var, , in (29). Here, the first inequality holds since
2

Var,o (Vi) < [P(s,a) 1 (Vi ls0)® + (1P (s, @) 1[IV ) < =R

and the last inequality follows from

t

St -2 <2 (11__((11__732 L <, (84)

=1

By substituting the above bounds (cf. (82) and (83)) and m = 1 into Freedman’s inequality (see Theo-
rem 4), it follows that for any s € S, a € A and t € [T],

2 2 T 4 2 T
< o 075,01, 2 o AT )1 27814

32nK |S||A|T 67 |S||A|T
1 1
\/(1—7)2 5 +1—'y 5

& . ISIAT
< 1 4L L bl bl
S15Vx log 5 (85)

with probability at least 1— W, where the last inequality holds under the assumption n < % (log %)*1.

Applying the union bound over all s € S, a € A and t € [T] then completes the proof.
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B.2 Proof of Lemma 2

For any 37 <t < T and (s,a) € S x A, we can decompose the entries of E} = [E}(s,a)] as

(L= P(s,a)(V = VI + [ S S =0 P(s,a) (V- V)| (86)

=:E3%(s,a) =:E3%(s,a)

We shall bound these two terms separately.

Step 1: bounding E}%(s,a). First, the bound of E}® is obtained as follows:

K (t)-pr—1
a ,y 7 *
B} (s,a) Z Z ) P (s, a) [ (Voo + V¥ o)
< L(t)_f_l(l < (g (87)
Tl-v = 1—n ’
where the second inequality holds due to the fact that ||P(s,a)l|1 < 1 and ||[V*]|e < = v’ V|l < ﬁ,
and the last inequality follows from
(t)—Br—1
. 1 —n)B7 1—
Z (1 _ n)t—z—l < (1 _ n)ﬁ‘r + (1 _ n)ﬁ‘r—H o+ (1 _ n)t—l < ( 77) < ( 77)
= 1—(1-mn) n

Step 2: decomposing the bound on E$’(s;a). Next, E}’(s,a) can be bounded as follows

K
E¥(s,a) = 7”} S (- ) P (s, a)(VF - V)

o0

where the second inequality holds since || P(s,a)||s < 1. To continue, denoting

df},w(sa a) = QZ(S, a) - Qf}(sv a)’ (89)

we claim the following bound for any 0 < i < T, which will be shown in Appendix B.2.1:

ZV’“

k

< ||AiH<x>+2m]§LXde(i),iHoo' (90)

oo

In view of (90), it boils down to control maxy ||df(i),i||oo. For any (s,a) € Sx A, k € [K],and 0 <i < T,
by the definition (89), it follows that

i—1 i—1 i—1

|dia(s,a)] = > diia(s,a)| <20 Y 18]l +am| Y (Pla(s,a) = Pls,a)V*, (91)

j=u(3) J=u(?) j=1(9)

Z:Bl ::B2
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where
k_ k
Ab=Q - Qh (92)
The inequality (91) holds by the local update rule:

d?,j+1(57 a) = Q?H(s,a) - Qf(s,a)
= n(r(s,a) + 7Pl (s, a)VF — Q(s,a))
D (r(s,a) + VPE (s,)VE = r(s,a) = 7P(s,a)V* + Q*(s,a) — Q¥(s, )
— n(YPE, 1 (5,0)VF — Y P(s,a)V* + Q*(s,a) — Q¥ (s, a))
= Pk (s,a)(VF = V*) + (Pl (s,a) — P(s,a))V* + nAk(s,a)

< 29[| AF e + 0 (Pfy1 (s,a) = P(s,a))V7, (93)
where (i) follows from Bellman’s optimality equation, and the last inequality follows from || P, (s, a)|[; <1

and [VF = Vo0 < [ AF| (cf. (31)).
Next, we bound each term in (91) separately.

e Bounding B;. The local error ||Af||Oo is bounded as stated in the following lemma, whose proof is
provided in Appendix B.2.2.

Lemma 11. Assume ™y < % For any given 0 € (0,1), the following bound holds for any 1 <i < T
and k € [K]:

|S||A|KT

5 (94)

188w < 189 oo + 7=/l
with at least probability 1 — &, where (i) is the most recent synchronization step until i.
Using the fact that ¢ — (i) < 7 — 1, we can claim that
0 5 185 < 20~ D18l + T fytog SIAKT. (95)
i=u(@)
e Bounding B,. Using the fact that the empirical transitions are independent and centered on the true

transition probability, by invoking Hoeffding’s inequality and the union bound, we can claim that the
following holds for all (s, a,k,t) € S x A x [K] x [T],

i—1 i—1

: 1 ISIJAIKT _ n \/ S| AIKT
Pk —p A e ] < ~1)log 222
n Z ( ]+1(87a) (S,G))V — 17,7 2 Z 0g 5 -1 — (T ) 0g 5

g=u(i) J=u(4)

(96)
with probability at least 1 — ¢ for any given § € (0, 1), where 7 is the synchronization period.

By substituting the bound of B; and B into (91), and applying the union bound, we obtain that: for
any given d € (0,1), the following holds for any 0 < i < T and k € [K]:

dn((r=1)yn++v1-1) log 2|S||A|KT

1)y illoe < 20(7 = DA oo +

(1=7) 6
8nvT —1 2|S||A|IKT
< 2 = DA e + T o 2 (o7)

with at least probability 1 — §, where ¢(7) is the most recent synchronization step until i. Here, the second
line uses the fact nT < 1.

33



By combining (97) and (90) and substituting it into (88) and using the fact that Zf;f(t)fﬁT n(1-n)t—i-1t <
1, we can obtain the bound E}*(s,a) as follows:

16ynv/7T —1 2|S5||A KT i
B9 (5,0 <~ fog 1 S (A + 400~ DAy )
i=u(t)— BT
16ynv/T — 1 2|S||A|KT
1 1+ 4 —1 Ajlloo-
O ) o8 0 +y(+dn(r—1) L(t)fnﬁi);i<t 1Al (98)

Step 3: putting all together. Now, we have the bounds of E3* and E} separately derived above. By
combining the bounds in (86), we can finally claim the advertised bound and this completes the proof.

B.2.1 Proof of (90)

On one end, it follows that for any s € S,

1 & 1 &
=2 (Vi) = V¥ (s)) = Q*(s,a*(s)) — e > Qi(s,af(s))
k=1 1 k}-{l
<Q(s,0%(s)) - D QF(s,a*(s)) = Ai(s, a*(s)), (99)
k=1

where we use the definitions in (79). On the other end, it follows that

1 & us 1 & 1 &
23 (V) V) = @ (s Z (5,000 (5)) + 32 D Q¥ (5,000 (5)) — = D Q5,0 (s))
k= k=1 k= k=
| T =
> Q (S aL(l) I Z Q S G’L(Z) } Z Qf(sv at(i) (S)) - ? Z Qf(sa aic(s))
k=1 k=1
= Bi(s, o Z@wmz —%Z@@ﬁ@x (100
k=1

where the inequality follows from the fact that a*(s) is the optimal action for state s. Notice that the latter
terms can be further lower bounded as

1 - 1 S k k
?hﬂ@%wﬂ—?;Q@%@)
1 1 &
- ? ZQZ (57aL(i)(5)) - E Z QL(Z)(S aL(’L Z QL(Z) S5 Qi ) ))
k=1 k=1
RN s
1 K
=z K Z (df(i),i(svaL(i)(s)) - df(i),i(syaf(s)))a (101)
k=1

where the inequality follows from the definition (89) and the fact that
Qi) (5, au(e) (5)) — Qi (5,07 (5)) = 0.

The above holds, since Qf(i) = Q. for all k € [K] agents after periodic averaging at ¢(i), and a,(;(s) is the
optimal action at state s at time ¢(i) for every agent.
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Combining (99), (100) and (101), we obtain
1 1
Aq(s; @i ( Z Ui (8, 00y (8)) = difsy 45,07 (5))) < ?Z (V*(s) = V() < Ails,a*(9)),
kzl k=1

which immediately implies (90).
B.2.2 Proof of Lemma 11

By applying the decomposition in (36) to the local error for agent k, we decompose A¥ as follows:

9

Af(s,a) = (1—n) DAY (s,a)+7 Y 0l =n)"7(P(s,a) = Pf(s,a))V*

j=u(i)+1
=D =D
+7 Z (1 —n)' I PF(s,a)(V* = VE ). (102)
J=u(i)+1

:=Dg
We shall bound each term separately.
e Bounding D;. Since Af(i) = A, for every agent k at the synchronization step (i),
ID1| < (1 =)' ")) oo (103)
e Bounding D,. In a similar manner to (96), by invoking Hoeffding inequality and using the fact

that ZE:L(¢)+1(U(1 —n)79)2 < n (cf. (84)), we can claim that the following holds for all (s, a, k,t) €
S x Ax[K]x [T,

: - S|IIAIKT v [ |S|JAIKT
< —n)i—J3)2 *|2 <
Do <7, | Y (1 =) =9)2[[V*]|2, log 5 ST, log ——= (104)

j=u(i)+1

with probability at least 1 — ¢ for any given ¢ € (0, 1).

e Bounding D3. By bounding |[V* — V]k,1||oo with the local error ||A;?71||Oo (cf. (31)) and using
||P;€(s,a)||1 < 1, we have

D3| <y Y n(=n) P (s, a)|hlIVF = Viiflee < Z (L= AT il (105)
j=u(i)+1 j=u(i)+1
By combining the bounds obtained above in (102), we obtain the following recursive relation

1AF oo < (1 =)' A loo + \/ Z (1 =)' A5 1 lloo- (106)

JL)+1

By invoking the recursive relation with some algebraic calculations, we obtain the following bound

1AF [l < (1 =)' "D Ay lloo + p

i Jji—1
+y Y =) =) T T O A Gl oty Y (=) T AR
Ji=u(i)+1 Jo=t(i)+1
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% 7
== D4y > 1= O Al + [ 1+ D =) ] p
Ji=u(i)+1 ji=e(i)+1
ji—1

RS SN SR () Kol VAN

Ji=u(@)+1 j2=e(1)+1

A=ty > @ =) O A p e+ {1y Y ml =) p

<
Ji=u(i)+1 Ji=u(i)+1
i Jji—1 _ ) ) )
+ 72 Z Z 7]2(1 _ ,',})171*J2 ((1 _ 77)72717L(Z)HAL(1')||00 +p+-- )
ji=t(1)+1 jo=c(2)+1
o i 4 ‘ i Ji—1—1
S O R SR TR LU RSN DRI DI UC R (Gl N LN
Ji=e(i)+1 Ji=t(i)+1 Ji=e(i)+1
i o i Ji—1—1
S R ST R ) K R RE e L SRR SR/ S’ e I
ji=u(d)+1 Gi=e@+1 qi=e(i)+1
i Jizl . .
T Z e Z (L )it (||A?z+1—1”>
Ji=e(i)+1 Jie1=c(i)+1
o i—u(7) . . i—e(i)—1 . .
(i) i— (i) i—e(i)— i— (i)
<y 7l< P L PV Y O S e ol G
=0 =0

< ((L=n) + ) " ONAR lloo + (1 +m) " Pp
(i)
< 1A% [l + 20, (107)

where (i) follows from A?V

-1 = Al since jy i -1+ 1,

ji—1 Ji—1—1

s 8 S o = (0 g

Ji=e())+1je=e(i)+1  gi=e(i)+1

i Ji—1—1 3 Ji—1—1 i—L(i)
> Y s vy e ()
ji=e(@)+1  Gi=u(i)+1 Ji=u(@)+1  ji=e(i)+1

and (ii) follows from (1 +n)*=*® < (1+yn)” < e™ < 2 since i — ¢(i) < 7 and 79 < 1. This completes the
proof.
C Proofs for federated asynchronous Q-learning (Section 4)

C.1 Proof of Lemma 10

To describe the joint probabilistic transitions of K agents formally, we first introduce the following Markov
chain X; = (X},..., X[/),t=0,1,..., where X} € S x A is the state-action pair visited by agent k at time
t. The joint transition kernel P of K agents is given by

Pl

P = . , (108)
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where P is the transition kernel of agent k, k = 1,..., K. Since the agents are independent, the stationary
distribution of the joint Markov chain is u, given by

w(z) = H p(e®), Vo= (a2 2f) e (S x AF, (109)
k=1

where /ﬂg denotes the stationary distribution of agent k, which are induced by its behavior policy 7r’b“. Next,
we define the mixing time of the joint Markov chain as follows:

1
tmix(e) = min { ¢ sup dTV(Pt('lajO)a M) <e and fmix = tmix () , (110)
z9€E(SXA)K 4
where
K
Py(-o) = [ PF(-[af) (111)
k=1

denotes the distribution of the joint state-action pairs of all agents after ¢ transitions starting from xzy =
(z},...,z{). The mixing time of the joint Markov chain can be connected to those of the individual chains
via the following relation
tmix(e) S mkax tk (€/K), tmix S 410g 8K ]?1[3}}{{] 7(’Jrcnix) (112)
€

mix

which will be proven at the end of the proof.
We now turn to the proof of Lemma 10. Define the event

Bu,v(s, a) = {

We first establish that

K K
Yo Nbu(sia) = (v =) ) pi(s,a)
k=1 k=1

1 K
> L)Y pb(sa) (113)

)

k kWK
o B0 (5o =2 | < (19

for any (s,a) € S x Aand 1 < u < v < T provided that u > tw(s,a)/2 and v —u > th(s,a)/2. To this end,
we decompose the probability into two terms as follows:

P Bl (55, o) = 0 = P{ B (5.0 {55 a5 ~ 0
~
+ LBl ] (. )M = 0} P B (s, (66 af s ~

=:G2

and show each of the terms is bounded by W for any zo € (S x A)X. We shall derive the bounds of
these two terms separately.

Step 1: bounding G;. This is for the case that the distribution of the initial state follows the joint
stationary distribution. Since the total number of visits can be written as

v

ZNZ:,U(&G’):Z Z sz(s’a): Z Zi(s,a),
k=1

k=1i=u+1 i=u+1

where

K2

1, if ko ak _ i
Zk(s,a) _ { , 1 (S;G/) S (51—17047,—1) and Zi(S,(I,) — sz(s7a)7
k=1
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and
v K
V%U(S? a) = E(s’g,a’g)wukaE[K] [ Z Zi(s, 0’)] = (v—u) Z :u];(sa a),
i=u+1 k=1
we can invoke Bernstein’s inequality for Markov chains (Paulin, 2015, Theorem 3.11) and obtain

v

Z Zi(S, CL) - Vu,v(87a)

1=u+1

1
G = Prist.ab)ic, o [ = z”u,v(s,a)]

(Vu 1)(57a)/2)27ps )
<2 — ’ . 115
= ( 8((v — ) + 1/7pe) Vs + 20C (v o (5, @) /2) (115)
Here, vps is the pseudo spectral gap satisfying
> — 116
Tps Z Ui (116a)

for uniformly ergodic Markov chains according to Paulin (2015, Proposition 3.4). The parameters C' and V;
are defined and bounded as follows

C = max |Zi(s,a) — E[Z(s,a)]| < K, (116b)
77 K K
Vy = Var(Zi(s,a) = > (1 - (s, 0 (s,0) <Y pif(s,a). (116¢)
k=1 k=1
Plugging (116) into (115), we have
Gy < 2exp (— e (s,0))f )
8tmix(24(v — u) (Xoy_y pf (s, a)) + 10K vy 0 (s, a))
(v — ) gy (s, 0)) 5
< 2exp (‘ St (24 1 10K) > = JS[AT (117)

where the last inequality holds since (v — u) is large enough to satisfy the following condition:

mix

tun(5,0) _ 1088(maxye (i) thyy) log 8K log BUAL 2741, log UL
- K — K
2 % Zk:l M'I;(S, a’) % Zk:l /J/l;(& CL)

v—u>

Step 2: bounding G5. By the same argument of Li et al. (2021b, Section A.1l), using the fact that the
difference caused by the initial state becomes very small after sufficiently long time, we have we have

G = P{ B 5. ) (55, ) = 0 = B{ B (.0 (5. b, ~ ]

)
<drv(Pu(-|zo), p) € =+, 118
where the last inequality holds due to
tin(s,a) 4|S||AIT?K & k o g
> T S glog 2T 2 th > VAN (L SR . — 119
v= =208 reii) ™ = iR ™ \ 2[SIAIT2E ) = ™\ 2[S[IAT? (119)

Here, the second inequality follows from the fact that t%. (e) < 2t*. log, 2 (Paulin, 2015), and the last
inequality follows from (112).
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Step 3: summing things up. By combining the above bound, we complete the proof of (114), provided
that u > tw(s,a)/2 and v — u > ty(s,a). Then, we can obtain the following bound for any (s,a) € S x A
and 0 <u<ov<T:

1 K K K
P{4(v—u) pl (s, a) §ZN5’U(s,a) <2(U—u)z,u§(s,a)}
k=1 k=1 k=1
X tn(s,a) X 1 tn(s, a) X
h(s, h

SP{ZNWW (s = (0= S s 2 (v u- )Zuﬁ(sa}

k=1 k=1 k=1

5

_ k kWK _
= mUEI(Iéa;();)KIP{Bu+tth(;,a)’v(5,a) {(So,ao)}kzl == IO} S W (120)

Proof of (112). Notice that by the definition of drv and (111), we have
drv (P (-|zo), ZdTV (|26), 1)
for any xo € (S x A)K. Hence, setting t = maxye(x) th; (), we have

K
max  dry(P(-|z ) <
zoe(SxA)K v(Fifwo) _Z ©

which immediately implies

tmix(€) < m}gxt e/K).

mIX(

The proof is complete by using the fact that tmix(€) < 2tmix log, % (Paulin, 2015), which leads to

1
tmIX S tmIX 4 1 8K tmIX
i <4K) O8O TR

C.2 Proof of Lemma 3

First, (52a) is derived as follows:

K

1 sa
)\'UI'U2(S a’):KZ(l_ ) Ulv? )<7Zexp v1v2( <1—**Z77 v1v2

k=1
n K
S exp (-2}{ ké V1,02 S a ) (121)

using the fact that 1 — z < exp(—z) < 1 — § holds for any 0 < = < 1, and nN, hT (h+1)T(s,a) <npr <1
Next, we obtain (52b) through the followmg derivation:

K K o(t)—1
> > wla =3 > ) el
k=1 ueugf,t(s,a) k=1 h=0 uel/{hT (h+1)7(s a)
d(t)—1 [ o(t)— K 1 .
o — Nu ,(h+1 T(S,a)
S | Yu o X (na-pNeoenea)
h=0 I=(h+1) k=1 “E%T (thl)T(‘g a)
dt)—1 [ ¢(t)—1 K .
é A —(1—=(1~—= N;w,(h+1)7(57‘1)
H I, (1+1)7 (8, @) Z K( (L=mn) )
h=0 \I=(h+1) k=1
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o1 [ e(t)-1

1__1 Z H AlT’(lJFl)T(S’ a') (1 - AhT,(h«Fl)T(Sa CL))

h=0 \I=(h+1)
(iii)
= 1= QorArar A -nyre = 1L —wo(s, a), (122)
where (i) follows from the geometric sum
Yoo g =N GO = (1 =) (1 — ) Nenoe 0
“eu;’f,r,(hﬂ)f(s*a)

=1-(1- n)N;thH)T(S*a)’ (123)

(ii) follows from the definition (49), and (iii) follows by cancellation.
Similarly, (52c) can be obtained with some algebraic calculations as follows:

K K h'—1

k _ k
> > wnlsa =3 > ) wilsa)
k=1 uellg e (8:0) k=1 h=0 ueuhT (h+1)T(s,a)

n—1 [ #(t)-1
= Z H >\l‘r7(l+1)7'(37 CL) (1 - )\hr,(h+1)7(57a))

h=0 \i=(h+1)
(ii)
S A (417  AG() =1t — A0, 7 AT 2 A(p(t)—1)mt

(i) P -1 " K
S Aty MNow-nrt < | exp (-MZN;LCT,(;LH)T(S’G)) ,(124)
h=h' k=1

—~
=

where (i) follows from similar derivations as above, (ii) follows by cancellation, and (iii) follows from (52a).
Finally, (52d) is derived as follows:

K K o(t)—1
YooY wisaP=> > Y (widsa)?
k=1 uels ,(s,a) k=1 h=0 wely_ ), (s:a)

s(®)-1 [ 6(t)— ?

M=
=| -

:% Z H Air (141)7 (8, )

h=0 \I=(h+1)

2
Z (77(1 — n)NJerl,(thl)T(S’a))
1 uelF

h,T,(h+1)T(Sva)

>
Il

d(t)—=1 [ ¢(t)—1

?77 Z H >\lr,(l+1)r(s7a)

h=0 \I=(h+1)
o()=1 [ ¢(t)-1

= ? H >\l7',(l+1)‘r(87 a) (1 - )‘hT,(h-i-l)T(Su a))
h=0 I=(h+1)

1
K

INZ

(1 (1= ) Vircurnr o)

M=

(i) 27’
= ?7
where (i) holds since
. 2 .
Z (77(1 — n)N'5+1,<h+1)7(5"1)) =’ + 772(1 - 77)2 4+t (l— 17)2(N5+1,<h+1)7(5~a)*1)

uelF

;w,(h+1>7(37“)

<n (1 — (1 — n)QN/],f+1,(h+1)T(Sva))
< 2n (1= (1= Nin o) (125)

and (ii) can be similarly derived to the proof of (52¢) (cf. (124)).
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C.3 Proof of Lemma 4

Without loss of generality, we prove the claim for some fixed 1 <t < T and (s,a) € S x A. For notation
simplicity, let

y P — pk vk if (s®,ak) =
yﬁ’t(&a): wu,t(saa)( (570’) u+1(s’a)) u 1 (Suvau) (Sva)’ (126)
0 otherwise
where
n . o(t)—1 1 X y
k = — )NV wt1yr(8:a) & RV L (s,0)
wha(5,0) = (1 =)Mot ] (K D (1= )by ) (127)
h=¢(u)+1 k=1

then E2(s,a) =7 Zszl Zz;lo ys (s, a). However, due to the dependency between PF,,(s,a) and w} (s, a)
arising from the Markovian sampling, it is difficult to track the sum of y := {y{j,t(s, a)} directly. To address
this issue, we will first analyze the sum using a collection of approximate random variables § = {@’j’t(s, a)}

drawn from a carefully constructed set )A), which is closely coupled with the target {yfj’t(s, a)bo<u<t, 1-€.,

D(y,y) =

Z Z (yﬁi(s,a) - ﬂﬁ,t(&a))

k=1u=0

(128)

K t-1 ‘

is sufficiently small. In addition, ¥ shall exhibit some useful statistical independence and thus easier to
control its sum; we shall control this over the entire set ). Finally, leveraging the proximity above, we can
obtain the desired bound on y via triangle inequality. We now provide details on executing this proof outline,
where the crust is in designing the set Y with a controlled size.

Before describing our construction, let’s introduce the following useful event:

t—MTt K
1
Ba(s,a) = ﬂ {4uavg(s,a)KMT < ZNS,’u+MT(S7a’) < 2,ua\,g(s,a)KM7'} , (129)

u=0 k=1

where M = M(s,a) = Lmj Note that M7 > 7 > t4, (see (77) for the definition of (s, a)), and
1 <1/(16npavg(s,a)7) < M(s,a) < 1/(8nptavg(s, a)7) if nT < 1/16. Then, Bas(s, a) holds with probability at
least 1 — W according to Lemma 10. The rest of the proof shall be carried out under the event By (s, a).

Step 1: constructing Y. To decouple dependency between P¥ +1(s,a) and wk (s,a), we will introduce
approximates of wq’j,t(s, a) that only depend on history until u by replacing a factor dependent on future with
some constant. To gain insight, we first decompose wﬁ,t(& a) as follows:

) ANE S bt L (s,a) P(t)—1 K ,
Wk (s,0) = 1(1 B )—Ni?(u)T,Hl(s,a) (1 —n)Ver@w+y H 1 Z(l _ )N;gh(h“ﬁ(s,a)
wEL Ko K N (5,0) K N
D g (L= m) et on 28, 20 k=1
0 . $(t)-1 1K y
= = — -Ng u)T,u (570‘) — — NLT, L 7(570‘)
—K(l n) " Neer H (KZ(l ) Nhr )
h=¢(u) k'=1
::@ﬁyt(s,a)
— V5w (b)) (5:0) ¢(t)—1 K ,
L1 )N o (L) S1) TT (g o= mMrer o
K SR Nftwyr o1+ (@) K
p=1(1—m) ' h=¢(u) k=1

) |

::Xﬁ,t (s,a)
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Considering that xgt(s, a) can be made small enough, which will be shown in the following step, we analyze
the dominant factor wf (s, a) in detail as follows:

Pl -t 1 & v 1 & v o
‘Dﬁ,t(sva) = H (K Z (1- n)Nhr,(hH)T(S-,a)) (K Z (1— /rI)NhT,(h+l)ﬂ-(s7a)>

h=ho (u,t) k=1 k=1

=[ =

N % #(t)—1
}(1 — T})_N¢(1L)T‘u+1(s7a) H <
h=¢(u)

K !
S

k'=1

n . Pd(u)—1 1 K N -1
L1 — )y Newyrut1(s,a) il — V-, -(s,a)
K(l T]) ¢(u)T,utl H <K Z (1 7)) hr,(h+1) >

h=ho(u,t) k=1

dependent on history until

p(t)—1 . X |
H (K Z (1- W)Nsﬂ(hﬂ)r(s,a))

h:ho(u,t) k'=1

X

dependent on history and future until ¢

_ —1
N e (7T (L N (5,0)
el | R D DIk i
)

h:ho (u,t k'=1

N\S

=zt (s,a)
Hu,t) ¢(t)—(I—1)M—1 ( K

<11 1I =>a _n>N”f9<h+l>T“*“)>7 (130)

=1 h=max{0,p(t)—IM} k'=1

=z(s,a)

where we denote ho(u,t) = max{0, #(¢) — I(u, t)M}, with {(u,t) == [(’;[f)]

Motivated by the above decomposition, we will construct 5)\ by approximating the future-dependent
parameter z;(s,a) for 1 <1 < L, where we define

[ = min { L\;J [12810g (K/nﬂ} . (131)

We note that L < 128log (T'K) for n > 3/T. Using the fact that 1 — 2z < exp(—2z) < 1 — § holds for any
0<z<l1, and 7y hT(hH)T(s,a) <nr < %,

K
2n ' n
exp <_K Z Nf’fT,(thl)T(S?a)) <1 K Z NhT (hi1)r(8,@)
k=1 k=1
< i i (1 n)NhT (h+1)7-(5 a)
- K
k'=1
1 K
S K Z exp(—nNji, i1y (5,0))
- K
<1 ? Z Nh‘r (h+1)7’ 5, a)

_ 11

2

( Z Nilf;,(h—i-l)f(sva)) : (132)
v
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Therefore, for 1 <1 < L, under By (s, a), the range of z(s,a) is bounded as follows:

1
u(s,a) € [exp<4nuavg<s,a>Mr>, exp<8wavg<s,a>MT>} |

Using this property, we construct a set of values that can cover possible realizations of z;(s, a) in a fine-grained
manner as follows:
1 )
Z = {exp (—8nuavg(s, a)Mt — ZIZ) ‘z €Z: 0<1i<4K taygl(s, a)MT} . (133)
Note that the distance of adjacent elements of Z is bounded by 77/Ke_1/8’7”“%(57“)1\/”7 and the size of the set
is bounded by 4K piavg(s,a)M7. For | = L, because the number of iterations involved in zz(s,a) can be less
than M, it follows that zp(s,a) € [exp(—4nptavg(s, a)MT),1]. Hence, we construct the set
Zy = {exp (—;Z) ’z €Z: 0<i< 4KUan(s,a)MT} . (134)
In sum, we can always find (Z1,--- ,%,--- ,21) € ZL71 x Zy where its entry-wise distance to (z(s, a))ie[r-1]
(resp. zr(s,a)) is at most n/Ke~t/8mae(s;a)MT (rogpy p/K).
Moreover, we approximate z¥ (s, a) by clipping it when the accumulated number of visits of all agents is
not too large as follows:

o K
(s,0) = {xﬁ(s,a) if > N;fo(u’t)m&(uﬁ(s,a) < 2K piavg(s,a) M T .

_ : (135)
0 otherwise

Note that the clipping never occurs and z%(s,a) = z¥(s,a) for all u as long as Bjs(s,a) holds. To provide

useful properties of Z¥ (s, a) that will be useful later, we record the following lemma whose proof is provided
in Appendix C.3.1.

Lemma 12. For any state-action pair (s,a) € S x A, consider any integers 1 <t <T and 1 <1 < fﬁ},

where M = Lmj Suppose that 4nt < 1, then T%(s,a) defined in (135) satisfy
N 9
Vu € [ho, ¢(t) — (1 — )M) : 3(s,a) < ?” (136a)
() —(1—1)M—1 K
> Yo D Tu(sa) < 16npag(s, )M, (136b)
h=ho WEUF 1 qy,(5,0) B=1
o(t)—(1—1)M~1 K )
4 av, ) M
3 S S @E(sa)? < o4y if M7 (136¢)
h=ho w€US 1y, (s,0) k=1
where hy = max{0, #(t) — IM}.
Finally, for each z = (21, - ,21) € 271 x Z;, setting
I(u,t)
aﬁ,t(sva; z) = fﬁ(sv a) H jZ\la (137)
I=1
an approximate random sequence 7, = {ﬂﬁi(s, a; z) }o<u<t can be constructed as follows:
@\S t(s,a; Z) — @ﬁ,t(‘S)a;z)(P(Saa) - P1lf+1 (Sva))vuk if (Sﬁaaﬁ) = (S,Cl) and l(uat) S L ' (138)
' 0 otherwise

If ¢t > LM, for any u < t — LMT, ie., l(u,t) > L, we set @’f’t(s,a;z) = 0 since the magnitude of
wfj’t(s, a) becomes negligible when the time difference between u and ¢ is large enough, and the fine-grained
approximation using Z is no longer needed, as shall be seen momentarily. Finally, denote a collection of the

approximates induced by ZE~1 x Z; as

V={g.: zezZl1xz})
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Step 2: bounding the approximation error D(y,y,). We now show that under By, (s, a), there exists
Yz = Yz(y) € YV such that

525 [ ChenL o 4|S|]A|T?
1—7 K & 1)

with at least probability 1 — 24. To this end, we first decompose the approximation error as follows:

D(y, Z//\z) <

(139)

min D(y,¥x)

ijzey
K t—1
SE I 9 SRR NOTE
ZGZL71><ZO hm1 u—=0 (yu’t( ’ ) yu’t( (e ))
K t—LMrt—1
< max Z k (s,a) —9F (s,a;z min Z Z ko (s,a) —TF ,(s,a; 2
= Lezidiyz, £ ] yu,t( ) ) yu,t( » Uy ) z€ZL-1x Z, Pl LMTyu,t( ) ) yu,t( , )
K t—LMr—1
< _ma Z Fo(s,a) =8 (s,a;2
_ZEZL*f(XZO Pt —~ yu,t( ) ) yu,t( ) Yy )
=:D
b i(s,a;2))(P(s,a) — P} vE
min — Wy (8,05 2))(P(s,a) — Pyy(s,a)V,
ZEZL X Z0 |1 i L]\/fT

=:Do

K t—
13 S L (s.a)(P(s.a) — PE (s, )V

k=lu=t—LMrt

9

=:D3
and will bound each term separately.

e Bounding D;. This term appears only when ¢t > LM7. Since ﬂﬁt(s, a;z) =0 for all u < t — LMt
regardless of z by construction,

K t—LMTt-1

K
D> vhisa)=Th(s,a2)| <Y > Wi (s, a)[|P(s,a) = Piyy(s,a) 1[IV [loo
k=1 u=0

k= 1u€M0 t—Ly-(5:0)

Py Z Z wﬁ,t(sa Cl)
k

=1 ueu{’;t—LI\/IT(s7a‘)

—~
INZ
=

9 P(t)—1 1 XK y
< 1— Ny (ht1)r(s5a)
< T (Fxeen )

h=¢(t)—LM k=1
() 9 K
S 7o < Z Lt ( ))
(iii) 2 1
< 1z S exp (—SWavg(s,a)LMT)
(iv) 277
- (1=K’

follows from

(132), (iii) holds due to Bj;(s,a), and (iv) holds because L > 128log 5 >

where (i) holds since ||P(s,a)|l1, |P¥(s,a)|li < 1 and ||[VF ||| < ﬁ (cf. (30)), (i
— 8 ]
= Npavg(s,a)MT

)
og % given that
Nitavg (s, a)MT > 1/16.
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¢ Bounding Ds. Since z%(s,a) = 2% (s,a) when Bj(s,a) holds, in view of (138), we have

K t—1
pin (SN (@h(s,) 045,05 2)) (Pls,a) — Phia(s,0) Vi
zcZL-1x Z,
k=1u=t—LMT

< __min Z > @i 4 (s, @) = By 1 (s, 05 2)| |1 P(s,0) = Py (s, )1V [l
zEZ 1% Zo
k= 1ueut—LMr,t(s7u)
9 L o(t)— M-1
< (> z > zmanzwsa [T
B 1=5-1 =0 =1 h=g¢(t)— uelf (hi1)- (5,0 a)k I'=1 I'=1

where the last inequality holds since || P(s,a)|1, [|[P¥(s,a)|l; <1 and ||V} e < ﬁ (cf. (30)) and
the definition of @ ,(s, a; z) defined in (137).

Note that for any given {2(s,a)}e(r), under B (s, a), there exists 2* = (2},...,2,...,2}) € ZF7 1 x
Zy such that |2} — z(s,a)| < % exp(—1/8npavg(s,a)MT) for [ < L and | L —zr(s,a)] < 4. Also,
recall that z(s,a), Zf < exp(—1/8npavg(s,a)MT) for I < L and z1(s,a), 25 < 1. Then, for any [ < L

it follows that:

| /\

( g = Dptavg (s, a) M7 )f~
(

Then, applying the above bound and (136b) in Lemma 12,

L
DQS%Z Z Zﬂc s,a) Hzlfsa H?f,

TS h=s( 1M WEUL 0y, (5,0) K r=1 r=1
9 Ln L 1 B(t)—(1-1)M—1 K »
< T K Zexp ( g(l — 1)nttavg (s, a)MT) Z Z Zzu(s, a)
=1 h=6(t)—IM  w€UE, .y, (s.a) =1
2 L 1
“1—v fn 1 — exp(—1/8npavg (s, a) M) (16741205 (5, ) M)
0 2 Ly 16 5129

< 160 ptavg (s, a) MT <

1-— 'y?nuavg(s, a)Mr (1-~v)K’

where (i) holds since npiavg(s,a)M7/8 <1 and e <1— iz for any 0 <z < 1.

e Bounding Dj3. Applying Freedman’s inequality, we can obtain the following bound, whose proof is
provided in Appendix C.3.2.

Lemma 13. Consider any ¢ € (0,1) and L defined in (131). For any (s,a) € Sx A and 1 <t <T,
the following holds:

9 ChetnL 4|S||A|T?
by 2 [Cul TSI (110)
with probability at least 1 — 20, as long as T > ty, and n < min{ﬁ, KChetLlogl4‘S‘I(;4‘T2 1.
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By combining the bounds obtained above,

. . 2n 512nL 9 ChetnL 4|S|].A|T?
min D(y,y,) < + + log
7-€Y (v 5=) I-MK (A-9)K 1-9V K g
525 ChetnLl 4|S|].A|T?
“1—x K 1)

since 1 < < K/L due to L < 128log (TK).

K
128 log (T K)

Step 3: concentration bound over ). We now show that for all elements in )A) ={Uz: z€ 21 x Zy}
satisfy

K t-1
N 115 nL 4|S||A|T? K
k
E E Yui(s,052) < log 141
k=1u=0 ’t( ) (1 o '7) Y ( )

with probability at least 1 — W. It suffices to establish (141) for a fixed z € ZL'~! x Z, with probability
5
at least 1 — TSTATY]? where

VI = 12571 x 20| < (4K paug (s, a) MT)" < (K/n)" < (TK)* (142)

because Nptavg(s,a)M7 < 1/4 and n > 1/T.

For any fixed z = (21,--- ,21) € 27! x Zq, since OF (s,a;2) = T (s, a) Hﬁ(:ul’t) z; only depends on the
events happened until u, which is independent to a transition at w 4+ 1. Thus, we can apply Freedman’s
inequality to bound the sum of g% , (s, a; z) since

E[gs ,(s,a; 2)|Vu] = 0, (143)

where yu denotes the history of visited state-action pairs and updated values of all agents until u, i.e.,
Vo = {(sk,aF), VF }ee[K],v<u- Before applying Freedman’s inequality, we need to calculate the following
quantities. First,

I(u,t)

. =~k . ~k = k k
Bulssa) = a1 (0vai2) < Bs.0) [T 2IP6,a) = Pha )Vl <

7(1 yd (144)

where the last inequality follows from ||P(s,a)||1, [|[P¥(s,a)ll1 <1, [VF ]l < ﬁ (cf. (30)), 4 < 1, and
(136a) in Lemma 12. Next, we can bound the variance as

K l
Z Z (/.Z'\Z(S, a) H /Z\l')QVarP(s,a) (VU{C)

s,a) '=1

@) 9 l » o(t)—(1—1)M—-1 K . )
% Wz(nzl,> > Y @)

h=maz{0,¢(t)—IM} k=1 yc

@M 2 L o) 6472 ptag(s, a) MT
S To <H) K

(2) 12802 ftavg (s, a) MT
- K(1—-7)?

hﬂ' (ht1yr (85 a)

exp —1/4(1 — 1)nptavg(s, a) M)

=
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< 1281 ttavg (s, a) M T 1
- K(1—7~)2 1 — exp(—1/4npavg(s,a) M)
(i<V) 12802 liavg (s, a) MT 8 10247 9

B K1—-7)2  npag(s,a)Mr  K1—7)2 77 (145)

where (i) holds due to the fact that [|[Varp(V)|leo < 1PV ]lso)? +(|P]l1]|V |ls0)? < (1_7)2 because ||V ||oo <

ﬁ (cf. (30)) and || P|j; < 1, (ii) follows from (136¢) in Lemma 12, (iii) holds due to the range of Z and
2y is bounded by exp(—1/8nfiavg(s,a)M7) and 1, respectively, and (iv) holds since =% < 1 — iz for any
0<z<1and Nuag(s,a)M7/4<1.

Now, by substituting the above bounds of W; and B, into Freedman’s inequality (see Theorem 4) and
setting m = 1, it follows that for any s € S,a € A, t € [T] and ¥y, € j,

K t—1 2 = .
Z Z;@’j’t(s,a; z)| < \/8 max {Wy(s,a), o —1}log w + %Bt(s,a) log w
k=1u=0

IN

7 A[S[JAIT]Y| 241 A[S[JAIT]Y|
192 1 ]
\/8 ! K(1—v)2 % J +K(1—7) o8 é
i) 2
O 115 [al ASIATPK
1-9V K 1)

—~

(146)

ith at least probability 1— —2
w1 al least probabity ISHAITD/I

where (i) holds because | Y| < (TK)~ (cf. (142)), and % log w <1
when L < 128log (T'K) and n < K

. Therefore, it follows that (141) holds.

128 log (TK) log ASIAITZK

Step 4: putting things together. We now putting all the results obtained in the previous steps together
to achieve the claimed bound. Under By(s, a), there exists i, := J.(,) € J such that (139) holds. Hence,

K t—1 K t-1

Z yﬁ,t(sva) < Zzgﬁ,t(sva;z) +D(yvf/y\z)

k=1u=0 k=1u=0
115 [nL ., 4|S||A|IT?2K 525 [ChenL 4]S||A|T?

— 1 log (T'K) log ————
Sa-yVK® 5 TV Tk 0g (TK)log =5

241 4 T?°K
I \/chetnl 1) tog ASTATK

where the second line holds due to (141) and (139), and the last line holds because L < 128log (T'K). By
taking a union bound over all (s,a) € S x A and t € [T], we complete the proof.

C.3.1 Proof of Lemma 12
For notational simplicity, let i be the largest integer among h € (hg, ¢(t) — (I — 1)M) such that

K

ZN,lfoT,(h_l)T(s,a) < 2K pavg (s, a) MT. (147)
k=1

Then, the following holds:

Z ho'rhr Z (h—1)7h (s,a +Z hor, (- L(s,a)

< KT + 2K ftavg (s, a)MT. (148)

47



Also, for the following proofs, we provide an useful bound as follows:

’ ’ K ’
i (1 — )~ Nircine () < e eV an- () <149 2=1 Vi hi1)-(5,0)
P K = K =2 K

. s, a)
< exp (%Zk = h}éhﬂ) a > ) (149)

which holds since 1 4+ z < e* < 1+ 2z for any = € [0, 1] and nNhT (h+1)7(5 a) <nr<1.

According to (135), for any integer u € [h1,t — (I —1)MT), 7% (s, a) is clipped to zero. Now, we prove the
bounds in Lemma 12 respectively.

Proof of (136a). For u € [hoT, hT),

k ( ) ¢(U) ! 1 K/ ( ) !
~k —Ngwyrusrr(sa Npr (ha1y- (850
xu(s,a) = (1 — 77) $(u)T,ut1 I | < E (1 — 77) hr,(h+1) )

h=ho (u,t) E'=1

=|=

i

3 P (1 & o)
Nir (ht1)r (8,0
Sf H <KZ(1_77) hr,(ht1) >

h*ho(u t) k'=1

(ii) 2n
- e p( Z hOT,(h 1) S a)>

k'=1

(iii) 3p (iv) 9p
< 7 P (npiavg(s,0) MT) < -2,

—~
=

where (i) holds since (1+7)* < e"* and nN. ¢(u)7 ws1(8,a) < <1, (ii) holds due to (132) and the fact that
#(u) < h — 1, (iii) follows from the condition of h in (147), and (iv) holds because 4niayg(s,a)MT < 1.

Proof of (136b). By the definition of h, it follows that

o(t)—(-1)M—1 K h—1 K
~k k
SRS SR S AP S SR S
h=hg uGZ/{}fT_’(h_*_l)T(s,a) k=1 h=hgo ueu}’ft(h_*_l)ﬂ_(s,a) k=1

Using the following relation for each h:

K
Z Z zF (s, a)

WEUR 41y, (550) B=1
—1
K
Nk (s,a) Nk/l ’ (s,a)
E E 7](1 _ ) d(u)T,ut1 (1 _ 17) ' 7, (h!+1)7\5s
k=Luelly, 1), (5:0) k, !

K h—1 K N ) -1
1 _ NE, (ht1)r (8:@) -1 1 — N\ Vhir 1y (850

: h/_ho :1
1 K . h—1 K
— —Np-, -(s0) _ _ ’7— ’ T(b a)
< (K Z(l )" D ) H ( Z (1 Nyrr (1) )
k=1 h/=hg k=1

where the last inequality follows from Jensen’s inequality, and applying (149), we can complete the proof as
follows:

h— K
Z Z Zl’ S, CL < H < Z 1 _ n)N}’:’T,(h/+1)T(5,a)> -1
h=ho uely_ ., |, (s,a) k=1 k=1
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K ’
277 Zk/:l N}]foT,ET(S7a) 1

<exp %

®
< exp (477:uavg(3a G)MT + 2777-) -1

(i)

< 16nﬂavg(57a)MTv
where (i) follows from (148), and (ii) holds because e* < 14 2z for any = € [0,1], 2n7 < 1/2, and
Apiavg (s, a)MT < 1/2.

Proof of (136¢). Similarly,

(t)—(1-1)M—1 K h—1 K
> Y. D @isa)= > (2h(s, a))*.
h=ho uelx{’]:’ﬂ(thl)ﬂ_(s,a) k=1 h=hg uEL{;’fT,(h+1)T(s,a) k=1
Using the following relation for each h:
K
> > (@h(s.a))?
ueull;T,(h+1)r(‘g’a) k=1
1 K . el K . —2
k=lueUf . . (s,a) h'=hg k=1
n(1& . el K . —2
A _ )\ 2Ny L(sa) - VR w1y (550)
< (ke 3sa-mrtnen ) T (%32 a-apae)
k=1 h'=ho k=1
< n i sz(l _ n)_QNf]:T,(h+1)T(s’a) -1 hl:[l i sz(l _ n)_QN;f’r,<h/+1)f(sva)
RS Kk: 1 h'=h K k=1 7
= —ho =

where the last inequality follows from Jensen’s inequality, and applying (149) under the condition 2n7 < 1,
we can complete the proof as follows:

h—-1 K h—1 1 K .
> Y D @isa)’< % I1 (K > (- 77)2Nh’*»(h'+1>f(5’“)> 1

h=ho uelUfi .., (s,a) k=1 h'=hg k=1
K k'
<7 exp AJJ?Zk/z1 Ngrr @) 1
- K K
(i) N
< X (exp (8N ptavg (s, a) M7+ 4nT) — 1)
@ 640° pavg (s, ) M7

— K 9
where (i) follows from (148), and (ii) holds because e* < 1 4 4z for any = € [0,2], 4n7 < 1, and
8N ptavg (s, a) M1 < 1.
C.3.2 Proof of Lemma 13
Recall that

=|=

_ Nk W) (d(u L(s,a) (t)—1 K ,
b ols.0) = <1n>‘N§<“>”““(s’“)< ST 1) 1 <I1(Z(177)N5n<h+1>f(s’a)>

ey (1— n)N§Zu>r,<¢(u>+1>r(S’“)
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(1 — n)Nz(uhw(u)ﬂ)T(S’a)
AR NE o L k (s,a).
Zk’:l(l — ’17) d(u)T,(dp(u)+1)T 5,a
We can observe that Xﬁ,t(s, a) and wfj,t(s, a) are solely determined by the number of visits of agents during lo-
cal steps, i.e., (NF

h¢,(h+1)r(57 a))ke[K],he[¢>(t)fLM,¢(t)71]- It thus suffice to consider {Xﬁ AENE N)}0§u<t,ke[K]
and {w;t(s, a; N)}o<u<t,ke[x] constructed with each of the possible combinations of number of visits for all

k€ [K] and h € [p(t) — LM, ¢(t) — 1] , ie., N € [0, 7]5¥LM . Then, by setting X = 9\/ C“e‘"L 5 1o 4|SH(;4|T2
and taking an union bound,
> x|
K t-1

K
|
Yo D Xiulsa)(P(s,a) = Pl (s,a) Vi

Y. > xuulsa)(P(s,a) = Piyy(s,)Viy
k=1u=t—LMT

k=l1lu=t—LMT
K t—1

— Z ]}D[
S Y s aN)(P(s.a) - PEyy(s,a)VE

Nelo,r]KLM
k=1lu=t—LMTt

Z X» Xﬁ,t(S,a) = Xﬁ,t(sa a; N)]
2 X‘| b
)

= |S|JA|T(1 + 7)KEM”

SZ]P’[

Ne[0,7]KLM

and it suffices to show that

K —
P lz Z Xﬁ,t(sva;N)(P(Sﬂa) _Pilerl(S»a))Vuk

k=1u=t—LMr

> X

Since x% ,(s,a; N) is a constant, which does not depend on PF, (s, a),

ElXy¢(5,a; N)(P(s,a) = Pyy(s,a))V,f [ V] = 0, (150)
where ), denotes the history of visited state-action pairs and updated values of all agents until u, i.e
Vu = {( 57 k)

k3 ke[K]v<u, and thus, we can apply Freedman’s inequality to bound the sum.
Before applying Freedman’s inequality, we need to calculate the following quantities. First

. k . k k
Bt(sa a) = kE[K] tmL])\{47'< <t |Xu,t(87 a; N)(P( ) Pu+1 (87 a’))Vu ‘

= ZK (1- N‘];Eu)ﬂ(cb(u)i»l)r(sva)

f = )
E R <u<t - (1 1 )N!;( yr (b (u)+1)7 (5:@) wﬁat(‘g’a; N)|[P(s,a) = Py (s, a) |1 [IViF oo

T - — 77 w)T, w (8
k/

9 _2 + K, 1 — MV (s +1-(5:0)
< — max 1— K Zk/_l( 77)

1 — v ke[K],t—LMr<u<t

k

N
(1- U)Ng(u)nwmwl)f(S’“) (8,3 N)
(2) SUMmax(Saa)T max wk (S a: N) (2) 8772/1'max(87a)7-
1—+ ke[K]t—LMr<u<t “8 777 -

(1-mK '
where (i) holds because ||P(s,a)||1, [|[P¥(s,a)l1 < 1, |[VF {]leo < 1— (cf. (30)), (ii) follows from the fact
that (which will be shown at the end of the proof)
1K NE, : (s,a)
= (1 — d(u)T,(p(u)+1)7
1- £ 2= kn) < Anpimax(s, a)T, (151)
(1- n)N¢(u>r,<¢<uJ+1>f(s’“)
with fimax(s,a) == maxy uf (s, a), and (iii) holds due to the fact that wfit(s, a;N) < .
Next, we can bound the variance as
W(s,a) =

5 ZE[(XutsaN)(P( @)~ Phy(s.a)V2) ]

u=max{0,t—LM7} k=1

50



1 b(t)-1

K 2
< (477Mmax(57 a)T)Q Z Z Z (wﬁ,t(sv a; N)) VarP(S,a)(Vj)

—~
=

h=max{0,¢(t) =LM} u€lUp_ ., (s,a) k=1
. B(t)—1
(i) 2(4npimax (s, a)T)? ( ?
S ’ S a; N )
(1—7)2 he {(%:(t) LM} Z Z
=max{0, YU (1. (5,0) k=1

(2) 2(477/14max(8’ a)T)2 Gﬁ =: 02,
1-7? K

where (i) follows from (151), (ii) holds due to the fact that |[Varp(V)|loo < [|P]l1([|[V]leo)? + (IP]1]|V]]0o)? <
W because ||V oo < 1i,y (cf. (30)) and ||P|; <1, (iii) follows from (52d) in Lemma 3.

Now, by substituting the above bounds of W; and B; into Freedman’s inequality (see Theorem 4) and set-
ting m = 1, it follows that for any s € S, a € A, t € [T] and N =
[07 T]KLM7

(Nir (et 1)r (52 @) k(KL hels()— LM s(0)-1] €

S (56 N)(Ps, @) — Py (s, )V

k=l1lu=t—LMT

2 4 T(1 KLM 4 4 1 KLM
< \/Smax{Wt(s,a), U—}log mISIAIT( +7) + =By(s,a)log mISIAITA + 7)
2m ) 3 )

AN o 2 4 T+ 7)KLM 1292, 4 T(1 + 7)KLM

< gm0 AIS|AIT( 1) Piimar(5.0)7 | AIS|AIT(L+ 7
K(1—~) ] K(1—7) )
< [ AT E Gimar s, @M Ly ASIAT(+7) | 12Ln(pman(s JuMT) | AISLAIT(1 4+ 17)
K(1—=7)? 6 (1=7) 6

(i) Chet L1 4S|JAT(1+7)  2CheLn . 4S|| AT +7)
<4/4 1 log
_\/SK(I )2 18 5 -y 5
(if) ChetnL 4|S||A|T?
< 1 152
_9\/K(1—7)2 ®77s 1)

with at least probability 1 — W, where we invoke the definition of Cher (cf. (21)). Here, (i)
holds because 777K < 1/4 and fimax(s, a)nMT < Chetpavg(s a)ynMt < Che‘ , and (ii) follows from the fact that

< .
= 128K Chet log (TK) log ASLIAITZ = KChetLlogw

Proof of (151). Using the fact that for 0 < n < 1,
1—-n)™<em<142pn if n>0 and <1, and (1-n)">1—nn if n<0orn>1,

we can obtain the bounds as follows:

K NE (s,a)
_n 1 NE (s,a) - K Zk' (1= 77) ¢ (e(uw)+1)r
E (s,a) < — § (1 — n)Vem(@@+r <
k/ ‘ o(u)+1)7 K o (1 _ 77) ¢>(u)7 (d»(u)+1)7(s a)

IA

(]- — n)_N¢(u)r,(¢(u)+l)T(s7a)
<1+ 277N<l;(u)‘r,(¢(u)+1),r(3, a)'

Thus, recalling fimax(s, a) == maxy, uf (s, a), and using the fact that for any (s,a,k,u) € S x A x [K] x [T]:

N ot yr (5:@) < 2limax(s, )7
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at least with probability 1 — J, as long as 7 > 443 ( mtﬁi* ) log 4"9"?‘”(, which naturally holds if 7 > #,

Hmax(8,a)

(see (77) for the definition of t,), according to Lemma 9,

kl,
L (1= p)Newr - (5:0)

1 _
(1— n)N§<u>T,(¢<u>+1>f(s’“)

K
1 ,
k k
< 27 max {N¢<u>a<¢<u>+1>r(87 ), 7 D N ot +1)- (5 a)}
k'=1

< Anpimax(s, a)T.

C.4 Proof of Lemma 5

For any ¢ > 7, the error term can be decomposed as follows:

K
E}s,a) =7 Y whs,a)P(s,a)(V* =V}

k=1 uGU(’f,t (s,a)

K
=) > WPV -V

F=Lu€Us (4 1))y (5:0)

=:E$%(s,a)

K
+7) > wh o(5,a)P(s,a) (V= V,F). (153)

F=LulUy 4y gyr,i(5:0)

=:E3%(s,a)
We shall these two terms separately.

e Bounding F}?(s,a). First, the bound on E}(s,a) is derived as follows:

K
BV (s,a)l <) > wit(5,0) | P(s,a) [l (V= Vi)l

k=1 “6“0 (p(t)—p)r (5:2)

< Z S whsa)

=Lu€lUs (- E)T(S’a)
() 2~
T o)

(iii)
< 1277 exp <_W) , (154)
-7

8

where (i) holds because [[V,¥[|oo, [[V*[|oo < 125 (cf. (30)) and [[P(s,a)[1 <1, (ii) holds due to (52¢) in
Lemma 3, and (iii) follows from the fact that Zszl N(k¢(t)78)r,t(s’ a) > %

as long as 67 > ti.

according to Lemma 10

e Bounding FE}’(s,a). Next, we bound E(s,a) as follows:

K
|EP(s,a) <7 > wy (s, a) [V* = Vil
F=LuclUpy gy gy, (:0)
o XK #(t)—1
<7y > wh (s,0)([| Anrlloo + Q% — Qhirlloo)
k=1

h=¢(t)—p ueuﬁn(h_‘_l)ﬂ_(s,a)
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(i) K ¢t)—1

SO > wy 1 (8,0)((1+207) | Anr [l oo + Tiocal) (155)

k=1h=¢(t)—B uEL{hT (h+1>7(s a)
where (i) follows from the following bound, which will be shown in Appendix C.4.1,
IV* = Viflloo < 1A llso + 1Q% = Qi lloo, (156)
and (ii) holds due to the following lemma.

Lemma 14. Assume nr < 4. For any given 6 € (0,1), the following holds for any k € [K] and

0<u<T:
8777\/ 2|S[|AITK
1Q% = Qi lloe < 207I1AT ) o + log = (157)
with probability at least 1 — 9.
Here, for notation simplicity, we denote gjoca = 8””{1 =1, /log Q‘SH?lTK.
Then, with some algebraic calculations, we can obtain the bound on E*(s, a) as follows:
(i) #(t)— K
|E3b(5 a)‘ < Olocal + Y Z 1+ 2777—)||Ah7'”00 Z Z wﬁ,t(s’ a)
h=¢(t)-8 k=1ueu) (h+1)T(s a)
N d(t)—1
(i) 1+ K
< Olocal + T’Y S(t)— ﬂ<h<¢> ”AhT”OOZ Z Z wﬁ,t(&a)
k=1 h=¢(t)— ﬁuGZ/{,”_ (h+1)T(s a)
(iii) 1+
< Olocal T =7 max HAhTHOO? (158)
2 e()-B<h<e(t)

where (i) holds according to (52b) of Lemma 3, (ii) holds when 7 is small enough that n < ;—Z, and
(iii) follows from (52b) of Lemma 3.

Now we have the bounds of E3%(s,a) and E?*(s,a) separately obtained above. By combining the bounds
n (153), we can claim the advertised bound, which completes the proof.

C.4.1 Proof of (156)
We prove the claim by showing

ALy (8, (8) = Ay u(5,07(5)) S V¥ (s) = Vii(s) < Al (s,a%(s)) = dify (5,07 (s)) (159)
for any s € §. The upper bound is derived as follows:
V*(s) = Vii(s) = Q" (s,a”(s)) — Qu(s, ali(s))
< Q*(s,a*(s)) — Qy(s,a*(s))
= Q" (s,a%(5)) — QU (5,a*(s)) = (Qi(s,a"(5)) — QU (5,a*(s))) (160)

d?(u),u(sxa* (s)

using the fact that QF (s, a%(s)) > Q¥ (s, a*(s)). Similarly, the lower bound is obtained as follows
V¥ (s) = Vii(s) = Q"(s.a™(s)) — Quls, k(S))
=Q"(s,a’(s)) — Q ) (5, (8))+Qb(u)(8,ab(u)(8)) Qui(s,ay(s))
= Q" (s,a”(s)) — Q) (s, )(S))+Q () (8010 (8)) = Qi (5,0 (5)) = diiy (5, ali(s))
> Q*(‘S?af(u)(s)) - Q ( & f(u)(s)) + Qb(u)(sa ab(u () — L(u)( k( ) — df(u),u(57a5(8))
> Q*(S7ai€(u)(s)) - QL(u (Sﬂlf(u (s)) — df (w),u(5 ay(s)) (161)

)
)

=
&.
5
&
-+
=
¢]
&
a
-+
+
23
&
-+
Q

s, a (u)(s)) < Q*(s,a*(s)) and Qb(u)(s,af(u)(s ) > Qf( (s,ak(s)).
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C.4.2 Proof of Lemma 14

For any 0 <u < T, k € [K], and (s,a) € S x A, we can write the bound as

Qi(s,0) = Qi (s )l <20 Y Aoty Y (Pl(sia) = P(s,a)V. (162)

UGMLk(u)Yu(s,a) UGZ/(Z“(U)’u(s,a)

=B :=B>

The inequality holds by the local update rule:

Qis1(s,a) = Qy(s,a) = (1= n)Q(s,a) +n(r(s,a) +¥Py (5, 0) V) — Q(s,a)
=n(r(s,a) + 7Py (s, )V, — Qy(s,a))
= (P (s, )V, = 7P(s,a)V* + Q*(s,a) — Qy(s, a))
= P}y (5,0) (V. = V) + (P (s, a) = P(s,a))V* +nAf(s,a),  (163)

and

Qi(s,0) = Qi () < D7 Qb4 (s.a) — Qi(s,a)]

Ueuf(u,),u(s’a)

< Y Ak a) +nl Pl (s, a) (Vi = V7))
velxlf(u)‘u(s,a)

+lm Y (Pia(s,a) = P(s,a)V*
vGUf(u)yu(s,a)

< > A+ YD (Pha(s,a) = Pls,a)Ve], (164)
veUf, ,(s,0) veu?, . (s.)

o),

where the last inequality holds since ||P¥, (s,a)|1 <1 and ||[V;F — V*|| < [|Q% — Q* [0 (cf. (31)).
Now, we shall bound each term separately.

e Bounding B;. The local error |A¥||,, is bounded as follows.
1

Lemma 15. Assume n7 < 5. For any given 0 € (0,1), the following holds for any k € [K] and
0<u<T:

2y S||AITK
1A oo < 18K oo + 2L/ log SIATE

1
< — ) (165)

with probability at least 1 — 0.

Then, combining the fact that the number of local updates before the periodic averaging is at most
7 — 1, we can conclude that

2 Y IIA’SllooS2U\Uﬁu>,u(s>a)|ve max [|A7]l

s,a
UGI/{Z“(“)Tu(s,a) L(“),u(

(166)

2 S||[AITK
<%ﬁ—U<M%ﬂm+1;ynbg||>

o
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e Bounding B;. Exploiting the independence of the transitions and applying the Hoeffding inequality

and using the fact that |Z/IL’“(u)’u(s7 a)| <7 —1, By is bounded as follows:

S||A|TK
Bo<an| Y I(Pha(s.a) - Plsapviiog TATE
veuf'(u)yu(s,a)
2 TK
< 11777\/(7 —1)log % (167)

for any k € [K], (s,a) € S x A, and 0 < u < T with probability at least 1 —§, where the last inequality
follows from [|[V*||o < ﬁ, ||P,f“+1(s,0L)H17 and || P(s,a)|1 < 1.

By substituting the bound on B; and B into (162) and using the condition that 7 < 1, we can claim
the stated bound holds and this completes the proof.
C.4.3 Proof of Lemma 15

For each state-action (s,a) € S x A and agent k, by invoking the recursive relation (48) derived from the
local Q-learning update in (23), A is decomposed as follows:

K sa k s,a
Al(s,a) = (1= )N DAE (s.a)+y D0 gl —n)Nern9(P(s,a) — PE (s a)V*
veuf’(u)yu(s,a)

::Dl

=:Do

k *
+y > =N OPE (s,0) (V- V). (168)
vEL{L’“(u),“(s,a)

::D3
Now, we obtain the bound on the three decomposed terms separately.

e Bounding D;. The term D; can be bounded by

[D1] < (1 — )N D AR (169)

(u

e Bounding D,. By applying the Hoeffding bound using the independence of transitions, the second
term is bounded as follows:

ke S,a
Dol <y | 3 (=) N2 )2
'UEL{Lk(u))u(s,a)

Yo IS|IAITK
< log =p 1
T ) (170)

with probability at least 1 — J, where the last inequality holds due to the fact that ||[V*||oo < ﬁ and

SIATK
log =5 —

.
S =N <P (1= + (1 =)t ) <.
veu® (s,a)
(),

u

See (Li et al., 2021b, Lemma 1) for the detailed explanation of the bound.

¢ Bounding D3. Lastly, we bound the third term as follows:

k *
Ds|<v ) (1 =N GO PE (s, ) [V = Vil
veuk (s,a)
o(u),u
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k S,a
<v S - M)Ak (171)
UEZ/IL’“(u)Yu(s,a)

where the last inequality follows from the fact that [|[P¥,(s,a)[; =1 and

Q5 (s,a%(s)) — Q*(s,a”(s)) < V;(s) = V*(s) < Q5(s,a5(s)) — Q" (s, a(s))
for any s € S, where we denote a*(s) = arg max, Q*(s,a), a¥(s) = argmax, Q¥ (s, a).
By combining the bounds of the above three terms, we obtain the following recursive relation:

k s.a k s,a
Ak (s,a)] < (1= )N AR o +p+y D (1 —n)Neru G| AF . (172)
veUuk (s,a)
v(u),u

Using the recursive relation, we will prove that the following claim holds for any 0 < m < 7 by induction:

which completes the proof of Lemma 15. First, if m = 0, the claim is obviously true. Suppose the claim
holds for ¢(u),e(u) +1,--- ,t(u) +m — 1. Then, for u = t(u) + m, by invoking the recursive relation (172),
we can show that the claim (173) holds for m as follows:

|Af(u)+m (87 (L) |

K sa k s,a
<@ =NV AE e+ oty D ml =N (|AE s +2p)
Ueuf(,u)m(s,a)

k S,a k S,a k Ss,a
= (L= 4y N (L= NG AE S+ (T+2y Y 1 =N
UEZ/{Z“(“)Yu(s,a) vellf(u)‘u(s,a)

k s,a k s,a k s.,a
= (1M (1 (1M AK e (1L 29(1 (1 ) V)
< A% lloo + 20, (174)

where the last inequality holds since

k S,a T 1 T
(1) Mo > (1 —y)7 > ()77 >

N | =

. 1
provided that nT < 5-

C.5 Proof of Lemma 6

First, using the fact that
1<(1- n)*Ntk_T,t(S,a) <l <3

given that 7 < 1, by the definition of a (cf. (27)), we derive (66a) as follows:

k k
1 1 (1- n)_Ntftt(S’a) (1— n)_Nt,fr,t,(‘%a) 3
3K = —NF _ (s.) = af(s’a) - K —NF _ (s,a) < K = K
K maxyeg) (1 =)~ e S (L —m) et
Moving onto (66b), it follows that
o)1
Wo,t(s,a) = H Air,(ht1)7 (5, @)
h=0
o(t)-1 K .
= H Z al(cthl)'r(sv a)(]- - n)NhT~(h+1)r(s’a)
h=0 k=1
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(i) K
h=0 ZkK:I(l - U)_N;’C'”(h'“”(s’a)
(11) ¢( )_1 1

o oo (1— 77)*% Yroa N gy (550)
— (1= )=l & T Nl ey (50) = (1 )% i N (i)

where (i) follows from the definition of a (cf. (27)), (ii) follows from Jensen’s inequality.
Next, we obtain (66¢) through the following derivation:

K K ¢(t)-1

> D Gulsa) =3 > k(s

k=lucly,(s,a) k=1 h=0 uelly_ 1), (s:a)
K ¢(t)—1 N Pt)-1

= Z Z aé}h-«—l)q—(sa a) Z n(1 — 77)J\TU,-¢—1,(h+1)T(s,a) H /\lT,(l+1)T(sa a)
k=1 h=0 WEUE i1y, (5,0) I=h+1
K o(t)—1 . o)

- Z ath)T(s, a) (1 -(1- W)N’”'”‘“)T(S’a)> H )\l‘r (1+1)7 (8, a)
k=1 h= I=h+1

)¢(t) L fo(t)—1 K X

@ H /\lT (l+1)‘l’ s,a) Za(thl)T s, a (1 —(1- n)N;w,uLH)T(s,a))
h=0 \l=h+1 k=1

()¢(t) 1 [fo(t)— K X
5 (T1 M) (13 et =)

h=0 l=h+1 k=1

=

t)—1 [o(t)—1
= Z H )‘lT,(lJrl)'r(Sa a) (1 - )‘h'r,(h+1)‘r<57 a))
h=0 l=h+1

(111) ~ ~

= 1= N0 (8, @) Ar2r(5,0) - M) 1yri (5, @) = 1 — Do (5, a), (175)

where (i) follows by reordering the summation, (ii) follows by Zle alf(s,a) = 1, and (iii) holds by cancel-
lation.

In a similar manner, (66d) is derived as follows:

K K h'—1
~k ~k
> > Grelsia) =Y > Wy 1(s, a)
k=1 uEL{(’; wie(8:0) k=1 h=0 uEL{hT (h+1)_’_(s a)

h—1 [o(t)—1

= Z H Nir 141y (5, @) (1 *th,(hﬂ)f(&a))

h=0 \I=h+1
o(H)—1

< H XlT,(lJrl)T(saa)

l=h'
< (1= ) Tkt N o),

where the last inequality follows from

o(H) -1 o)1 K B(t)—1 1
Xir(i41)(5,a) = <
1L ey 1 AR IRGEE s (1= )~ Bl N o)
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due to Jensen’s inequality.
Finally, with basic algebraic calculations, (66e) is derived as follows:

K K ¢(t)-1
SO @hsa)r=3 S @50
k=1 uels ,(s,a) k=1 h=0 uelly_41).(s:0)

K 6(0)-1 o)1 ? . 2
— Z (a](“h_i_l)T(s, a))? Air,(141)- (8, @) Z (17(1 _ n)NuH,(h,ﬂ)T(s,a))

k=1 h=0 l=h+1 uel/{;jﬂ_,(thl)T(s’a)
o K -1 (-1 ’ .
< 22 (O‘?h+1)'r(57 a))2 H )‘l‘r,(l—i-l)‘r(sv a) n (1 _ (1 _ n)NhT,(h+1)T(S,a))

k=1 h=0 I=h+1
(i) gy PO (401 P K .
< e H e, (141)7 (8, @) Za?hH)T(s, a) (1 —(1- n)N;moLﬂ)T(s,a))
h=0 l=h+1 k=1

(iii)
< 67’,
- K

where (i) holds because

ke s.a 1—(1-— Q(N;fr,(h,+1)7—(5aa))
Z (77(1 — n)Nu+1,(h+1)T( ) ))2 — 772 ( : 77) : -
ueU - ( - 77)

k
(1) (8:@)

<npl-(1- n)Q(NfT,<h+1>T(57a)))

< 20(1 = (1= )M ) (176)
given that 2z — 22 > x for x < 1 and (1 — 22) < 2(1 — ), (ii) follows from (66a), and (iii) follows from the
same reasoning of (175).
C.6 Proof of Lemma 7

Without loss of generality, we prove the claim for some fixed 1 < ¢ < T and (s,a) € S x A. For notation
simplicity, let

@ (s a)(Ps,a) = Ph(ssa)VE i (sha) = (s,0)
Y t(87 a) -
* 0 otherwise

where
k 7’](1 — ’rl)iNJ;(u)T,u«#l(sva) ¢(t)71 K

@y (s,a) = 11 - —, (178)
K h=¢(u) 25:1(1 ) Nir - (:2)

then EZ(s,a) =~ Zszl Zi;lo Us 1(s,a). However, due to the dependency between PF,,(s,a) and @} (s, a)
arising from the Markovian sampling, it is difficult to track the sum of 7 := {7 ,(s,a)} directly. To address
this issue, we will first analyze the sum using a collection of approximate random variables y = {@’f,t(s, a)}

drawn from a carefully constructed set Y, which is closely coupled with the target {ﬂﬁyt(s, a) Yo<u<t, 1-€.,

K t-—1

D@y = > (Fuils.a) =Fu(s,a)) (179)

k=1u=0

is sufficiently small. In addition, ¥ shall exhibit some useful statistical independence and thus easier to
control its sum; we shall control this over the entire set ). Finally, leveraging the proximity above, we can
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obtain the desired bound on y via triangle inequality. We now provide details on executing this proof outline,
where the crust is in designing the set ) with a controlled size.
Before describing our construction, let’s introduce the following useful event:

t—MTt K
1
By = ﬂ {4,ua\,g(s,a)KMT < ZN57u+MT(S,a) < 2uavg(s,a)KM7'} , (180)
u=0 k=1
where M = M(s,a) := LWJ Note that M > m since n7 < 1/16. Combining this with the

assumption n < m (see (77) for the definition of #w (s, a)), it follows that M1 > tw(s, a) always

holds. Then, Bj; holds with probability at least 1 — ISH% according to Lemma 10. The rest of the proof
shall be carried out under the event B,;.

Step 1: constructing Y. To decouple dependency between P " 1(s,a) and O (s,a), we will introduce
approximates of fufj’t(s, a) that only depend on history until u by replacing a factor dependent on future with
some constant. To gain insight, we factorize {,Nufji(s, a) into two components as follows:

R K _ Tk s
ok (S CL) = H K Zk/:l(l N 77) NF. hs1ye (520)
w,t\2 -
h=ho(u,t) Zk’ (1T=n)” N ey (5:0) K
% 77(1 - n)7N$(1l)T‘u+1(5’a) o(t)—1 K
" ¢(u) Zk’ (T=mn)~ NB gy (5:0)
o(u)—1 25:1(1 — 77)7Nh7,(h+1>7(s,a) 77(1 I n)_Ng(u)r,uH(S»a)
= H n ‘
h=ho(u,t)

dependent on history until u
#(t)—1

K
< I] 7

K — s,a
h=ho (ut) 2opr—1(L—1n) wr (g7 (90)

dependent on history and future until ¢

"““H (zk, (=) h”h“)’(”))n(l—n)N£<">*~"+1(5’“)

K K
h=hg (u,t)

=zk (s,a)
U(u,t) d(t)—(1-1)M~1 K
o 7 (R 1 ———— asy
I=1 \ h=max{0,6(t)—1M} Dpr—1 (1 —1)

hr,(h+l)r(s7a)

=z(s,a)

where we denote [(u,t) = [(t W1 and ho(u, t) = max{0, ¢(t) — I(u, t)M}.

Motivated by the above decomposition, we will construct j)\ by approximating the future-dependent
parameter z(s,a) for 1 < I < L, where L = min{[4], [64log (K/n)]}. Using the fact that 1+ 2 <

K _ NE .
exp(z) < 1+ 2z holds for any 0 < z < 1, and nz’“ =1 ’L’Igh“”(m) < nr < 1, and applying Jensen’s
inequality,

< Zk’ 1 h‘l’ h+1)7—(87a’)> K K
exp | —n 2
D

K f’:l(l — n)_N;“f;,(thl)r(b “) Zk/ '7 [ (h+1)7(5 a)
1
= K S NE . (sa)
k/=1 b, (h41)7\?
14+2n3 0, l
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K !
> Zk’:l N}]LCT,(h—&-l)T(s’a)
>exp | —2n I .

Therefore, for 1 <1 < L, under By, the range of z(s,a) is bounded as follows:

1
zi(s,a) € [exp(—4nuavg(s,a)M7), exp(—4nuavg(s,a)MT)} )

Using this property, we construct a set of values that can cover possible realizations of z;(s, a) in a fine-grained
manner as follows:
1 )
Z = {exp (—4nuavg(s, a)Mt — ZIZ) ‘z €Z: 0<1i<4AK tagl(s, a)MT} . (182)
Note that the distance of adjacent elements of Z is bounded by 77/Ke_1/‘“’“%(3’“)1“”7 and the size of the set

is bounded by 4K piavg(s,a)M . For | = L, because the number of iterations involved in zy,(s,a) can be less
than M, it follows that z1(s,a) € [exp(—4nptavg(s, a)MT),1]. Hence, we construct the set

Z, = {exp (-ZIZ) ’z €Z: 0<i< 4K,u,avg(8,a)MT} . (183)
In sum, we can always find (Z1,--- ,2;,--+,21) € 2L~ x Zy where its entry-wise distance to (z(s, a))ie[L—1)
(resp. zr(s,a)) is at most n/Ke~t/4mas(s:)MT (vogp p/K).

Moreover, we approximate z¥ (s, a) by clipping it when the accumulated number of visits of all agents is

not too large as follows:

¥ (s,a) = (184)

z(s,a) if Zszl N;fo(uJ)T@(U)T(s, a) < 2K pavg(s,a) Mt
0 otherwise

Note that the clipping never occurs and 7% (s,a) = 2% (s, a) for all u as long as Bjys holds. To provide useful

properties of 7¥(s,a) that will be useful later, we record the following lemma whose proof is provided in
Appendix C.6.1.

Lemma 16. For any state-action pair (s,a) € S x A, consider any integers 1 <t <T and 1 <1 < [ﬁ],

where M = Lmj Suppose that 4yt < 1, then T¥(s,a) defined in (184) satisfy
~ 9
Yu € [ho, d(t) — (1 — )M) : Z(s,a) < ?” (185a)
B(t)—(1—1)M—1 K
> Yo D Tu(sa) < 16nag(s, )M, (185b)
h=ho ueu}’jﬂ(hyﬂh(s,a) k=1

b(t)—(1-1)M—1

K
> Yoo ) @ksa))? < 64 “glés’a)MT, (185¢)

h=ho ueui‘fr,(h-f-l)r(s’a) k=1
where hy = max{0, ¢(t) — IM}.
Finally, for each z = (Z1,--+ ,21) € ZX71 x 2o, setting @} (s, a; z) = T (s, a) Hé(:“l’t) Zi, an approximate
random sequence y, = {ﬂfjt(& a; 2) fo<u<t can be constructed as follows:
ks L @ﬁyt(s,a;z)(P(s,a) — Perl(s,a))Vu]c if (sﬁ,aﬁ) = (s,a) and l(u,t) < L
Uui(s,0;2) = ) ) (186)
0 otherwise

If ¢t > LMr, for any u < t — LM, ie., l(u,t) > L, we set ﬂfjﬁt(s, a;z) = 0 since the magnitude of
ij,t(s, a) becomes negligible when the time difference between u and ¢ is large enough, and the fine-grained
approximation using Z is no longer needed, as shall be seen momentarily. Finally, denote a collection of the
approximates induced by ZX7! x Z; as

V={g.: zezZl1xz}).
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Step 2: bounding the approximation error D(y,3.). We now show that under By, there always
exists > := Yz € Y such that
- 129  [Ln
D 2) < —1/ —. 187
7.5 < 7=\ 7 (187)

To this end, we first decompose the approximation error as follows:

min D(y,7=)

Uz€Y
K t—-1
i[5S @) - B z>>]
k=1u=0
K t—LM7-1
~k _nk . ~k _ ok .
—= ZGZIEaf(XZg Z Z yu,t(s7a) yu,t(87a7z> zEZIPHllXZg Z Z yu,t(s’a’) yu,t(s7a7z)
= u= k=1lu=t—LMTt
=:D1 =:D>

e Bounding D;. This term appears only when ¢t > LM7. Since ﬂit(s, a;z) =0 for all u < t — LMt
regardless of z by construction,

K t—LMTt-1

K
dYod Thusia)=Th(s,a2) <> > D i(s,a)l|P(s,a) = Py () 1[IV [loo
k=1 u=0

k=LueUy, ;. (s.a)

o R
< T—5 Z Wﬁ,t(& a)

k=1 ueu(’f,t—LI\/Ir(s7a)

i) 2

A
=
=

1
< — (1 — kth L, (8,a)
ST w( n)*
Gi) 9o
< e 11 Mavg(s,a) LMT
L—n
(iv)
S 2777a
(1=7K
where (i) holds since | P(s, a)||1, ||[P¥(s,a)|1 < 1and [|[VF {|le < f (cf. (30)), (ii) follows from (66d)
in Lemma 6, (iii) holds due to By, and (iv) holds because L > 64 log & 2 m log % given that
Nitavg (s, a)MT > 1/16.
e Bounding Ds. Since z%(s,a) = 2% (s,a) when Bjs holds, in view of (186), we have
K t-1
. ~k =k
min s,a) — Yy (s,a; 2
sezti 2, ’;u_tz;MTyu,t( )= ,t( )
< min Z > @1 4(5,0) = @y o (s, a:.2)| | P(s, @) = Py (s, )1 Vi lloo

ZGZL 1x Zg

k=Yueuf .. (s,a)

L é(t)—(-1)M-1

2 .
ST DD SRED YD s

I=1 h=¢{t)—IM wcuk

l

[Tt 15|

I'=1 I'=1

hr (h+1)( a)k

where the last inequality holds since || P(s, )1, ||[P¥(s,a)||1 <1 and ||[VF ||le <

< 1L (cf. (30)).

(cf.
Note that for any given {z(s,a)}ie(r], under By, there exists 2* = (2%,...,2},...,2}) € ZL71 x 2
such that |2} — z(s,a)| < # exp(—1/4npavg(s,a)MT) for [ < L and |2} — zL(s, a)| < #. Also, recall

61



that z(s,a), 2 < exp(—1/4npavg(s,a)MT) for | < L and zr(s,a), zZj < 1. Then, for any | < L it
follows that:

1 1 ! 1 !
sz/ 5,a) H?f < (’Hzl'(s,a)—?fHzl/(s,a)‘+---+‘zlH%‘[,—Hz”l,

r=1 =1 r=1 =2 r=1 r=1
1 ! n
< exp (= (1= Diptag(s,0)M7) > %
1 L
< exp ( - z(l - 1)nuavg(s,a)MT) fn

Then, applying the above bound and (185b) in Lemma 16,

K t—1
Z Z 375,1&(8760) _i/g\ﬁ,t(s’a;z)

k=1lu=t—LMr

min
zcZL-1x Z,

L $()—(-1)M-1 K ! :
=Y X > Y deo|[Jato- 1%
l 1 h=¢(t)—IM ueu,’f,’(hﬂ)f(sﬁa)kzl =1 =1
2 Ly 1 S 3
=~k
S s S CHURNTHCON DY 2 2 nb)
— h=p(t)—IM  uelUfi_ ., (s,a) k=1
2 Ly 1
_r 16 \ ’ M
14K 1—exp(—1/4nuavg(s,a)MT)( Mita g(S a)Mr)
© 2 Lp 256Ln
< = 160 pavg (s, a) M T < |
T 1l-9K Uﬂavg(s,a)MT 1t g(s a) ’ (1 *V)K

where (i) holds since 1/4npuag(s,a)M7 <1 and e™® <1 — 1z for any 0 <z < 1.

By combining the bounds obtained above and using the fact that % <1land L < 64log(TK), we can

conclude that
. N 2n 256Ln 129 [Lny
min D(y,yz) < + < —.
s DO < Tk T ok STV E

Step 3: concentration bound over ). We now show that for all elements in Y= {9.: z€ ZE"1x 20}
satisfy

K t—1

e 624 4|S||AIT?K
S S B aiz)| < o tog (1) tog BT (158)
k=1u=0

with probability at least 1 — W. It suffices to establish (188) for a fixed 2 € ZL~1 x Z; with probability

5
at least 1 — TSTATY where
V| = 2571 x Zo| < (4K pravg (s, a) M) < (K /n)" < (TK)". (189)
For any fixed z = (Z1,---,21) € 21 x 2, since @§7t(s,a;z) =7k (s,a) l( " )zl only depends on the

events happened until u, which is independent to a transition at uw + 1. Thus We can apply Freedman’s
inequality to bound the sum of g% (s, a; z) since

E[gE (5,05 2)|Vu] = 0, (190)
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where ), denotes the history of visited state-action pairs and updated values of all agents until u, i.e.,

V. = {(sﬁ,aﬁ),VUk}ke[K]’vgu. Before applying Freedman’s inequality, we need to calculate the following
quantities. First,

1(u,t)
5N ~ 18n
By(s,a) = ke[lg{%)éu<t|;’y\ﬁ7t(s,a;z)| < zF(s,a) lljl zl||P(s,a) — P7’f+1(s,a)||1||Vf||oo < A=K (191)

where the last inequality follows from ||P(s,a)||1, [|[P¥(s,a)l|1 < 1, [VF {]le < ﬁ (cf. (30)), 4 < 1, and
(185a) in Lemma 16. Next, we can bound the variance as

t—1 K
Wi(s,a) = > D E[@ (s a;:2)°| V]
u=t—LMT k=1
$(t)—(1-1)M—1

l
=> >, Z S @sa) [] ) Vareew (VE)

=1 h=max{0,¢(t)—IM} k=1 uel,{h_r (h+1)T(S a) I'=1

L l o(t)—(1—1)M—1
) WZ(H 3> YOOy Y @y

=1 \lI'=1 h=maxz{0,¢(t)—IM} k=1 uEL{hT (h+1)7(s a)

(if) 2 L ! o\ 647 pavg (s, a) M T
< = 32 avg

(1 —7) ; (l’_l l K
(iif) 12877 Lav,
< K avg Zexp —1/2(1 — 1)nptavg (s, a) M)

128772,Uavg(57 a) 1
T K(1-9)? 1—exp(—1/2npavg(s,a)MT)
(iv) 2
) 1280 tave (5, a) M7 4 __ 520 (192)

. K(1—=79)?% npag(s,a)Mr  K(1—7)2" "~

where (i) holds due to the fact that [|[Varp(V)|leo < |1PIl1([[V]lso)? +(IP]l11]V |ls0)? < = W)Q because ||V ||oo <
ﬁ (cf. (30)) and ||P|; < 1, (ii) follows from (185c) in Lemma 16, (iii) holds due to the range of Z and

Z, is bounded by exp(—1/4npiavg(s,a)M7) and 1, respectively, and (iv) holds since e=* < 1 — iz for any
0<z<1land 1/2npag(s,a)MT <1.

Now, by substituting the above bounds of W; and B; into Freedman’s inequality (see Theorem 4) and
setting m = 1, it follows that for any s € S, a € A, t € [T] and ¥y, € Y,

K t-1 S .
Zzﬂﬁ,t(s’a;z = \/SmaX{Wt(S a), ﬁ}l w + %Bt(s,a) logw
k=1u=0
n ASIAITIY) 24 4IS|IAITIY)
<14/4 1 1
\/096K(1—’y)2 0g 5 +K(1—'y) og 5

(i) 2
9 8 [nL log 4|S||A|T K,
1-7V K J

(193)

with at least probability 1 — where (i) holds because | Y| < (TK)E given that Nitavg (s, a)MT < 1/4,

__ 6
anL 4|S||A|T*K SIAIT] .
and =& log === < 1. Therefore, it follows that (188) holds.

Step 4: putting things together. We now putting all the results obtained in the previous steps together
to achieve the claimed bound. Under By, there always exists ¥, := ¥, € Y such that (187) holds. Hence,
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setting ¢ = (20_64) \/% log (TK) log 74‘SII“§‘T2K7

K t—1 K t—1
DD Tiilsa) < DY Tuilsiaiz)| + DG, G:)
k=1u=0 k=1 u=0
78 2
. nL log AS[AT?K 129 [Ln
1-9V K ) 1-~4V K
2
2064 \/ 4|S|\¢§|T K’ (194)

where the second line holds due to (188) and (187), and the last line holds due to L < 64log (TK). By
taking a union bound over all (s,a) € § x A and t € [T], we complete the proof.

C.6.1 Proof of Lemma 16

For notational simplicity, let h be the largest integer among h € (hg, ¢(t) — (I — 1)M) such that

K
SONE - n1ys(5,0) < 2K prog(s,0) M. (195)
k=1
Then, the following holds:
K
; hrﬁr Z <h1*5“+2 hor, (- (s,0)

< KT + 2K plavg (s, a)MT. (196)

Also, for the following proofs, we provide an useful bound as follows:

f: (1 . n)—N}’:‘r,(thl)r(&a) _ Z£:1 677N1);r,(h+1)r(s,a) <1tz Zk —1 h7—, (ht1)r (s,a)
k'=1 K B K B K

Yhrmt NEL a1y (5,0)
< exp (277 - h;m , o (197)

which holds since 1 4+ z < e” <1+ 2z for any z € [0, 1] and nNhT (hinyr(8,a) <mr < 1L

According to (184), for any integer u € [h,t — (I — 1)MT), ¥ (s, a) is clipped to zero. Now, we prove the
bounds in Lemma 16 respectively.

Proof of (185a). For u € [hoT, hT),

P(u)-1 K —N¥ (s,a) —Nk (s,a)
N , 1 _ h7,(h+1)T 1 — ¢(u)T,u+1\"»
Hsa) = [] (Zk 1 (1—n) ) n(1 —n)

K K

h=h
- K K

h=ho
(i) 2n K i 3n
< exp (K ;NhOT,(ﬁ_l)T(s,a) =
(iii) 3n (iv) 9
< exp(4nttavg (s, a)MT)I? < % (198)

where (i) holds since (1+n)* < e"* and nN ¢(u)7’ ws1(8,a) < <1, (ii) holds due to (197) and the fact that
d(u) < h — 1, (iii) follows from the definition of & in (195), and (iv) holds because 4npavg (s, a) M7 < 1.
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Proof of (185b). By the definition of h, it follows that

o(t)—(1-1)M~-1 K h—1 K
~k k
> PR SEACHE S S s
h=hg uEZ/{}’fT,(Hl)T(s,a) k=1 h=hg uEUhT (h+1)_’_(s,a) k=1

Using the following relation for each h:

K
Z Zxﬁ(s,a)

UEUE (1,4 1y, (5:0) k=1

—NF s,a
h T, (h’+1>7—(5’a) K Zueb{ (s,a) 7](1 — 77) Nh,r,u,+1( ,a)

_ Z’ 1_) T 1)7\S
H k'=1 T Z hr,(h+1) =

h'=hg k=1
H Zk/ 1 (1—mn)" Ny, (h’+1>r(5’“) i Niir (hg1y-(5:0) -1
- K = K

h’T (h'+1)r (5:@)

K bl

h/T (h’+1)r( a)

Ypoa(l=m)"
_ H k =

HZk’ll_)

and applying (197), we can complete the proof as follows:

P r fens [ (M)

h=ho weltk a) k=1 h'=h

hr,(h+1)7 (s,

K
277 Zkl 1N}]f Th7'<s CL)

-1
K

(1)
< exp (477:uavg(35 a)MT + 2777-) -

(ii)
< 16Mptavg (s, a) M,

where (i) follows from (196), and (ii) holds because e” < 142z for any = € [0,1] and 217 < 4npayg(s, a)MT <
1/2.

Proof of (185¢). Similarly,

¢(t)—(1-1)M—-1 K h—1 K
> >, @)= PO BCACL)
h=hg w€UY 1y (s,0) k=1 h=ho ueldy_ ., ), (s,0) k=1

Using the following relation for each h:

K
> > (zh(s,a))?

uEZ/lhT (h+1)7—(gva) k=1
? 2 _2Nk7'u l(sva)
_ H Zk’ 1 (1—-n)" Ny (h/+1)7(5 a) i ZuEU,’ny(Hl)T(s,a) n?(1—mn) hrut
K k=1 K2
< Zk' 1 (1—n)" h/f w1y (5:0) K 77((1 _ n)*QN})fT,(hH)T(S»a) —1)
- K > m

=
—
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K ’ 2 K ,
<N hl—[l oxb | 2 Dok=1 Nflfff (h'+1)7 (s, a) oxp | 4 D=1 Nllfr (h+1)r(57a) 1
K p\<n K p | 2N K

_n Zk' 1 hOThT(S a) Zk’ 1Nk/ (h+1)T (s,a)
= —exp K exp | 4n i -1

K k'
i s,a ,_+ N s,a
_ % (exp <4772k =1 hoTKh+1)T( )) — exp <4772k: =1 ;g‘r,hT( )>> 7 (199)

where the inequality is derived similarly to (197) under the condition 2nT < 1, we can complete the proof as
follows:

=

hol K P (s,a)
k 2 n k=1 hoThT
NP IS DT IEE (Y (R o
h=ho ueuf (hi1)r (5:@) k=1
@) n
< 2L (exp (St (3. )M + dr) — 1)
(2) 641> f1avg (s, a) M T

R (200)

where (i) follows from (196), and (ii) holds because e* < 144« for any = € [0, 2] and 497 < 8nptavg(s, a) M1 <
1.

C.7 Proof of Lemma 8

The proof follows a similar structure to that of Lemma 5. We omit common parts of the proofs and refer to
Appendix C.4 to check the detailed derivations. First, we decompose the error term as follows:

E3(s,a) fyz Z &ﬁ’t(&a)P(s,a)(V* -k

k=L u€Us 41— p).(5:2)

=:E$a(s,a)

K
+vy > B (s,a)P(s,a)(V* = VF). (201)

F=Lucly gy gy, (5:0)

=:E3%(s,a)
We shall bound these two terms separately.

e Bounding E}%(s,a). First, the bound of E}%(s,a) is derived as follows:

K
B (s,a)| <7 > G (s, 0) [ P(s, @)1 [[V* = ViFllo
F=1u UG, (1) gy (5:0)
(<1) L(l — n)% Zszl N(k(b(t)—[f)r,t,(sla)
=14
(11) 2 NavgﬁT
< —(1—m) 202
< 71- 7( n) : (202)

where (i) holds due to Lemma 6 (cf. (66d)), and (ii) follows fromapplying Lemma 10 that with
probability at least 1 — ¢,

K
KpBru
k avg
> Nsw-pyralsia) 2 =€

holds for all (s,a) € S x Aand 0 < u < v < T as long as 57 > ty,.
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e Bounding F}*(s,a). Combining (156) and Lemma 14 to bound ||V* — V¥||.., we bound E*(s,a) as
follows:

K
|EP(s,a) <7 > G (s,a) [V = V||

= k
F=Lu€Uf, ) _gyri(s:@)

K ¢(t)—-1
<y, > S (s, a)(1+ 2071 Anr e + Olocal)

k=1 h=¢(t)=Bu€lUf_ ), (s,a)

1+
< Olocal + —— [N (203)

max
2 ¢(t)—B<h<¢(t)

log Q‘SH?lTK for notational simplicity, and the last inequality

1—n
Ayt *

8yn/T—1
where we denote ojoes = 77}7;

follows from Lemma 6 (cf. (66¢)) and the assumption that n <

Now we have the bounds of E}?(s,a) and E}*(s,a) separately obtained above. By combining the bounds
in (201), we can claim the advertised bound, which completes the proof.
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