Advances in Federated Optimization:
Efficiency, Resiliency, and Privacy

Yuejie Chi and Zhize Li

Carnegie Mellon University

ICASSP Tutorial
June 2023



Acknowledgements

Boyue Li Haoyu Zhao
CMU—Apple Princeton

This work is supported in part by NSF, ONR, and AFRL.




Introduction



Empirical Risk Minimization (ERM)

Given a set of data M,

L 1
minimize, f(x) = N Z Uz z)
zeM
Here, N = number of total samples.
® convex: least squares, logistic regression
® non-convex: PCA, training neural networks (focus of this tutorial)
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Let’s go distributed

Distributed/Federated learning: due to privacy and scalability, data
are distributed at multiple locations / workers / agents.

Let M = U; M; be a data partition with equal splitting:

1 n
== Zfi(:c), where  f;(x) : Z Ux; 2
i=1 26./\/17,
( P ey f1(x)
fs(z) Ty ==
2 w n = number of agents
. N/n = number of local samples
Fo LWEN N
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Federated learning

o >

P T © o

N . > somuch too and $

A 12 3 4 s 6 7 s 9 o

@ qgqwer tywuiop
asdf gh j kI

= & z x cvbnma®

B. 723 © @ Engish . @

Image credit: Google

FORBES > INNOVATION > Al

IBM Federated Learning

. How Apple personalizes Siri without
Resea}'ch - EthfaCtlng hoovering up your data
MaChlne Learnlng he tech giant s using privacy-preserving machine learning to.

. i assistant while keeping your.data on your phone.|
MOdelS From Multlple improve its voice assistant wi
Data Pools By KarenHao

[December 11,2019

Kevin Krewell Contributor
Tirias Research Contributor Group ©

Federated learning is deployed nowadays by companies in many areas,
e.g., on-device inference.



Multi-agent and distributed information processing

Decentralized processing without central coordination in wireless sensor
networks, internet of things, swarms, ...



Two distributed schemes

P e, fi(z)
fs(z) T ¢ -

Server/client model

PS coordinates global information
sharing

Network /decentralized model

agents share local information over a
graph topology



Two data regimes

Devices

cross-silo cross-device:

small n, large m small m, large n



Challenges in federated/decentralized learning

¢ Communication efficiency: limited bandwidth, stragglers, ...

® Heterogeneity: non-iid data and systems across the agents

® Privacy: does not come for free without sharing data




Communication efficiency

Communication cost = Communication rounds x Cost per roundJ

® Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).

® Communication compression: compress the message into fewer
bits, e.g. sparsification or quantization (Alistarh et al., 2017).

x C() C(x)

— How to design communication-efficient algorithms?
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Data heterogeneity

Entities gg
e i @ g.
Sfeols Users g

=1

Devices |

Heterogeneity measure

]
|

local objective

#+ global objective J

— Can we tame the data heterogeneity?
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A little privacy, please

© MAZK ANDEZSON WIWW ANDEZTOONS.COM

US State Privacy Legislation Tracker

“Before I write my name on the board, I'll need to know
how you're planning to use that data.”

Privacy guarantees are becoming increasingly critical!

)

— Can we design privacy-preserving algorithms?



Tutorial outline

Part 0: Primer on centralized nonconvex optimization

Part 1: Efficient federated optimization via local methods
® Federated averaging

® SCAFFOLD: dealing with heterogeneity via variance reduction

Part 2: Communication-compressed federated optimization
® How do we compress? the role of error feedback
® Dealing with data heterogeneity

Part 3: Private federated optimization
o Differential privacy
® Understanding gradient clipping

13



Part 0: A Primer on Centralized Nonconvex
Optimization



Unconstrained optimization
Consider an unconstrained optimization problem

minimize, f(x)

Definition (first-order critical points)

A first-order critical point of f satisfies

How do we converge to first-order critical points? )
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Smoothness

A function f(x) is L-smooth if

[Vf(z1) = Vf(z2)ll2 < Lllz1 — 2|2

16



Convergence of gradient descent (GD)
Gradient descent (GD):

Tiy1 = T — ntVf(wt)

where 7 is the learning rate.

Theorem (Convergence of GD)

Suppose f* = min, f(x) > —oco. Setting ny = n = 1/L, it satisfies

2LA
Tzuw N2 < 222,

where A = f(xo) — f*.

® GD converges at the rate O(1/7) in terms of the average squared
gradient norm.

® For finite-sum problems of size n, the IFO complexity of GD is
O(ne™') to reach E||V f(z°U™*)||3 < e.

17



Convergence of GD under smoothness

® By smoothness,
f(@er) = f(@e) = f(ze =V () — f(21)
< (V@) ~nV (@) + 2 [0V 1)

aslongasn <1/L.

® Telescopingt =0,1,...,7 — 1 gives

1S 9 H@|2 < 3 (Flonn) — ) = flan) — far) <
t=0 t=0

Setting n = 1/L finishes the proof.

18



Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD):
Tep1 =@ — V(w8 2e), 2~ M
where 7, is the learning rate.

® Unbiasedness:
E.[V{i(x;z)] = Vf(x).

e Additional assumption is needed for convergence analysis.

Definition (Bounded gradient assumption)
For any x, z € R?, there exists some G > 0 such that

Vi, z)[]2 < G.

19



Convergence of SGD under bounded gradient

Theorem (Convergence of SGD)
Suppose f* =ming f(x) > —o0 and ||V{(x, z)|2 < G for any

x,z € RY. Setting n = 1/G22—%T, it satisfies

1 = ) LA
= D E[Vi(=)|, <Gy =~
T ; 2 T

® SGD converges at the rate O(1/+/T) in terms of the expected
average squared gradient norm, which is slower than GD.

® For finite-sum problems of size n, the IFO complexity of SGD is
O(e72) to reach E||V f(z°utPut)||3 < e.

20



Convergence of SGD

® By smoothness,

f(@egr) = f(@e) = fme — V(245 20)) — f24)

< (Vi (@), ~nV e z0) + 5 |19 )

2G%L
—(V f(x), VEl(xs; 20)) + 1 3
® Taking conditional expectation at the ¢-th iterate,
272
2 G°L
Euf(@e1) = f(@i) < —n[|V (@), + 5.
® Telescoping t =0,1,...,T — 1 gives
—EZHVf )3 < ”T st

Setting n = G%—%T finishes the proof.

nG?L

2
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Bounded variance assumption

Definition (Bounded variance assumption)
For any & € R, there exists some o > 0 such that

E.|V{(z,z) - Vf(z)[3 < 0.

® Under unbiasedness, this assumption is equivalent to
E.||Vi(z, 2)[5 < ||V f(2)]3 + o>

The convergence of SGD can be established under the relaxed bound
variance assumption (Ghadimi and Lan, 2013):

LA A
output\||2 <« = =
E|[V/ (@)} S S +0y/

® By picking large enough batch size to make o sufficiently small, the
rate matches that of GD.

22



Can we achieve faster rate?

Variance reduction: perform SGD with a carefully designed stochastic
gradient (SG) g::
Ti41 = Tt — NGt

SVRG (Johnson and Zhang, 2013) assumes (g, V f(xo)) is a reference
point,
g: = Vl(xy; z¢) — VE(xo; 2¢) + V f(x0)
N——— S~——

—_———
SG at x; SG at x¢ FG at =

zZero-mean

® Unbiased: E[g;] = V f(x);
® V\ariance:

gt — V(@) = [Vlwe; 20) = V()] = [VE(w0; 20) — V (20)]

if the two terms are positively correlated, then variance reduction
occurs, i.e. Var[g] < Var[V{(zy; z)].

® Update the reference x( periodically.
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Can we achieve faster rate?

Variance reduction: perform SGD with a carefully designed stochastic
gradient (SG) g::
Tir1 = Ty — NGt

SAGA (Defazio et al., 2014) maintains a table of stochastic gradient g(z)
at each sample z:

1
gi: = Vﬂ(wt, Zt) - g(zt) + - E g(Z) ’
— Y " zEM
SG at =, old SG at =z, —_————
average of old SGs

Zero-mean

9(zt) < V(x4 21)

For finite-sum problems of size n, the IFO complexity of SVRG/SAGA
achieves the rate O(n 4 n2/3¢~1) to reach E||V f(x°'tP"t)||3 < ¢, which
is sub-optimal.

24



Can we achieve the optimal rate?

Variance reduction: perform SGD with a carefully designed stochastic
gradient (SG) g::

Ti41 = Tt — MGt

SARAH/Spider (Nguyen et al., 2017; Fang et al., 2019) assumes
(xo, Vf(xp)) is a reference point,

gr = V(x4 25,) — VU415 25,) + g1

where go = V f(z?).
® Biased: E[g] # Vf(x:);
® The stochastic gradient is recursive.

For finite-sum problems of size n, the IFO complexity of SARAH /Spider
achieves the optimal rate O(n +n'/2¢71) to reach E||V f(x°t")||2 < e.

25



Summary

The IFO complexity to reach E||V f(z°t"!)||2 < & under smoothness.

Method | Complexity | Additional assumption
GD 2 none
SGD % bounded gradient or bounded variance
SVRG/SAGA n+ @ none
SARAH/Spider | n+ /2 none

€

1/2
Lower bound n+ " none




Part 1: Communication-efficient Federated
Optimization via Local Methods



FedAvg

Federated Averaging (FedAvg): the first FL algorithm (McMahan et al.,

2016) that alternates between local updates and global averaging.

- RNETS

2 = B

~)

i)
'l

® Also known as local SGD: the number of local updates = FE.
® When E =1, reduces to distributed SGD:

1 n
Ti41 = Tt — ﬂﬁ vaz(xt)
i=1

28



Convergence guarantees of FedAvg

Definition (Bounded gradient dissimilarity)

There exist constants G > 0 and B > 1 such that for all z € R%:

*levfz P < G* + B[V f ()|

® Treating f;(x) as sampling f(x), this assumption mimics the
bounded variance assumptions. When B =1,

~in |V fila) = V f(@)|I3 = Z IV fi(@)1? = [V f ()|
< GQ.
When f; = f,set G=0and B=1.

29



Convergence guarantees of FedAvg

Theorem (Karimireddy et al., 2019)

To achieve E||V f(z°UtPu)||2 < ¢, FedAvg takes at most an order of

o2 " G +B2
mBe2 = g3/2 €

iterations, where o is the local sampling variance.

2

e 2 error due to local stochasticity
o G

=7+ B;: error due to client heterogeneity

30



FedAvg is sensitive to data heterogeneity

CIFAR-10 Learning Curves
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Figure credit: (Hsu et al., 2019)

The performance gets worse with more local updates for heterogenous
data. J
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FedAvg is sensitive to data heterogeneity

clientl  gaj | clientupdate
," | server update
.' [ SGD update
[ client drift
[ true opt.

[ client opt.

Client drift: the average of the local optima is not the global optimum!

How to design better algorithms that are more resilient to
heterogeneous data? J

32



SCAFFOLD: leveraging variance reduction

SCAFFOLD (Karimireddy et al., 2019): federated SAGA (Defazio et al., 2014)

s . .
[BES ¢ local gradient
I correction

v ’ 1 ,/,k/;l " - ‘ client update

® Client i performs K steps of SGD
using local control variate ¢’

yi <y —n(gi(yi) + c—¢)

correction

® c: estimated update direction
for server

® ¢;: estimated update direction
for client 4

Algorithm 1 SCAFFOLD: Stochastic Controlled Averag-
ing for federated learning

1: server input: initial  and ¢, and global step-size 7,

2; ¢;. and local step-size n;

3: for each round r = 5

4: | sample clients S C {1,

5: communicate (x, c) to all clients i € S

6:  onclient i € Sin parallel do

7 initialize local model y; < x

8: fork=1,..., K do

9: compute mini-batch gradient g;(y:)

10: yi <y —n(g:(y) —ei + ¢

11 end for

12: e () gi(z), or (i) ¢; — e+ ,\%H(z — ;)
13: communicate (Ay;, Ac;) + (y; —z, ¢ —¢;)
14: &5 = cl‘

15:  end on client

16:  (Awm,Ac) « \397\ Y ies(Ayi, Acy)

17 z<—z+7]gAzandc<~c+%Ac

18: end for

33



Convergence of SCAFFOLD

Theorem (Karimireddy et al., 2019)
To achieve E||V f(x°®Pt)||2 < ¢, SCAFFOLD takes at most an order of

0.2

mEe? + e

2

iterations, where o~ is the local sampling variance.

® Handles arbitrary data heterogeneity: does not require the bounded
dissimilarity assumption!

® Also allows client sampling; details in the paper.
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FedAvg versus SCAFFOLD
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Figure credit: (Karimireddy et al., 2019)



Key takeaways and further pointers

Key takeaways:
® |ocal updates help improve communication efficiency
® FedAvg is sensitive to data heterogeneity

® | everage variance reduction to deal with heterogeneity

Further pointers:
® Client sampling

36



Part 2: Communication-compressed
federated optimization



Communication compression

Communication compression is a popular approach to reduce
communication cost (e.g., (Alistarh et al., 2017); (Koloskova et al., 2019)).

x () C(z)

ElC(x)—=|’ < (1-a)lz|*
u

¢ random sparsification: « = k/d measures the compression ratio.

® Other examples: random quantization, top-k quantization, etc....

38



A prelude: what should we compress?

—~

" e fi(@)
B -
GO

CEne) g %1@ )

What about

Somewhat surprisingly, direct compression may not work!

J
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A counter-example

Consider n = 3 and let f;(z) = (a] =)? + 3|z, where

a; = (-4,3,3)", as=(3,-4,3)" and a3=(3,3,-4)".

e Let ° = (b,b,b), and the compressor be topy,
Vi) =b(-15,13,13)" —  C(Vfi(2")) = b(—15,0,0)"
Vfa(x®) = b(13,-15,13)" —  C(V/f2(x°)) = b(0,—15,0)"
Vfs(x) = b(13,13,—15) "  —  C(Vf3(x")) = b(0,0,—15)"

® The next iteration

x! =20 — n% ZC(Vfi(:BO)) = (1+5n)z°,

i=1

—

and then x! = (1 + 51)'2° diverges exponentially.

40



A better scheme: shift compression / error feedback

(Stich et al., 2018; Richtarik et al., 2021)

95,
® The PS updates the model:
ot 1Y

. Q

— gl is the compressed surrogate of V f;(z") 4

=
S I N
|

|

¢ Clients update g} with a shift compression:

7
7

g™ =gl +C(Vi(=""") — g]) i

difference compression

— gl is constructed accumulatively over time

41



Let's revisit the example

® Let 2° = (b,b,b), and the compressor be topy, g? = C(V f;(z?)),
and the first iteration is still &' = (1 4 5n)x°.

® Error feedback:

—75n
Vii(z') — g =b [13(1 + 5n)
13(1 + 5n)
and as long as n < 13/30:
0
C(Vfi(z') —gi) =b [13(1+5n)
0

receiving information from coordinates other than the first one,
leading to a better compressed gradient!

42



Let's revisit the example

F I \ \ =

I | — Direct compression ]

102 | |— Error feedback |

~ 10 E
ER 1
10° ¢ E

107" ¢ E

L | | | | | |

|
0 20 40 60 80 100
Iterations

We'll consider algorithms using shifted compression!
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Case study: decentralized nonconvex optimization

e, f1()

fs(l)"\}' v ‘

(95

&

v \ %
filx) (@)

),

e

f3(x)

©

® The mixing of information is characterized by a mixing matrix
W = [w;;] € R™*™ aligned with the network topology.

® The spectral quantity, which we call the spectral gap,
pEL—PDa(W) € (0,1]

captures how fast information mixes over the network.

Goal: design fast-converging algorithms with communication compression)

44



Data heterogeneity

-]
— LA ﬂ s

5 “T0

0
Users &/
Devices |

Heterogeneity measure

== 0ol
A

Eil|Vfi(x) - Vf(x) |* <G

local obj. global obj.

— G can be unbounded!
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Prior art

A
Iteration

lexi
complextty CHOCO-SGD/Deequueeze

G
o(5)

o(1)

)

uncompressed

M | =

1/e

CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):
® slow convergence rates (need more communication rounds) and
® |ncompatible with heterogeneity

Can we converge at the rate O (%) under arbitrary heterogeneity? J

Yes, by using gradient tracking!
46



Detour: DGD with gradient tracking

Centralized Gradient Descent (GD):

ot — pt=1 nvf(wt—l)
Constant step size, linear convergence for strongly convex problems.
Decentralized Gradient Descent (DGD):

t_ t—1 (i1
mifzjwijwj =V fi(z; ")

mixing local gradient

Constant step size, does not converge!

At optimal point * : Vf(x*) =0, but Vf;(z*) #0 )

How do we fix this?

47



DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ t—1 t
;= E jwijmj —ns;

—_——
mixing

t— st -V fi(xh) — V(2
Si ZJ w Jsz + f (wz) f (wz )

mixing gradient tracking
This trick, and other alternatives, have been used extensively to fix the
non-convergence issue in decentralized optimization.
® EXTRA (Shi, Ling, Wu and Yin, 2015); NEXT (Di Lorenzo and Scutari, 2016);
NIDS (Li, Shi, Yan, 2017); ADD-OPT (Xi, Xin, and Khan, 2017); DIGING
(Nedic, Olshevsky, and Shi, 2017); DGD (Qu and Li, 2018);

® many, many more...
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BEER: gradient tracking + shift compression

X =[xy, 22, - ,x,]: local models.
VF(X) = [Vfi(z1),Vfaxzs), -,V fn(x,)]: local gradients.
®* model update:
t+1 _ oyt t o t
X=X H W 1) -0V
mixing gradient

where H' is the accumulated compressed surrogate of X*t, and V!
is the global gradient estimates across the agents.

® gradient tracking:

VHL = Vi 4y GHW — I) + VF(X) - VF(X?),

mixing gradient tracking

where G is the accumulated compressed surrogate of V.

e Both H! and G! are updated using shift compression.

49



Theoretical convergence of BEER

Theorem (Zhao et al., NeurlPS 2022)

To achieve E||V f(x°"**'")||? < ¢, BEER requires at most

1
¢ (p?’aE)

communication rounds, without the bounded heterogeneity assumption.
Here, « is the compression ratio, [3 is the spectral gap of the network.

® Assuming constant « and p, the convergence rate of BEER is

of2)

® Can also be extended to using stochastic gradients.
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Theoretical convergence of BEER

A
Iteration

complexity /
CHOCO-SGD/DeepSqueeze

G
o(s7)

/j ncompressed
TR of:=

= >

1/e

BEER converges at the rate O (1) under arbitrary heterogeneity! J
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BEER vs CHOCO-SGD

0 500 1,000 1,500 2,000
Communication rounds

26 1
g
j —4— BEER 5 0.8 1
2 4 —oCHOCO-SGD | ’;55
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o0 9 | é 0.4 B
B=] 173}
g 3]
=] 502 —A—BEER
— A
) —— CHOCO-SGD

. )

0

500 1,000 1,500 2,000
Communication rounds

Figure: Training gradient norm and testing accuracy against communication
rounds for classification on the unshuffled MNIST dataset using a simple neural
network. Both BEER and CHOCO-SGD employ the biased gsgd, compression
with b = 20.
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Key takeaways and further pointers

Key takeaways:

® Compression can greatly improve communication efficiency without
hurting performance

® Compressing the error, not the gradient

® Accelerating decentralized optimization via gradient tracking

Further pointers:

® Biased versus unbiased compression

® Uplink and downlink compression

53



Part 3: Private federated optimization



A little privacy, please

© 1Az ANDEZSON WIWW ANDEZTOONS.COM

US State Privacy Legislation Tracker

“Before I write my name on the board, I'll need to know
how you're planning to use that data.”

Privacy guarantees are becoming increasingly critical!
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Differential privacy

Differential privacy (Dwork, 2006) is a popular approach for preserving
privacy in practice, and widely adopted by Google, Apple, US Census, etc.

Definition (Differential privacy (DP))

A randomized mechanism M : Z — R satisfies (¢, §)-DP, if for any two
neighboring dataset Z, Z; € Z and any outputs R C R, it holds that

P(M(Z) € R) < ¢P(M(Z;) € R) + .

The neighboring datasets are defined as Z = {z1,...,2,} and
Z;={z1,...,2,...,2,}, which means Z and Z; are only different at
one sample.

® Probabilistic definition: making it hard to tell if a data sample is
used or not.

® Suitable to protect the privacy of individual records (cross-silo).

56



Gaussian mechanism

Gaussian mechanism: add noise to
each sample gradient:

gop (@1 2) < Vil(xy; 2) + wy,

where w; ~ N(0,03p1).
® The noise level opp depends on the size of V{(xy; z)
— requiring bounded gradient assumption.
® or, clip the gradient before adding the noise
gop(@y; z) = Clip, (Vl(xy; 2)) + wy

— harder to analyze due to clipping!

57



A baseline: single-machine DP-SGD

Differentially private SGD (Abadi et al., 2016) in a single-machine setting:

gop (x+; z) + Clip, (Vl(xy; 2)) + wy

Theorem (Abadi et al., 2016)

Assume the bounded gradient assumption holds. DP-SGD achieves
(e,0)-DP, and the utility

dlog(1/5)
TZEHW S S = m

within T < ——2¢—— = ¢! rounds.

\/dlog(1/6)

\/dlog(1/6)

me

® Base utility ¢,,, = . lower is better.

® Stronger privacy, worse utility (accuracy), less communication.
® gpp < qu’g‘r G is the gradient norm: add more noise when
running the algorithm longer.
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Local differential privacy

Local differential privacy (McMahan et al., 2018) protect from leaking info
to other agents.

Definition (Local differential privacy (LDP))

A randomized mechanism M : Z — R satisfies (€, §)-LDP for client ¢, if
for any two neighboring dataset Z, Z; € Z and any outputs R C R, it
holds that

P(M(Z) € R) < eP(M(Z;) €R) +6.

The neighboring datasets are defined as Z = {z1,...,2,} and
Z; ={z1,...,2},...,2,}, which means Z and Z; are only different at

1
agent 7.
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Protecting privacy via Gaussian mechanism
m W
mechanism %
Gaussian
:> mechanlsm :> g
Gaussian 6 :7
. @ mechanlsm

Introducing local differential privacy to guarantee the client privacy )

AP
Dﬂ
oo

]

— used by Google, Apple, etc in products

60



Warm-up: a direct compression approach (CDP-SGD)

Stochastic gradient :> ‘ n?:clqusas:::m l :> l Directcompressionl

Theorem (Li et al., NeurlPS 2022)

Assume the bounded gradient assumption holds. CDP-SGD achieves
(e,0)-LDP, and the utility

T
1 2 1

= 2 ElIVf(®)l2 & ——= - ¢m,
T; van

within communication complexity on the order of
dn3/2a3/2¢;n1 + and(j),_nz.
4/ dlog(1/6)

. fr—
Larger ¢., e
fewer communication.

gives stronger privacy, worse accuracy,

® Caveat: the communication complexity is O(¢;,,2) when the local
data size m is dominating.
61



Better compression and compute: a unified framework?

-~ ey fi(z)
, _ fo(@) 2Oy =
® Compression: shift compression gy
with many options, e.g. - /
sparsification or quantization W ;
N e
e Computation: stochastic local %
gradient estimators with many ful=) / F2lw)
options, e.g. SGD, SVRG or SAGA ;%r
fs(x)

Can we develop a unified framework for private FL with compression,
with a characterization of the privacy-utility-communication trade-off? J




SoteriaFL: a unified framework for compressed private FL

Local gradient Gaussian . . 5
[ estimator J [___:> ‘ mechanism J @ ‘ Shift compression ' @ Shift update

Highlights of SoteriaFL:
® Flexible local gradient estimators

® Protect local data privacy

SOTERIA ® State-of-the-art shift compression scheme

GODDESS OF SAFETY

Privacy-utility-communication trade-offs

63



Performance of SoteriaFL

Theorem (Li et al., NeurlPS 2022)

Assume the bounded gradient assumption holds. Whenn > 1 /a3,
SoteriaFL—with SGD, GD, SVRG, SAGA—achieves (¢€,9)-LDP, and the
utility

with communication comp/ex:ty on the order of

dn3/2a3/2¢,_n1.

e Communication complexity is linear in ¢!, better than CDP-SGD!

® This analysis applies to unbiased compressions, and adapts to other
gradient estimators too.
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Privacy-utility-communication trade-off

A A
(,C“"bc log(1/9) @d \/a
) ° ‘ \'b"o\
X ‘\\\,d
€
o . 3/2
ommunication— log(1/9) mm“"'t‘ation\a

) /l05(1/9) L S

Stronger privacy ¢ More compression Va

® Stronger privacy, worse accuracy, fewer communication

® More compression, worse accuracy, fewer communication
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Numerical experiments

Compression preserves privacy at a better communication complexity.

Test accuracy

Figure: Shallow NN training on the MNIST dataset under (1,10~3)-LDP.
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LDP meets decentralized ML

N
A

=

D Gaussian mechanism

Introducing local differential privacy in BEER to guarantee client privacy J
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PORTER: BEER meets differential privacy

Theorem (Li and Chi, 2023)

Assuming bounded gradient assumption holds. PORTER achieves
(e,0)-LDP, and the utility

T
1 2 1
— E < - .
T 2 ]Eva(wt)HQ ~ (1 _ a)8/3p4/3 ¢m

within communication complexity on the order of ¢,,2. Here, « is the
compression ratio, (3 is the spectral gap of the network.

® Captures the trade-off with network connectivity.

e Communication complexity degenerates to ¢,,2, due to dealing with
the decentralized setting.
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Getting rid of the bounded gradient assumption?

Definition (Clipping operator)

Clip, (z) =

T
— X
7+ [zl

® The norm of a clipped vector is bounded by 7, i.e. ||CIipT(ac)H2 <T.
® Can also use a hard thresholding operator for clipping.

[[Clip, (@)[|2

T
0.97

—— Smooth
- - - Piece-wise

0 97 |EP



Clipping is widely used in practice
One stone, two birds: clipping is widely used for two reasons (and they
differ when using mini-batches).

® Privacy-preserving via per-sample clipping:

1 .
gop (13 2) < 1 Z Clip, (Vl(z¢; 2)) + we
t z€Z,

® Stabilize training via per-batch clipping:

gac(we; z) « Clip, <|Ilt| > W(%;Z))

z€T,

How does clipping impact the performance of federated optimization? J

Let's take a detour to understand clipping!
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Understanding gradient clipping with batch gradient

Clipping only impacts the size of the gradient, but not the direction.

xyp1 = Tep1 — n:Clip (Vf(2))

® Define §; = m

f@es1) = f(@e) = f (e — mClip (Vf(20))) — (1)
2

<V (@), =mClip, (Vf (1)) £||77tC|iIDT(Vf(wt))H2
77t5 L

= 0V f(z), V(1)) + V£ @],

(e~ "0 v )

77t5t |

< - |V f (s

)z

as long as n;0; < 1/L.
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Gradient clipping: a contradiction argument

When ||V f(a:)[]2 > v,

5 2 1 7|[Vi@ll;
2 VI = 5 S @
)7 Iﬁ

T+v 2
T v

vz

2

= max{r,v} 4

where (i) holds since h(x) = C”fx is convex and increases monotonically
when x > 0. Then, choose any 7 > v, the function value decrease can be
bounded by
2
f(@er1) — f(@e) < A

which can not decrease for more than T = O(£%) iterations.
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Gradient clipping in the decentralized setting

® |et's consider a toy example:

® Number of agents n = 3, problem dimension d = 1
® Local models are 1 = 2 = 3 = z*

® Local gradients are g1 = 8,92 = —2,¢g3 = —6
® The global gradient is

g=1(g1+92+g3)=0.

e Apply Clip,(+), the global gradient becomes

9" = % (Clipy(g1)+Clipy(g2)+Clipy(g3)) = 3(1.6—1-1.25) = —0.22.

Definition (Bounded dissimilarity)

The local and global objectives satisfy the following:

IVfi(@) - Vi@)la < V7 @)l
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PORTER with per-batch clipping

Theorem (Li and Chi, 2023)
Assuming bounded local gradient variance and bounded dissimilarity
assumptions hold. PORTER with gradient clipping achieves
1 1
(1 —a)%pg T2

mln IEHVf Tt H2 <

under appropriate parameter choices and large enough batch size.

® Matches the rate O(1/T"/?) of centralized SGD as long as the
mini-batch size is large enough and the local datasets are not too
dissimilar.

® First convergence guarantee of decentralized optimization with
gradient clipping and communication compression.
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PORTER with per-sample clipping

. 0 Gradient Gaussian f 0
Stochastic gradients ‘ . I :> | l ::> ‘ Shifted com ressnonl
8 E:> clipping mechanism P

Theorem (Li and Chi, 2023)

Assuming bounded local gradient variance and bounded dissimilarity
assumptions hold. PORTER achieves (e,0)-LDP, and the utility

) 1 1/2
< - .
min E[[Vf(z:)l2 < (=) Bpts om

within communication rounds ¢.2.

® Dependencies on mixing rate and compression match previous
results.
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Numerical experiments
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Figure: Shallow NN training on the MNIST dataset under (1072,107%)-LDP.
Both PORTER and SoteriaFL-SGD employ randomasgs compression.
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Concluding remarks



Summary

Resiliency to Communication
Heterogeneity efficiency

Privacy
preserving
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Key algorithmic pillars and trade-offs

It’s all about trade-offs:

e Computation ® Privacy

® Communication ® Performance

Algorithmic ideas to probe the trade-offs:

® | ocal updates ® Gradient tracking
® Compression e Differential privacy
® Variance reduction ° .

® Error feedback
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Robustness to adversary

) 5 e, fi(z) (@) ~ e, fi(z)
s Lo o re= el
" W Cegg’ 3
g g g W
Jul=) (=) Jal@) f2(=)
@ &
fal) Fs(@)
adversarial client Man-in-the-middle

Robust algorithms that are oblivious to adversarial clients/attack?
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Asynchronous updates

Training Progress —

4

M Device A | Device G
g 7 [ DeviceB | [Device F |

§ 1 [DeviceE | Device C [DeviceH
St [ Device D Device |

Model Aggregator
(Aggregation Goal = 4)

Server Model] ‘ Model MO Model M1

Synchronous update

Training Progress —

= | Device A |[_Device G
>

E | Device B | Device F |

£ _|[DeviceC | Device E

3

§ Il Device D ] Device |

Model Aggregator
(Aggregation Goal = 2)

Server Model Model MO | [Model M1 ] [ Model M2

Asynchronous update

Credit: (Huba et al., 2022)

Asynchronous updates to the rescue! J

82



Personalization

Cloud Model
[ |
]
]
s Model A @mmm ModelB I ModelN
== ] L]
1 1 1
. Déta A —— || patas — [| patan
] 1 ]
8 User A g UserB Q UserN
Credit: (Arivazhagan et al., 2019)
Shared the representation, personalize the prediction )
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Vertical FL

o 1-]-} |
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Horizontal FL
sample-distributed

LR

- R
%
|

Vertical FL
feature-distributed

How to design efficient algorithms for feature-distributed data? )
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Semi-decentralized topology

T

Can we combining the best of worlds? J
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RL meets federated learning

Central server

:?: L1y = :&: :#?:

Agent 1 Agent2 " Agentk T Agentk

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global model without sharing datasets. J
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Thank you!

https://users.ece.cmu.edu/~yuejiec
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