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Abstract

Recent advances in aligning large language models with human preferences have corroborated the
growing importance of best-of-N distillation (BOND). However, the iterative BOND algorithm is prohibitively
expensive in practice due to the sample and computation inefficiency. This paper addresses the prob-
lem by revealing a unified game-theoretic connection between iterative BOND and self-play alignment,
which unifies seemingly disparate algorithmic paradigms. Based on the connection, we establish a novel
framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate
dominance optimization that approximates iterative BOND in the parameter space. We provides provable
sample efficiency guarantee for one of the WIND variant with the square loss objective. The experimen-
tal results confirm that our algorithm not only accelerates the computation, but also achieves superior
sample efficiency compared to existing methods.

Keywords: Reinforcement learning from human feedback (RLHF), preference optimization, matrix game,
sample efficiency
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1 Introduction
Fine-tuning large language models (LLMs) to align with human preferences has become a critical challenge in
artificial intelligence to ensure the safety of their deployment. Reinforcement Learning from Human Feedback
(RLHF) has emerged as a dominant approach, significantly improving LLM performance as demonstrated
by InstructGPT [Ouyang et al., 2022] and subsequent works. RLHF combines reward modeling to quantify
human preferences and RL fine-tuning to adjust the LLM’s output distribution, enhancing desired responses
while suppressing unfavorable ones. While RLHF has shown promising results, it comes with significant
extra post-training cost, and the aligned LLM may exhibit performance degeneration due to the alignment
tax [Askell et al., 2021, OpenAI, 2023].

Alternatively, best-of-N (BoN) sampling has emerged as a simple and surprisingly effective technique to
obtain high-quality outputs from an LLM [Stiennon et al., 2020]. In BoN sampling, multiple samples are
drawn from an LLM, ranked according to a specific attribute, and the best one is selected. This simple
approach can improve model outputs without the need for extensive fine-tuning, offering a potentially more
efficient path to alignment. Building upon the success of BoN sampling, a few works explore the iterative
variants of this approach [Dong et al., 2023, Sessa et al., 2024]. Iterative BoN applies the sampling and
selection process repeatedly, potentially leading to even better alignments with human preferences.

However, BoN incurs significant computational overhead due to making n inference calls to generate one
output, especially when n is high. To mitigate the high inference cost of (iterative) BoN, Sessa et al. [2024]
proposed a distillation algorithm, best-of-N distillation (BOND), to train a new model emulating the output
of iterative BoN. However, this approach also has a high training cost, due to the need of collecting multiple
samples in each round of distillation, leading to a major bottleneck for wider adoption.

Given the growing importance and significance of the iterative BoN approach, it raises new questions
about its theoretical properties, practical implementation, and relationship to established methods like
RLHF. In this paper, we delve into the theoretical foundations and practical applications of iterative BoN
sampling for LLM alignment. We address the following question:

What are the limiting points of iterative BoN, and can we design faster algorithms to find them?

1.1 Contributions
We provide comprehensive answers to these questions through the following key contributions:

• We introduce a general algorithmic framework for iterative BoN distillation, possibly with a slow moving
anchor, and uncover its limiting point corresponds to the Nash equilibrium of a (regularized) two-player
min-max game optimizing the logarithm of the expected win rate. This offers a fresh game-theoretic
interpretation that is unavailable before.

• We show that the WIN rate Dominance (WIND) policy, which has a higher chance of winning against any
other policy, solves the minmax game of win rate introduced in RLHF [Swamy et al., 2024, Munos et al.,
2023], and approximates the iterative BoN’s limiting point.
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• We propose a novel algorithm framework, WIND, to find the win rate dominance policy with flexible loss
configurations, and demonstrate it exhibits improved sample and computation efficiency, compared to
prior work while maintaining provable convergence guarantees.

• We conduct extensive experiments to evaluate the performance of WIND, demonstrating competitive or
better performance against state-of-the-art alignment methods such as J-BOND across various benchmarks,
highlighting its efficiency especially in the sampling process and training cost.

1.2 Related work
RLHF and LLM alignment. Reinforcement Learning from human feedback (RLHF) is a effective ap-
proach to train AI models to produce outputs that aligns to human value and preference [Christiano et al.,
2017, Stiennon et al., 2020, Nakano et al., 2021]. Recently, RLHF has become the most effective approach to
align language models [Ouyang et al., 2022, Bai et al., 2022]. The famous InstructGPT [Ouyang et al., 2022]
approach eventually led to the groundbreaking ChatGPT and GPT-4 [OpenAI, 2023]. A variety of RLHF
methods have been proposed, including the direct preference optimization [Rafailov et al., 2024] and many
other variants [Zhao et al., 2023, Yuan et al., 2023b, Azar et al., 2024, Meng et al., 2024, Xu et al., 2024,
Ethayarajh et al., 2024, Tang et al., 2024], to name a few, which directly learns from the preference data
without RL finetuning. Furthermore, value-incentive preference optimization [Cen et al., 2024] has been pro-
posed to implements the provably optimistic principle and pessimistic principle for exploration-exploitation
tradeoff in a practical way.

RLHF via self-play. One line of RLHF methods investigate self-play optimization for unregularized and
regularized two-player win rate games, respectively [Swamy et al., 2024, Munos et al., 2023]. Wu et al.
[2024b] introduced a scalable self-play algorithm for win rate games, enabling efficient fine-tuning of LLMs,
see also Rosset et al. [2024], Zhang et al. [2024] among others.

Best-of-N and BOND. BoN has empirically shown impressive reward-KL trade-off [Nakano et al., 2021, Gao
et al., 2023], which has been theoretically investigated by Gui et al. [2024] from the win rate maximization
perspective. Beirami et al. [2024] analyzed the KL divergence between the BoN policy and the base policy,
and Yang et al. [2024a] studied the asymptotic properties of the BoN policy. The recent work Gui et al. [2024]
also proposed a method to use both best-of-N and worst-of-N to train language models. Sessa et al. [2024]
introduced BOND and J-BOND to train language models to learn BoN policies. Amini et al. [2024] proposed
vBoN which is equivalent to BOND. However, there is no existing work for characterizing the properties of
iterative BoN yet.

Notation. We let [n] denote the index set {1, . . . , n}. Let In denote the n× n identity matrix, and inner
product in Euclidean space Rn by ⟨·, ·⟩. We let supp(ρ) denote the support set of the distribution ρ, and
relint(C) represents the relative interior of set C. We defer all the proofs to the appendix.

2 Preliminaries

2.1 RLHF: reward versus win rate
We consider the language model πθ(·) as a policy, where θ ∈ Θ denotes its parameters, and Θ the compact
parameter space. Given a prompt x ∈ X , the policy generates an answer y ∈ Y according to the conditional
distribution πθ(·|x). For notation simplicity, we drop the subscript θ when it is clear from the context. We
let ∆Y denote the simplex over Y. We let ∆X

Y denote the space of policies as follows:

∆X
Y :=

{
π = [π(·|x)]x∈X | π(·|x) ∈ ∆Y ,∀x ∈ X

}
.

In practice, RLHF optimize the policy model against the reward model while staying close to a reference
model πref. There are two metrics being considered: reward and win rate.
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Reward maximization. Suppose there is a reward model r(x, y) : X × Y 7→ R, which produce a scalar
reward given a prompt x and a response y. RLHF aims to maximize the KL-regularized value function,
given a reference model πref:

Vrm(π) = E
x∼ρ,y∼π(·|x)

[r(x, y)]− βDKL (π∥πref) , (1)

where
DKL (π1∥π2) = Ex∼ρ [KL (π1(·|x)∥π2(·|x))]

is the KL divergence between policies π1 and π2, with ρ being the distribution of prompts. Here, β ≥ 0 is
a hyperparameter that balances the reward and the KL divergence. Without loss of generality, we assume
supp(ρ) is X throughout the paper.

Win rate maximization. Another scheme of RLHF aims to maximize the KL-regularized win rate against
the reference model [Gui et al., 2024]. Given a reward model r, a preference model Px : Y ×Y → {0, 1/2, 1}
can be defined as:

Px(y, y
′) :=


1, if r(x, y) > r(x, y′),
1/2, if r(x, y) = r(x, y′),
0, if r(x, y) < r(x, y′).

(2)

Given a policy pair π, π′, the win rate of π over π′ is thus [Swamy et al., 2024]

P (π ≻ π′) := E
x∼ρ,y∼π(·|x),

y′∼π′(·|x)

Px(y, y
′)

= Ex∼ρπ⊤(·|x)Px(·, ·)π′(·|x). (3)

The KL-regularized win rate maximization objective is defined as [Gui et al., 2024]:

Vwr(π) := P (π ≻ πref)− βDKL (π∥πref) . (4)

The win rate maximization is more aligned with evaluation metric adopted in common benchmarks, and
further, can be carried out without explicit reward models as long as the preference model Px is well-defined.

2.2 Best-of-N distillation
Best-of-N (BoN) is a simple yet strong baseline in RLHF. Given a reward model r and a prompt x, BoN
samples n i.i.d. responses y1, y2, ..., yn from the policy π(·|x) and select the response

y = arg max
y∈y1,y2,...,yn

r(x, y), y1, . . . , yn ∼ π(·|x)

with the highest reward. We call π(n) the BoN policy which selects the sample with the highest reward given
n samples i.i.d. drawn from π. Gui et al. [2024] shows that for any fixed small β > 0, π(n)

ref (approximately)
maximizes Vwr(·) for properly chosen n. While BoN is widely used in practice [Beirami et al., 2024, Gao
et al., 2023, Wang et al., 2024], yet can be quite expensive in terms of the inference cost for drawing n
samples. Hence, BoN distillation (BOND) [Sessa et al., 2024] is developed to approximate the BoN policy π(n)

through fine-tuning from some reference policy πref(·|x), which can be updated iteratively via an exponential
moving average [Sessa et al., 2024].

3 A Unified Game-Theoretic View
In this section, we present a game-theoretic understanding of iterative BoN, which allows us to connect it to
existing game-theoretic RLHF approaches under a win rate maximization framework.
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3.1 Iterative BoN as game solving
Iterative BoN. Due to the success of BoN sampling, its iterative version has also been studied [Dong
et al., 2023, Sessa et al., 2024], where BoN is performed iteratively by using a moving anchor as the reference
policy. To understand its property in generality, we introduce the iterative BoN method in Algorithm 1 that
encapsulates iterative BoN methods with or without moving reference model, which we call the mixing and
no-mixing case.

Algorithm 1 Iterative BoN
1: Input: reference policy πref, iterate number T , Best-of-N parameter n, boolean value Mixing.
2: Optional: mixing rates α1 > 0, α2 ≥ 0 such that α1 + α2 ≤ 1.
3: Initialization: π0 ← πref.
4: for t = 0, 1, · · · , T − 1 do
5: π

(n)
t ← Best-of-N(πt, n).

6: if Mixing then
7: πt+1 ∝ (π

(n)
t )α1πα2

t π1−α1−α2

ref ;
8: else if not Mixing then
9: πt+1 ← π

(n)
t .

10: end if
11: end for
12: Return πT .

Algorithm 1 demonstrates these two cases. In the mixing case, we obtain new policies by mixing the
BoN policy π(n)

t , πt and πref at each iteration with mixing rates α1, α2. In the no-mixing case, the algorithm
simply returns the BoN policy π(n)

t as πt+1 for the next iteration. We will provide some theoretical guarantees
for both cases, using the following game-theoretic framework.

Game-theoretic perspective. We show that iterative BoN is implicitly solving the following game.
Define a preference matrix P x at x ∈ X of size |Y| × |Y| by

P x(y, y
′) :=

{
1, if r(x, y) ≥ r(x, y′),
0, if r(x, y) < r(x, y′).

(5)

Define further fβ : ∆Y
X ×∆Y

X → R as

fβ(π, π
′) := E

x∼ρ,
y∈π(·|x)

[
log E

y′∈π′(·|x)
P x(y ⪰ y′)

]
− βDKL (π∥πref) . (6)

We introduce the following symmetric two-player log-win-rate game:{
π1 = argmaxπ fβ(π, π2),

π2 = argmaxπ fβ(π, π1).
(7)

Let π⋆β be a Nash equilibrium of the log-win-rate game (7), which satisfies the fixed-point characterization:

π⋆β ∈ argmax
π

E
x∼ρ,

y∈π(·|x)

[
log E

y′∈π⋆
β(·|x)

P x(y ⪰ y′)
]
− βDKL (π∥πref) . (8)

Now we present our Theorem 1, which guarantees the convergence to solutions for the above game under
Algorithm 1.

Theorem 1 (Iterative BoN solves game (7)). Let πref ∈ relint
(
∆X

Y
)

and n ≥ 2 in Algorithm 1. Then
π∞ := limT→∞ πT exists, and (π∞, π∞) is a Nash equilibrium of the log-win-rate game (7) when:

1. (no-mixing) α1 = 1, α2 = 0 for β = 0;
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2. (mixing) α1 = η
(1+βη)(n−1) , α2 = n−1−η

(1+βη)(n−1) for any β, η > 0.

In the no-mixing case, we can show that πT obtained by Algorithm 1 converges to the equilibrium
of the unregularized log-win-rate game. In the mixing case, we show that with proper choice of mixing
rates, Algorithm 1 solves the regularized log-win-rate game. To the best of our knowledge, this is the first
game-theoretic understanding of iterative BoN using a general preference model.

3.2 Self-play and win rate dominance
The log-win-rate game (7) is a non-zero-sum game that may be challenging to optimize: the function fβ
is not convex-concave, the Nash equilibria may not be unique, and the log term introduces nonlinearity,
which induces difficulty in estimation. Therefore, we seek a good alternative to the log-win-rate game that
maintains its core properties while being more amenable to optimization.

Specifically, we now consider the following alternative two-player win-rate game:

max
π

min
π′

P (π ≻ π′)− βDKL (π∥πref) + βDKL (π′∥πref) , (9)

which eliminates the nonlinearity in reward, and has been recently studied by Swamy et al. [2024], Wu et al.
[2024b] for β = 0 and Munos et al. [2023] for β > 0.

The following proposition guarantees the game (9) is well-defined and is equivalent to the following fixed
point problem:

π⋆β ∈ argmax
π

P (π ≻ π⋆β)− βDKL (π∥πref)

= E
x∼ρ,y∼π(·|x),

y′∼π⋆
β
(·|x)

[
Px(y, y

′)− β log π(y|x)
πref(y|x)

]
.

(10)

Proposition 1 (existence of π⋆β). π
⋆
β exists and (π⋆β , π

⋆
β) is the Nash equilibrium of the minmax game (9).

Moreover, when β > 0, (π⋆β , π
⋆
β) is the unique Nash equilibrium.

Win rate dominance. The fixed-point equation (10) identifies a policy with a higher winning probability
against any other policy. For β = 0, π⋆0 satisfies P (π ≻ π⋆0) ≤ 1/2 for any π, ensuring it outperforms other
policies. When β > 0, the KL divergence term encourages π⋆β to remain close to πref while maintaining a
high win rate. We term (10) the Win rate Dominance (WIND) optimization problem.

3.3 Connecting iterative BoN with WIND

Due to the monotonicity of log(·), it is natural to believe the win rate game and the log-win-rate game
beneath iterative BoN are connected. We establish the novel relationship rigorously, which allows a unifying
game-theoretic view for many existing algorithms. We define a constant cβ ∈ (0,+∞] related to πref:

cβ := min
x∈X ,

y∈Y\Y⋆(x)


∑
y⋆∈Y⋆(x) πref(y

⋆|x)

4max

{
log πref(y|x)

max
y⋆∈Y⋆(x)

πref(y⋆|x) , 0

}
 , (11)

where Y⋆(x) := argmaxy∈Y r(x, y) is the set of optimal responses for each x ∈ X . We now demonstrate the
relationship between the equilibria set of the log-win-rate game π⋆β and the win-rate game π⋆β .

Theorem 2 (relationship between two games (informal)). Let πref ∈ relint
(
∆X

Y
)

and n ≥ 2 in Algorithm 1.
Then

• When β = 0, π⋆β is also a solution to (10);

• When β ∈ (0, cβ) where cβ is defined in (11), for all x ∈ X , π⋆β satisfies

∥∥π⋆β,x − π⋆β,x∥∥1 ≤ 4(|Y| − |Y⋆(x)|) exp
(−∑y⋆∈Y⋆(x) πref(y

⋆|x)
4β

)
→ 0 as β → 0. (12)
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Theorem 2 shows when β = 0, both games have the solution π⋆0. For small positive β, the ℓ1 distance
between the solutions of the two games is bounded by a term that decreases exponentially with 1/β. We
verify Theorem 2 empirically on contextual bandits in Section 5.1.

This result provides theoretical justification for using iterative BoN as an approximation to WIND, espe-
cially when β is small. More importantly, it paves a way for efficient algorithm to WIND, bypassing the log
operator in the win-rate game.

4 Faster WIND
Based on the understanding of the connection between log-win-rate game and win-rate game, in this sec-
tion, we propose a new sample-efficient algorithm for finding the WIND solution in (9), which includes two
ingredients: (i) identifying a memory-efficient, exact policy optimization algorithm with linear last-iterate
convergence [Sokota et al., 2023], and (ii) developing a series of sample-efficient algorithms with flexible
loss functions and finite-time convergence guarantee. With slight abuse of terminology, we shall refer to our
algorithmic framework WIND.

4.1 Exact policy optimization with last-iterate linear convergence
Recognizing that (9) is an KL-regularized matrix game, there are many existing algorithms that can be
applied to find π⋆β . Nonetheless, it is desirable to achieve fast last-iterate convergence with a small memory
footprint. This is especially important in LLM optimization, for the memory efficiency. For example, extra-
gradient algorithms (e.g., Korpelevich [1976], Popov [1980], Cen et al. [2021])—although fast-convergent—are
expected to be expensive in terms of memory usage due to the need of storing an additional extrapolation
point (i.e., the LLM) in each iteration.

It turns out that the magnetic mirror descent algorithm in Sokota et al. [2023], which is proposed to
solve an equivalent variational inequality formulation to (9), meets our consideration. We present a tailored
version of this algorithm in Algorithm 2, and state its linear last-iterate convergence in Theorem 3.

Algorithm 2 WIND (exact gradient, adapted from Sokota et al. [2023] tailored for our setting)

1: Input: reference policy πref, initial policy π(0), regularization coefficient β > 0, learning rate η > 0.
2: for t = 0, 1, · · · do
3: Update π(·|x) for all x ∈ X :

π(t+1)(y|x) ∝ (π(t)(y|x))
1

1+βη (πref(y|x))
βη

1+βη exp

(
η

1 + βη
Ey′∼π(t)(·|x)Px(y, y

′)

)
(13)

4: end for

Theorem 3 (Linear last-iterate convergence of Algorithm 2, Sokota et al. [2023]). Assume β > 0 and
π(0), πref ∈ relint(∆X

Y ).When the learning rate η ∈ (0, β], π(t) in Algorithm 2 satisfies:

DKL

(
π⋆β ||π(t)

)
≤
(

1

1 + ηβ

)t
DKL

(
π⋆β∥π(0)

)
. (14)

Remark 1. We note that when β = 0, the update rule (13) recovers [Swamy et al., 2024, Algorithm 1].
When β > 0, the update rule in (13) is different from that of Munos et al. [2023], which is

π(t+1)(y|x) ∝ π̃(t)(y|x) · exp
(
ηEy′∼π̃(t)(·|x)Px(y, y

′)
)
,

where π̃(t) is a mixed policy defined as

π̃(t)(y|x) ∝
(
π(t)(y|x)

)1−ηβ
(πref(y|x))ηβ .

As such, it requires extra memory to store π̃(t). Moreover, Munos et al. [2023] shows a slower rate of O(1/T ),
whereas Algorithm 2 admits linear convergence.
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4.2 Sample-efficient algorithm
We now derive practical sample-efficient methods for approximating the exact update (13) of WIND in the
parameter space Θ of the policy πθ, θ ∈ Θ. For exposition, we use ϕθ to denote the logits before softmax,
i.e.,

πθ = softmax ◦ ϕθ,
where softmax(x)i := exi/

∑
j e
xj is the softmax function.

We consider the existence of reward model approximation error, i.e., we may use an inaccurate judger
P̂x, which is an approximation of Px. For example, instead of training a reward model, we could use an
LLM P̂ as a judger to directly judge if response y is better than y′ or not given a prompt x, and use P̂x as
an approximation of Px.

Algorithm derivation with the squared risk. Let θt, θref denote the parameters of π(t) and πref in
Algorithm 2, respectively. We rewrite the update rule (13) as

ϕθt+1(y|x) =
1

1 + βη
ϕθt(y|x) +

βη

1 + βη
ϕθref(y|x) +

η

1 + βη
Ey′∼πθt (·|x)Px(y, y

′) + Zt(x) (15)

for some function Zt : X → R. We define a proxy φt : X × Y × Y → R using the empirical win-rate as

φt(x, y, y
′) :=

1

1 + βη
ϕθt(y|x) +

βη

1 + βη
ϕθref(y|x) +

η

1 + βη
P̂x(y, y

′) + Zt(x), (16)

Our observation is that the update (15) of ϕθt(y|x) is approximating the conditional expectation of φt, which
is

ψt(x, y) := Ey′∼πθt (·|x)[φt(x, y, y
′)|x, y], ∀(x, y).

Furthermore, this conditional expectation has the lowest risk, due to the following lemma:

Lemma 1 (Conditional mean minimizes the square loss). For any two random variables u, v, we have

Eu,v
[
(v − Ev(v|u))2

]
≤ Eu,v

[
(v − g(u))2

]
(17)

for any function g. In particular, the equality holds if and only if g(u) = Ev(v|u) almost everywhere on the
support of the distribution of u.

To invoke Lemma 1, we assume the LLM is expressive enough, such that ψt can be represented by ϕθ:

Assumption 1 (expressive power). For any t ∈ N, there exists θ⋆t+1 ∈ Θ such that

∀(x, y) ∈ X × Y : ϕθ⋆t+1
(y|x) = ψt(x, y). (18)

Note that supp(ρ) = X , supp(π(t)(·|x)) = Y for all x ∈ X , t ∈ N. Thus under Assumption 1, by Lemma 1
we know that for all t, θ⋆t+1 ∈ Θ satisfies (18) if and only if

θ⋆t+1 ∈ argmin
θ∈Θ

Rt(θ), (19)

where we define the squared expected risk at the t-th iteration Rsq
t (θ) as

Rsq
t (θ) := E

x∼ρ,
y,y′∼πθt

(·|x)

[
(φt(x, y, y

′)− ϕθ(y|x))
2
]
.

In implementation, at each iteration t, we shall approximate θ⋆t+1 by minimizing the empirical risk: we
sample x(t)i ∼ ρ, y

(t)
i , y′i

(t) ∼ πθt(·|x
(t)
i ), i ∈ [M ], and compute θt+1 by minimizing the empirical risk Rsq

t,M (θ)
defined as

Rsq
t,M (θ) :=

1

M

M∑
i=1

(
φt(x

(t)
i , y

(t)
i , y′i

(t)
)− ϕθ(y(t)i |x

(t)
i )
)2
. (SQ)

We summarize the update procedure in Algorithm 3.
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Algorithm 3 WIND (sample-efficient version)
1: Input: reference parameter θref, initial parameter θ0, regularization coefficient β > 0, learning rate
η > 0, training set D, iteration number T ∈ N+, sampling number M ∈ N+.

2: for t = 0, 1, · · · , T − 1 do
3: Sample x(t)i ∼ ρ, y

(t)
i , y′i

(t) ∼ πθt(·|x
(t)
i ), i ∈ [M ].

4: θt+1 ← argminθ∈ΘRt,M (θ). ▷ Rt,M could be Rsq
t,M , Rkl

t,M , Rnce
t,M , etc.

5: end for
6: Return θT .

Alternative risk functions. By utilizing different variational forms, we could derive objectives different
from (SQ). For illustration, we provide two alternatives of Rsq

t,M (θ) by using the KL divergence and NCE
loss, respectively (see Appendix A for derivations):

Rkl
t,M (θ) := − 1

M

M∑
i=1

[
1{vi=1} log ζθ(x, y) + 1{vi=0} log(1− ζθ(x, y))

]
, (KL)

and

Rnce
t,M (θ) := − 1

M

M∑
i=1

[ (
1{vi=1} + 1{v′i=0}

)
log

ζθ(xi, yi)

ζθ(xi, yi) + p
+
(
1{vi=0} + 1{v′i=1}

)
log

p

ζθ(xi, yi) + p

]
,

(NCE)

where vi ∼ Ber(P̂xi
(yi, y

′
i)), v′i ∼ Ber(p), p ∈ (0, 1) is a hyperparameter, ζθ is defined as

ζθ(x, y) =
1 + βη

η
ϕθ(y|x)−

1

η
ϕθt(y|x)− βϕθref(y|x)−

1 + βη

η
Zt(x),

and 1{A} is the indicator function that equals 1 if A is true and 0 otherwise.
When we use the regression objective (SQ), our WIND algorithm shares a similar form to SPPO [Wu

et al., 2024b]. However, WIND differs from SPPO in the following aspects: (i) we solve the regularized game
with the KL regularization term βDKL (π′∥πref). This term is crucial in practice and is also considered in
other iterative BOND methods [Dong et al., 2023, Sessa et al., 2024]; (ii) our sampling scheme is more sample-
efficient: in SPPO, for each xi, they sample K responses {yi,j}j∈[K] to estimate Ey′∼πθt (·|xi)[Pxi(yi,j , y

′)] by
1
K

∑K
k=1 Pxi

(yi,j , yi,k) for each j ∈ [K]. On the other hand, Lemma 1 implies estimating the conditional
mean with multiple samples is unnecessary and for each xi, sampling two responses yi and y′i is enough; (iii)
we allow different risk functions beyond the squared loss.

4.3 Convergence analysis
We provide a finite-sample complexity guarantee for Algorithm 3 when the risk Rt,M = Rsq

t . Our results
could be easily extended to other risks. Here we consider the existence of reward model approximation error,
i.e., we may use an inaccurate judger P̂x as an approximation of Px. For example, instead of training a
reward model, we could use an LLM P̂ as a judger to directly judge if response y is better than y′ or not
given a prompt x, and use P̂x as an approximation of Px.

We define the model approximation error δP as

δP := max
x∈X ,y,y′∈Y

∣∣∣Px(y, y′)− P̂x(y, y′)∣∣∣ . (20)

We require the following assumptions to prove the convergence of Algorithm 3. The first assumes ϕθ is
differentiable and Θ, Zt is bounded.

Assumption 2 (differentiability and boundedness). The parameter space Θ is compact, ϕθ(y|x) is differen-
tiable w.r.t. θ for any (x, y) ∈ X ×Y, and Zt in (15) is uniformly bounded, i.e., ∃Z ≥ 0 such that |Zt(x)| ≤ Z
for all x ∈ X and t ∈ N.
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Assumption 2 guarantees the (uniform) boundedness of ϕθ. Especially, there exists L0 > 0 such that for
any θ, θ′ ∈ Θ and (x, y) ∈ X × Y, we have

|ϕθ(y|x)− ϕθ′(y|x)| ≤ L0. (21)

Assumption 2 also guarantees there exist L,C > 0 such that for all x ∈ X , y, y′ ∈ Y, θ ∈ Θ and t, we
have ∥∥∥∇θ [(φt(x, y, y′)− ϕθ(y|x))2]∥∥∥

2
≤ L. (22)

and
(φt(x, y, y

′)− ϕθ(y|x))
2 ≤ C. (23)

The next assumption controls the concentrability coefficient, which is commonly used in the RL literature,
see Yuan et al. [2023a], Munos [2003, 2005], Munos and Szepesvári [2008], Yang et al. [2023] for example.

Assumption 3 (concentrability coefficient). For Algorithm 3, there exists finite Cπ > 0 such that for all
t ∈ N and x ∈ X , we have

Ey∼πref(·|x)

[(
π⋆β(y|x)
πref(y|x)

)2
]
≤ Cπ and Ey∼πref(·|x)

[(
πθt+1

(y|x)
πref(y|x)

)2
]
≤ Cπ.

We define

C1 := exp

(
2

β

(
δP +

1 + βη

η
L0 + 1

))
Cπ. (24)

We also assume for every t, the expected risk Rt and empirical risk Rt,N both satisfy Polyak-Łojasiewicz
(PL) condition, which has been proven to hold for over-parameterized neural networks including transform-
ers [Liu et al., 2022, Wu et al., 2024a, Yang et al., 2024b].

Assumption 4 (Polyak-Łojasiewicz condition). For all t ∈ N, risk Rt and empirical risk Rt,M both satisfy
Polyak-Łojasiewicz condition with parameter µ > 0, i.e., for all t ∈ N and θ ∈ Θ, we have

1

2
∥∇θRt(θ)∥22 ≥ µ

(
Rt(θ)−Rt(θ⋆t+1)

)
and

1

2
∥∇θRt,N (θ)∥22 ≥ µ (Rt,M (θ)−Rt,M (θt+1)) .

Remark 2 (Assumption 4 is satisfied with linear function approximation). We consider a special case where
ϕθ(y|x) = ϕ(x, y)⊤θ for all (x, y) ∈ X × Y, where ϕ(x, y) are the feature maps. If for all t ∈ N, we have

Ex∼ρ,y∼πθt (·|x)
[
ϕ(x, y)ϕ(x, y)⊤

]
≥ µ

2

and
1

M

M∑
i=1

ϕ(x
(t)
i , y

(t)
i )ϕ(x

(t)
i , y

(t)
i )⊤ ≥ µ

2
,

then it’s straightforward to verify that Rt and Rt,M are both µ-strongly convex, which indicates Assumption 4
holds [Karimi et al., 2016].

The following theorem gives the convergence of Algorithm 3.

Theorem 4 (Convergence of Algorithm 3). Let θ0 = θref and η ∈ (0, β] in Algorithm 3. Under Assumption
1,2,3,4, for any T ∈ N and δ ∈ (0, 1), with probability at least 1− δ, Algorithm 3 satisfies:

DKL
(
π⋆β∥πθT

)
≤
(

1

1 + βη

)T
DKL

(
π⋆β∥πθ0

)
+

2

β
δP +

2(1 + βη)

βη

√
C1Cr log

(
T

δ

)√
2L2 logM

µ(M − 1)
+
C + 2L2/µ

M
, (25)

where Cr is an absolute constant, C1, L, δP , C, µ are defined in (24), (22), (20), (23), Assumption 4,
respectively.
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Theorem 4 indicates that, assuming no model approximation error, the total sample complexity for
Algorithm 3 to reach ε-accuracy is

2MT = Õ

((
1 + βη

βη

)2(
L2

µ
+ C

)
C1Cr

1

ε2

)
.

In contrast with SPPO [Wu et al., 2024b], which only ensures average-iterate convergence without quantify-
ing sample efficiency, our method has stronger theoretical guarantees, offering last-iterate convergence and
explicit sample complexity bounds.

5 Experiments
We report our experiment results in this section.

5.1 Contextual bandits
In this section we conduct contextual bandit experiments to validate Theorem 2.

Experiments setup. We set |X | = 20, |Y| = 100, and initialize r(xi, yj)
i.i.d∼ N (0, 1), where i ∈ [|X |], j ∈

[|Y|], andN (0, 1) stands for the standard Gaussian distribution. We set πref and ρ to be uniform distributions
and randomly initialized π(0) in Algorithm 2 using the Dirichlet distribution with parameters all set to be
1. For the distance metric, we use the average ℓ1 distance Dℓ1 : ∆X

Y ×∆X
Y → R defined as

Dℓ1(π, π
′) := Ex∼ρ ∥πx − π′

x∥1 . (26)

We conduct the following two experiments:

• For the no-mixing case where α1 = 1, α2 = 0, we show the convergence of both iterative BoN (c.f.
Algorithm 1) and exact WIND (c.f. Algorithm 2) to π⋆0: we plot the average ℓ1 distance between π⋆0 and
the iterates for both algorithms. In this experiments we set learning rate η in Algorithm 2 to be 16.

• For the mixing case where α1 = η
(1+βη)(n−1) and α2 = n−1−η

(1+βη)(n−1) , we verify that π⋆β and π⋆β are very
close to each other: we fix the iteration number T = 5000 for both Algorithm 1 and 2, and increase
β from 0.01 to 0.1 to plot the change of average ℓ1 distance between the final outputs of the two
algorithms Dℓ1(πT , π

(T )) with respect to β. In this experiments we set η = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

x[
t,

x
* 0,

x
1]

Iterative BoN (Alg. 1, No Mixing)
WIND (Alg. 2, = 0)

(a) no-mixing

0.02 0.04 0.06 0.08 0.10

10 39

10 34

10 29

10 24

10 19

10 14

10 9

10 4

x[
T,

x
(T

)
x

1]

(b) mixing

Figure 1: Empirical validation of Theorem 2 on contextual bandit experiments. For (a) the no-mixing case,
we show the convergence of both iterative BoN (c.f. Algorithm 1) and exact WIND (c.f. Algorithm 2) to π⋆0;
for (b) the mixing case, we show π⋆β and π⋆β are very close to each other.
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Model GSM8k HellaSwag MMLU MT-Bench
1st Turn 2nd Turn Avg

Llama-3-8B-SPPO Iter1 75.44 79.80 65.65 8.3813 7.6709 8.0283
Llama-3-8B-SPPO Iter2 75.13 80.39 65.67 8.3875 7.4875 7.9375
Llama-3-8B-SPPO Iter3 74.91 80.86 65.60 8.0500 7.7625 7.9063

Llama-3-8B-JBOND Iter1 76.12 77.70 65.73 8.2875 7.4281 7.8578
Llama-3-8B-JBOND Iter2 75.74 77.47 65.85 8.2563 7.4403 7.8495
Llama-3-8B-JBOND Iter3 76.12 77.36 65.83 8.2750 7.2767 7.7774

Llama-3-8B-WIND Iter1 (Ours) 75.82 78.73 65.77 8.2875 7.6875 7.9875
Llama-3-8B-WIND Iter2 (Ours) 76.19 79.05 65.77 8.3625 7.7500 8.0563
Llama-3-8B-WIND Iter3 (Ours) 77.18 79.31 65.87 8.5625 7.8354 8.2013

Table 1: Results on GSM8k, HellaSwag, MMLU and MT-Bench.

Results. Our results are presented in Figure 1. Figure 1(a) indicates that for the no-mixing case, both
algorithms converge to π⋆0 with WIND slightly faster than iterative BoN. From Figure 1(b), we can see that π⋆β
and π⋆β are very close to each other when β is small and their distance approaches 0 very quickly as β → 0,
which corroborates (12).

5.2 LLM alignment
We follow the experiment setup in Wu et al. [2024b] and Snorkel1. We use Llama-3-8B-Instruct2 as the
base pretrained model for baseline comparisons. For fair comparison, we chose the same prompt dataset
UltraFeedback [Cui et al., 2023] and round splits, and the same Pair-RM framework [Jiang et al., 2023] for
the preference model as in Wu et al. [2024b] and Snorkel. The learning rate is set to be 5 × 10−7. In each
iteration, we generate answers from 20000 prompts in the UltraFeedback dataset to train the model. The
global training batch size is 64 (4 per device × 16 GPUs). Our experiments are run on 16 A100 GPUs,
where each has 40 GB memory. We modify the per-device batch size and gradient accumulation steps in
SPPO GitHub repository3 while keeping the actual training batch size, to avoid out-of-memory error.

Baselines and Benchmarks. We consider two baselines: SPPO [Wu et al., 2024b] and a variant of J-BOND
[Sessa et al., 2024]. Here we follow the exact same setting in their repository of the SPPO paper to reproduce
SPPO results, with the only change being that we use different computation devices.

We consider 4 major evaluation benchmarks: GSM8k, HellaSwag, MMLU and MT-Bench. They evalu-
ated the following capability:

• GSM8k [Cobbe et al., 2021] evaluates the mathematical reasoning at a grade school level.

• HellaSwag [Zellers et al., 2019] measures the commonsense reasoning by letting language models select
a choice to finish a half-complete sentence.

• MMLU [Hendrycks et al., 2020] is a large-scale benchmark that encompasses a variety of tasks to
measure the language models’ knowledge.

• MT-Bench [Zheng et al., 2023] is also a LLM-as-a-judge benchmark that evaluates the LLM’s multi-
round chat capability. The scores given by GPT-4 is reported.

Results. For traditional benchmarks (GSM8k, HellaSwag and MMLU), which do not involve using LLMs
as the judges, the results are shown in Table 1. The model Llama-3-8B-WIND of ours achieved optimal
in the last iteration in GSM8k and MMLU, while performing better than the J-BOND variant and slightly

1https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3https://github.com/uclaml/SPPO
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worse than SPPO in HellaSwag. In fact, our method shows consistent improvement over iterations: for
all three benchmarks, our method continues to improve with more iterations of training, while both SPPO
and J-BOND variant show performance regressions with increasing number of iterations. For MT-Bench,
Llama-3-8B-WIND achieves comparable results in comparison with SPPO, and outperforms J-BOND.

SPPO JBOND WIND0
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)

5806 5847 5880

4126 4129 4131

3544 3607 3636
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Gen Iter2
Train Iter2

Gen Iter3
Train Iter3

Figure 2: Run time (seconds) of different methods.

Runtime. We also report the running time used by different methods in our setting. Since we base our
implementation on the SPPO GitHub Repository, we only modify the objectives and the sampling process
to reflect the difference between these algorithms. Figure 2 shows that our method achieves much better
sample efficiency during data generation. In sum, the proposed WIND achieves superior performance with
less computation cost, making iterative BOND practice applicable.

6 Conclusion
This work establishes a unified game-theoretic framework that connects iterative BoN with existing game-
theoretic RLHF approaches. We present WIND, a sample-efficient efficient algorithm for win rate dominance
optimization with finite-sample guarantees, which provides an accelerated alternative to iterative BOND.
Empirical validation on multiple public benchmarks demonstrates the effectiveness and efficiency of our
approach compared to several state-of-the-art methods.
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A Other Objectives for Algorithm 3
In this section we give some possible alternative objectives for Algorithm 3 by utilizing different variational
forms.

f-divergence objectives: We could use f -divergence Df as the objective function. For a convex function
f , Df is defined as

Df (P ||Q) := EQ
[
f

(
P

Q

)]
. (27)

Let

U = (x, y) and V =


1, if r(x, y) > r(x, y′),
0, if r(x, y) < r(x, y′),
z ∼ Ber(1/2), if r(x, y) = r(x, y′),

Then V |U is a function of y′ and PV |U = Ber(Ey′Px(y, y′)). Further define

ζθ(x, y) =
1 + βη

η
ϕθ(y|x)−

1

η
ϕθt(y|x)− βϕθref(y|x)−

1 + βη

η
Zt(x). (28)

We let QV |U = Ber(ζθ(y|x)), then by solving

θt+1 = argmin
θ

EUDf (PV |U ||QV |U ), (29)

we could approximate the update rule (15).
Especially, when f(x) = x log x, we have Df = DKL, and (29) becomes

θt+1 = argmin
θ

Ex∼ρ,y∼πθt (·|x)Ev∼PV |U log
PV |U (v)

QV |U (v)

= argmin
θ

Ex∼ρ,y∼πθt (·|x)Ev∼PV |U [− logQV |U (v)]. (30)

We could approximate the above objective by sampling xi ∼ ρ, yi, y
′
i ∼ πθt(·|xi) (i ∈ [M ]) and minimizing

the empirical risk:

θt+1 = argmin
θ
Rkl
t,M (θ) := − 1

M

M∑
i=1

[
1{vi=1} log ζθ(x, y) + 1{vi=0} log(1− ζθ(x, y))

]
, (31)

where

vi =


1, if r(xi, yi) > r(xi, y

′
i),

0, if r(xi, yi) < r(xi, y
′
i),

z ∼ Ber(1/2), if r(xi, yi) = r(xi, y
′
i).

(32)

For other f -divergence objectives, we may not be able to get rid of the unknown PV |U on the RHS of (29),
but (29) could provide a gradient estimator for the objective that allows us to optimize θ by stochastic
gradient descent.

Noise contrastive estimation (NCE) objectives. We could use NCE [Gutmann and Hyvärinen, 2010]
as objectives. NCE is a method to estimate the likelihood of a data point by contrasting it with noise samples.
Let Dθ be the discriminator (parameterized by θ) that distinguishes the true data from noise samples. The
NCE objective is

min
θ

Ez∼Pdata [− logDθ(z)] + Ez∼Pnoise [− log(1−Dθ(z))], (33)

Then the uptimal solution of (33) is

Dθ⋆(z) =
Pdata(z)

Pdata(z) + Pnoise(z)
.
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In our case, we let Pdata = PV |U and Pnoise = Ber(p) where p ∈ (0, 1) is a hyperparameter. We also let

Dθ(1|x, y) =
ζθ(x, y)

ζθ(x, y) + p
, and Dθ(0|x, y) =

p

ζθ(x, y) + p
,

where ζθ is defined in (28). Then we could approximate the update rule (15) by solving

θt+1 = argmin
θ

Ex∼ρ,y∼πθt (·|x)Ev∼PV |U

[
−1{v=1} log

ζθ(x, y)

ζθ(x, y) + p
− 1{v=0} log

p

ζθ(x, y) + p

]
+ Ex∼ρ,y∼πθt (·|x)Ev∼Ber(p)

[
−1{v=1} log

p

ζθ(x, y) + p
− 1{v=0} log

ζθ(x, y)

ζθ(x, y) + p

]
. (34)

The sample version of (34) would be

θt+1 = argmin
θ
Rnce
t,M (θ) := − 1

M

M∑
i=1

[ (
1{vi=1} + 1{v′i=0}

)
log

ζθ(xi, yi)

ζθ(xi, yi) + p

+
(
1{vi=0} + 1{v′i=1}

)
log

p

ζθ(xi, yi) + p

]
, (35)

where vi is defined in (32) and v′i ∼ Ber(p).

B Proofs

B.1 Proof of Proposition 1
We first prove the case when β = 0. This part of proof is inspired by Swamy et al. [2024, Lemma 2.1]. Let

π1 := argmax
π

min
π′

P (π ≻ π′), π2 := argmin
π′

max
π

P (π ≻ π′),

i.e., (π1, π2) is a Nash equilibrium of (9) (which is guaranteed to exist since the policy space is compact).
Then ∀π, π′,∀x ∈ X , we have:

π⊤
1,xPxπ

′
x ≥ π⊤

1,xPxπ2,x ≥ π⊤
x Pxπ2,x,

which is equivalent to
(π′
x)

⊤P⊤
x π1,x ≥ π⊤

2,xP
⊤
x π1,x ≥ π⊤

2,xP
⊤
x πx.

Note that
Px + P⊤

x = J, (36)

where J ∈ R|Y|×|Y| is the matrix of all ones. This gives

−(π′
x)

⊤Pxπ1,x ≥ −π⊤
2,xPxπ1,x ≥ −π⊤

2,xPxπx,

i.e.,
(π′
x)

⊤Pxπ1,x ≤ π⊤
2,xPxπ1,x ≤ π⊤

2,xPxπx, ∀π, π′ ∈ ∆X
Y , ∀x ∈ X .

This implies (π2, π1) is also a Nash equilibrium of (9). Then by the interchangeability of Nash equilibrium
strategies for two-player zero-sum games [Nash et al., 1950], (π1, π1) and (π2, π2) are both the Nash equilibria
of (9), which indicates that π1, π2 are both the solutions of (10).

Next we prove the case when β > 0. When β > 0, due to the strong concavity-convexity of the the
minmax problem (9), there exists a unique Nash equilibrium (π⋆1 , π

⋆
2) of it. And it’s straightforward to

compute that (π⋆1 , π
⋆
2) satisfies the following relation:

∀x ∈ X :

π
⋆
1(·|x) ∝ πref(·|x) ◦ exp

(
1
βPxπ

⋆
2(·|x)

)
,

π⋆2(·|x) ∝ πref(·|x) ◦ exp
(
− 1
βP

⊤
x π

⋆
1(·|x)

)
,

(37)
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where we use ◦ to denote the element-wise product of two vectors.
Again, using (36), we have

∀x ∈ X :

π
⋆
1(·|x) ∝ πref(·|x) ◦ exp

(
1
βPxπ

⋆
2(·|x)

)
,

π⋆2(·|x) ∝ πref(·|x) ◦ exp
(

1
βPxπ

⋆
1(·|x)

)
,

which implies (π⋆2 , π
⋆
1) is also a Nash equilibrium of (9). By the uniqueness of the Nash equilibrium we

immediately know that π⋆1 = π⋆2 . Letting π⋆β = π⋆1 = π⋆2 , we have π⋆β satisfies (10).
On the other hand, if π⋆β is the solution of (10), then (π⋆β , π

⋆
β) satisfies (37) and thus is a Nash equilibrium

of (9). In addition, by the uniqueness of (9), we deduce that (10) has a unique solution.

B.2 Proofs of Theorem 1 and Theorem 2
We merge Theorem 1 and Theorem 2 into the following theorem (recall we define P x in (5)):

Theorem 5 (solution to iterative BoN (formal)). Let πref ∈ relint
(
∆X

Y
)

and n ≥ 2 in Algorithm 1. Then
limT→∞ πT exists in the following two cases:

• (No-mixing) When α1 = 1, α2 = 0. In this case π⋆0 := limT→∞ πT is a solution to both (8) and (10)
with β = 0.

• (Mixing) When α1 = η
(1+βη)(n−1) , α2 = n−1−η

(1+βη)(n−1) for any β, η > 0. In this case π⋆β := limT→∞ πT
satisfies:

π⋆β ∈ argmax
π

E
x∼ρ,

y∈π(·|x)

log E
y′∈π⋆

β(·|x)
P x(y ⪰ y′)− βDKL (π∥πref) . (38)

Moreover, if

β ≤ min
x∈X ,

y∈Y\Y⋆(x)


∑
y⋆∈Y⋆(x) πref(y

⋆|x)

4max

{
log πref(y|x)

max
y⋆∈Y⋆(x)

πref(y⋆|x) , 0

}
 , (39)

then for all x ∈ X , we have

∥∥π⋆β,x − π⋆β,x∥∥1 ≤ 4(|Y| − |Y⋆(x)|)e
−

∑
y⋆∈Y⋆(x) πref(y

⋆|x)

4β → 0 as β → 0. (40)

Remark 3. It’s easy to see that π⋆β is a solution to (38) (see also (8) in the main paper) if and only if
(π⋆β , π

⋆
β) is a nash equilibrium of the log-win-rate game (7).

Now we give the proof of Theorem 5.

Step 1: show convergence for the no-mixing case. We first prove the convergence result for the
no-mixing case. Note that for any policy π, π(n) has the expression

∀(x, y) ∈ X × Y : π(n)(y|x) =
(
n

1

)
π(y|x)Pyi∼π(·|x)

(
r(x, y) ≥ max

1≤i≤n−1
r(x, yi)

)
= nπ(y|x)

(
P x(y, :)πx

)n−1
, (41)

where P x is defined in (5).
When α1 = 1, α2 = 0, Algorithm 1 could be simplified as

∀t ∈ N : πt+1 = π
(n)
t .
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Then πT is equivalent to π(
nT )

ref — the best of-nT policy of πref. For any x, define Y⋆(x) as the set of resonses
that maximize the reward function r(x, ·), i.e.,

Y⋆(x) := argmax
y∈Y

r(x, y).

Then for any y ∈ Y⋆(x) and y′ ∈ Y, we have P x(y, y′) = 1 and P x(y, :)πref,x = 1. And for any y /∈ Y⋆(x),
we have P x(y, :)πref,x < 1 since πref ∈ relint

(
∆X

Y
)
.

By the BoN expression (41) we deduce that

lim
T→∞

πT (y|x) =

{
πref(y|x)∑

y∈Y⋆(x) πref(y|x) , if y ∈ Y⋆(x),
0, otherwise.

(42)

We let π⋆0 := limT→∞ πT . Now we show that (π⋆0, π
⋆
0) is a nash equilibrium of (9) when β = 0, which

implies π⋆0 is a solution to (10) when β = 0.
Note that for any (x, y) ∈ X × Y, we have

(π⋆0,x)
⊤Px(:, y) =

{
1
2 , if y ∈ Y⋆(x),
1, otherwise,

which gives

∀π, x : (π⋆0,x)
⊤Pxπx ≥

1

2
= (π⋆0,x)

⊤Pxπ
⋆
0,x. (43)

On the other hand, for any (x, y) ∈ X × Y, we have

Px(y, :)π
⋆
0,x =

{
1
2 , if y ∈ Y⋆(x),
0, otherwise,

which implies

∀π, x : (πx)
⊤Pxπ

⋆
0,x ≤

1

2
= (π⋆0,x)

⊤Pxπ
⋆
0,x. (44)

(43) and (44) together indicate that (π⋆0, π
⋆
0) is a Nash equilibrium of (9) when β = 0, which also indicates

that π⋆0 is a solution to (10). It’s straightforward to verify with (42) that π⋆0 is also a solution to (8).

Step 2: show convergence of the mixing case. Recall that in the mixing case we set α1 = η
(1+βη)(n−1) , α2 =

n−1−η
(1+βη)(n−1) . We take logarithm on both sides of the iteration in line 5 of Algorithm 1 and unroll it as follows:

log πt+1(y|x) = α1 log π̃t(y|x) + α2 log πt(y|x) + (1− α1 − α2) log πref(y|x) + cx

= (α1 + α2) log πt + (n− 1)α1 log
(
P x(y, :)πt,x

)
+ (1− α1 − α2) log πref(y|x) + c′x

= (α1 + α2)
t+1 log π0(y|x) + (n− 1)α1

t∑
i=0

(α1 + α2)
i log

(
P x(y, :)πt−i,x

)
+ (1− (α1 + α2)

t+1) log πref(y|x) + c′′x

= log πref(y|x) + (n− 1)α1

t∑
i=0

(α1 + α2)
i log

(
P x(y, :)πt−i,x

)
+ c′′x

= log πref(y|x) +
η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i
log
(
P x(y, :)πt−i,x

)
+ c′′x, (45)

where cx, c′x, c′′x are constants that depend on x, and the second equality makes use of (41), and the last
equality follows from our choice of α1, α2.
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Note that for all π ∈ ∆X
Y , we have

∀y ∈ Y⋆(x) : P x(y, :)πx = 1,

∀y ∈ Y \ Y⋆(x) : P x(y, :)πx ≤ 1.

For each x ∈ X , we let y1(x) ∈ Y⋆(x) such that πref(y1|x) = maxy∈Y⋆(x) πref(y|x). For notation simplicity,
when it does not cause confusion, we simply write y1(x) as y1. (45) indicates that for all y ∈ Y, we have

log

(
πt+1(y1|x)
πt+1(y|x)

)
= log

(
πref(y1|x)
πref(y|x)

)
, if y ∈ Y⋆(x), (46)

log

(
πt+1(y1|x)
πt+1(y|x)

)
= log

(
πref(y1|x)
πref(y|x)

)
+

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i
log

(
1

P x(y, :)πt−i,x

)
, if y /∈ Y⋆(x). (47)

Especially, (47) indicates that the ratio πt+1(y|x)
πt+1(y1|x) is decreasing with t for all y /∈ Y⋆(x). Since it has a lower

bound 0, we have that the ratio πt+1(y|x)
πt+1(y1|x) converges as t → ∞ for all y /∈ Y⋆(x). Therefore, (46) together

with (47) implies that π⋆β := limt→∞ πt+1 exists. To see that π⋆β is a solution to (38), we make use of the
following lemma.

Lemma 2. For any sequence {at}∞t=0 in R where at ≤ 0 for all t and a := limt→∞ at exists (a can be −∞),
for any α ∈ (0, 1), we have

lim
t→∞

t∑
i=0

αiat−i =
a

1− α
. (48)

Proof of Lemma 2. If a = −∞, then

lim
t→∞

t∑
i=0

αiat−i ≤ lim
t→∞

at = −∞.

If a > −∞, we have

t∑
i=0

αiat−i =

t∑
i=0

αia+

t∑
i=0

αi(at−i − a︸ ︷︷ ︸
et−i

) =
1− αt+1

1− α
a+

t∑
i=0

αiet−i,

thus we only need to verify that limt→∞
∑t
i=0 α

iet−i = 0.
For any ϵ > 0, there exists N ∈ N such that

∀t ≥ N :

∣∣∣∣∣
t∑

i=N

αiet−i

∣∣∣∣∣ ≤ αN

1− α
b ≤ ϵ/2,

where b = maxi≥N |ei|. b <∞ becuase et converges to 0. We fix N and choose T such that for all t ≥ T , we
have

N∑
i=0

αiat−i ≤ ϵ/2.

Then for all t ≥ T , we have∣∣∣∣∣
t∑
i=0

αiet−i

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=0

αiet−i

∣∣∣∣∣+
∣∣∣∣∣

t∑
i=N+1

αiet−i

∣∣∣∣∣ ≤ ϵ/2 + ϵ/2 = ϵ.

This completes the proof.
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Let t→∞ on both sides of (45), and by Lemma 2, we have

π⋆β(y|x) ∝ πref(y|x)
1

β
log
(
P x(y, :)π

⋆
β,x

)
. (49)

Note that for any x, the strongly concave problem

max
πx∈Y

log

(
E

y′∼π⋆
β(·|x)

P x(y, y
′)

)
− βKL(πx||πref(·|x))

has a unique solution π⋆β,x. Therefore, π⋆β is a solution to (38). By Remark 3 we know that (π⋆β , π
⋆
β) is a

Nash equilibrium of the log-win-rate game (7).

Step 3: bound the distance between π⋆β and π⋆β. We let π(0) = πref in Algorithm 2 and unroll the
iteration (13) similar to (45). We have

log π(t+1)(y|x) = log πref(y|x) +
η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i
Px(y, :)π

(t−i)
x + c′′′x , (50)

where π(t) is the policy at the t-th round of Algorithm 2. Furthermore, similar to (46) and (47), we have

log

(
π(t+1)(y1|x)
π(t+1)(y|x)

)
= log

(
πref(y1|x)
πref(y|x)

)
, if y ∈ Y⋆(x),

(51)

log

(
π(t+1)(y1|x)
π(t+1)(y|x)

)
= log

(
πref(y1|x)
πref(y|x)

)
+

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i
(Px(y1, :)− Px(y, :))π(t−i)

x , if y /∈ Y⋆(x),

(52)

For any π ∈ ∆X
Y , we have

∀y ̸= Y⋆(x) : (Px(y1, :)− Px(y, :))πx ≥
1

2

∑
y∈Y⋆(x)

π(y|x) ≥ 0, (53)

we know that log
(
π(t+1)(y1|x)
π(t+1)(y|x)

)
is increasing with t for all y ∈ Y \ Y⋆(x), Thus π(t)(y|x) is decreasing with t

for all y ∈ Y \ Y⋆(x). Moreover, by a similar argument as in Step 1, we have that limt→∞ π(t) exists and is
the solution to (10) (even when η > β).

Note that (52) is equivalent to

log

(
π(t+1)(y1|x)
π(t+1)(y|x)

)
=

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i(
(Px(y1, :)− Px(y, :))π(t−i)

x + β log

(
πref(y1|x)
πref(y|x)

)
︸ ︷︷ ︸

ξ(t−i)

)

+

(
1

1 + βη

)t+1

log

(
πref(y1|x)
πref(y|x)

)
. (54)

Also note that by (53) and the decreasing property of π(t)(y|x) for all y /∈ Y⋆(x), we have

∀x ∈ X ,∀y ̸= Y⋆(x) : (Px(y1, :)− Px(y, :))π(t−i)
x ≥ 1

2

∑
y∈Y⋆(x)

πref(y|x).

From the above expression and our choice of β we know that

∀x ∈ X ,∀y ̸= Y⋆(x) : ξ(t−i) ≥ 1

4

∑
y∈Y⋆(x)

πref(y|x). (55)
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Then by (54) we know that

∀x ∈ X ,∀y ̸= Y⋆(x) : log

(
π⋆β(y1|x)
π⋆β(y|x)

)
≥ 1

4β

∑
y∈Y⋆(x)

πref(y|x),

which indicates that for all y ∈ Y \ Y⋆(x),

π⋆β(y|x) ≤ π⋆β(y1|x) exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 ≤ exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 , (56)

which gives ∑
y∈Y\Y⋆(x)

π⋆β(y|x) ≤ (|Y| − |Y⋆(x)|) exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 .

Combining the above relation with (51), we obtain

∀y ∈ Y⋆(x) : π⋆β(y|x) ≥
πref(y|x)∑

y∈Y⋆(x) πref(y|x)
·

1− (|Y| − |Y⋆(x)|) exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 ,

and
∀y ∈ Y⋆(x) : π⋆β(y|x) ≤

πref(y|x)∑
y∈Y⋆(x) πref(y|x)

.

Recall that we write the expression of π⋆0 in (42). Therefore, we have

∀x ∈ X :
∥∥π⋆β,x − π⋆0,x∥∥1 ≤ 2(|Y| − |Y⋆(x)|) exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 . (57)

For the iteration in Algorithm 1, similar to (54) we have

log

(
π(t+1)(y1|x)
π(t+1)(y|x)

)
=

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i(
log

(
1

P x(y, :)πt−i,x

)
+ β log

(
πref(y1|x)
πref(y|x)

)
︸ ︷︷ ︸

δ(t−i)

)

+

(
1

1 + βη

)t+1

log

(
πref(y1|x)
πref(y|x)

)
. (58)

Note that for all y ∈ Y \ Y⋆(x), we have

log

(
1

P x(y, :)πt−i,x

)
≥ log

(
1

1−
∑
y∈Y⋆(x) πt−i(y|x)

)
≥ log

(
1

1−
∑
y∈Y⋆(x) πref(y|x)

)
≥

∑
y∈Y⋆(x)

πref(y|x),

where in the second inequality we use the fact that πt(y|x) is decreasing with t for all y /∈ Y⋆(x). Then by
a similar argument as in (55), we have

∀x ∈ X ,∀y ̸= Y⋆(x) : δ(t−i) ≥ 3

4

∑
y∈Y⋆(x)

πref(y|x). (59)

Therefore, analogous to (57), we have

∀x ∈ X :
∥∥π⋆β,x − π⋆β,x∥∥1 ≤ 2(|Y| − |Y⋆(x)|) exp

− 3

4β

∑
y∈Y⋆(x)

πref(y|x)

 . (60)
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Combining (57) and (60), we have∥∥π⋆β,x − π⋆β,x∥∥1 ≤ ∥∥π⋆β,x − π⋆0,x∥∥1 + ∥∥π⋆β,x − π⋆0,x∥∥1
≤ 2(|Y| − |Y⋆(x)|)

exp

− 3

4β

∑
y∈Y⋆(x)

πref(y|x)

+ exp

− 1

4β

∑
y∈Y⋆(x)

πref(y|x)

 ,

from which we can see that (40) holds.

B.3 Proof of Theorem 3
To start with, we reformulate problem (10) as a monotone variational inequality (VI) problem.

We first define the operator Fx : ∆Y → R|Y| for all x ∈ X as

Fx(πx) := −Pxπx − β log πref,x, ∀πx ∈ ∆Y . (61)

We also let
h : ∆Y → R, h(p) :=

∑
i

pi log pi (62)

denote the negative entropy, which is 1-strongly convex on ∆Y w.r.t. the l1-norm [Beck, 2017].
The following lemma gives the VI form of WIND.

Lemma 3. Assume β > 0 and π(0), πref ∈ relint(∆X
Y ). Then (10) is equivalent to the following monotone

VI problem:
E
x∼ρ

[〈
Fx(π

⋆
β,x) + β∇h(π⋆β,x), πx − π⋆β,x

〉]
≥ 0, ∀π ∈ ∆X

Y , (63)

where for all x ∈ X , Fx is monotone and 1-Lipschitz continuous w.r.t. the l1-norm.

Proof of Lemma 3. By the proof of Proposition 1 we know that when β > 0 and πref ∈ relint(∆X
Y ), we have

π⋆β ∈ relint(∆X
Y ).

By the optimality condition, π⋆β satisfies (10) if and only if〈
∇f⋆(π⋆β), π − π⋆β

〉
≥ 0, ∀π, (64)

where
f⋆(π) := E

x∼ρ

[ 〈
πx,−Pxπ⋆β,x − β log πref,x + β log πx

〉 ]
.

By (61) and (62), we have (64) equivalent to (63). To see the monotonicity of Fx, we have

⟨Fx(πx)− Fx(π′
x), πx − π′

x⟩
= (πx − π′

x)
⊤Px(πx − π′

x)

= (πx − π′
x)

⊤ 1

2
(Px + P⊤

x )(πx − π′
x)

= (πx − π′
x)

⊤ 1

2
J(πx − π′

x) = 0, (65)

where J ∈ R|Y|×|Y| is the matrix of all ones.
Furthermore, we have

∀x ∈ X ,∀p, q ∈ ∆Y : ∥Fx(p)− Fx(q)∥∞ ≤ ∥Px(p− q)∥∞ ≤ ∥p− q∥1 , (66)

where the second inequality follows from the fact that each entry of Px only take its value in {0, 1/2, 1}. (66)
indicates that Fx is 1-Lipschitz with respect to ℓ1-norm.
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We use the following proximal mirror descent ascent rule [Sokota et al., 2023, Pattathil et al., 2023] to
solve the monotone VI problem (63):

π(t+1) = argmin
π

E
x∼ρ

[〈
Fx(π

(t)
x ), πx

〉
+ βh(πx) +

1

η
Bh(πx, π

(t)
x )

]
, (67)

where η > 0 is the learning rate, and the Bregman distance Bh : ∆Y × ∆Y → R+ is generated from the
negative entropy h:

Bh(p, q) := h(p)− h(q)− ⟨∇h(q), p− q⟩ = KL(p||q).
It’s straightforward to verify that the analytical solution of (67) is (13) in Algorithm 2.
Note that the negative entropy h (c.f. (62)) is 1-strongly convex on ∆Y with respect to the ℓ1-norm [Beck,

2017, Example 5.27]. Furthermore, Lemma 3 shows Fx is 1-Lipschitz with respect to l1-norm. With these
facts, the theorem follows directly from Sokota et al. [2023, Theorem 3.4]:

∀x ∈ X : KL(π⋆β(·|x)||π(t)(·|x)) ≤
(

1

1 + ηβ

)t
KL(π⋆β(·|x)||π(0)(·|x)).

(14) can be deduced from the above relation by taking the expectation over x ∼ ρ on both sides.

B.4 Proof of Lemma 1
To start with, we have

Eu,v
[
(v − g(u))2

]
= Eu,v

[
((v − Ev(v|u)) + (Ev(v|u)− g(u)))2

]
= Eu,v

[
(v − Ev(v|u))2

]
+ 2Eu,v [(v − Ev(v|u))(Ev(v|u)− g(u))] + Eu,v

[
(Ev(v|u)− g(u))2

]
. (68)

We use F (u), F (u, v) and F (v|u) to denote the distribution of u, the joint distribution of u, v and the
distribution of v conditioned on u, resp. Then the cross term

Eu,v [(v − Ev(v|u))(Ev(v|u)− g(u))] =
∫
(u,v)

(v − Ev(v|u))(Ev(v|u)− g(u))dF (u, v)

=

∫
u

(∫
v

v − Ev(v|u)dF (v|u)
)
(Ev(v|u)− g(u))dF (u)

= 0, (69)

where the last relation follows from the fact that∫
v

v − Ev(v|u)dF (v|u) = Ev(v|u)− Ev(v|u) = 0.

Combining (69) and (68), we have that

Eu,v
[
(v − g(u))2

]
= Eu,v

[
(v − Ev(v|u))2

]
+ Eu

[
(Ev(v|u)− g(u))2

]
≥ Eu,v

[
(v − Ev(v|u))2

]
,

and the equality holds if and only if g(u) = Ev(v|u) almost everywhere on the support set of F (u).

B.5 Proof of Theorem 4
We first introduce the three-point property of the Bregman divergence [Sokota et al., 2023, Proposition D.1],
[Bauschke et al., 2003, Proposition 2.3]:

Lemma 4 (three-point property of the Bregman divergence). Let ψ : ∆Y → R be a function that’s differ-
entiable on int(∆Y). Let p, q ∈ ∆Y and r, s ∈ int(∆Y). Then the following equality holds:

Bψ(r, s) +Bψ(s, r) = ⟨∇ψ(r)−∇ψ(s), r − s⟩ . (70)
Bψ(p, r) = Bψ(p, s) +Bψ(s, r) + ⟨∇ψ(s)−∇ψ(r), p− s⟩ . (71)

Bψ(p, s) +Bψ(q, r) = Bψ(p, r) +Bψ(q, s) + ⟨∇ψ(r)−∇ψ(s), p− q⟩ . (72)
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To start with, we rewrite the update rule in Algorithm 3

θt+1 ← argmin
θ∈Θ

1

M

M∑
i=1

(
φt(x

(t)
i , y

(t)
i , y′

(t)
i )− ϕθ(y(t)i |x

(t)
i )
)2
. (73)

to a similar form as the PMDA rule (67).

Step 1: reformulate the update rule (73). We let δ(t)S , δ
(t)
P ∈ R|X |×|Y| denote the statistical error and

model approximation error at the t-th round, respectively:

∀(x, y) ∈ X × Y : δ
(t)
S (x, y) := ϕθt+1

(y|x)− ϕθ⋆t+1
(y|x), (74)

δ
(t)
P (x, y) := Ey′∼πθt (·|x)P̂x(y, y

′)− Ey′∼πθt (·|x)Px(y, y
′). (75)

We write δ(t)S,x ∈ R|X |, δ
(t)
P,x ∈ R|X | as the shorthand of

(
δ
(t)
S (x, y)

)
y∈Y

,
(
δ
(t)
P (x, y)

)
y∈Y

, resp.

The above expression (74) combined with (18) gives

πθt+1(y|x) ∝ (πθt(y|x))
1

1+βη (πref(y|x))
βη

1+βη exp

(
η

1 + βη

(
Ey′∼πθt (·|x)P̂x(y, y

′) +
1 + βη

η
δ
(t)
S (x, y)

))
. (76)

For notation simplicity we let Π := ∆X
Y denote the whole policy space. Note that the above relation is

equivalent to

πθt+1 = argmin
π∈Π

Ex∼ρ
[〈
F̂ (t)
x , πx

〉
+ βh(πx) +

1

η
Bh(πx, πθt,x)

]
, (77)

where F̂ (t)
x ∈ R|Y| is defined as

∀x ∈ X : F̂ (t)
x := −Pxπθt,x − β log πref,x︸ ︷︷ ︸

=Fx(πθt,x) by (61)

−1 + βη

η
δ
(t)
S,x − δ

(t)
P,x, (78)

which could be seen as an approximation of Fx(πθt,x). We let δ(t) ∈ R|X ||Y| denote

∀x ∈ X : δ(t)x := δ(t)(x, ·) := F̂ (t)
x − Fx(πθt,x) = −

1 + βη

η
δ
(t)
S,x − δ

(t)
P,x. (79)

The next step is to bound the distance between πθt and π⋆β utilizing the reformulated update rule (77).
This part of our proof is inspired by Sokota et al. [2023, Theorem 3.4].

Step 2: bound DKL

(
π⋆β∥πθt

)
. By the first-order optimality condition we know that (77) is equivalent to〈

F̂ (t)
x + β∇h(πθt+1,x) +

1

η
(∇h(πθt+1,x)−∇h(πθt,x)), πx − πθt+1,x

〉
≥ 0, ∀π ∈ Π, ∀x ∈ X , (80)

Reorganizing the terms in (80), we have〈
F̂ (t)
x + β∇h(πθt+1,x), πx − πθt+1,x

〉
≥ 1

η

〈
∇h(πθt,x)−∇h(πθt+1,x), πx − πθt+1,x

〉
(71)
=

1

η

(
−Bh(πx, πθt,x) +Bh(πx, πθt+1,x) +Bh(πθt+1,x, πθt,x)

)
. (81)

Let π = π⋆β in (81) and reorganize the terms, we have

Bh(π
⋆
β,x, πθt+1,x)

≤ Bh(π⋆β,x, πθt,x)−Bh(πθt+1,x, πθt,x) + η
〈
F̂ (t)
x + β∇h(πθt+1,x), π

⋆
β,x − πθt+1,x

〉
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= Bh(π
⋆
β,x, πθt,x)−Bh(πθt+1,x, πθt,x) + η

〈
Fx(πθt,x) + β∇h(πθt+1,x), π

⋆
β,x − πθt+1,x

〉
+ η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
= Bh(π

⋆
β,x, πθt,x)−Bh(πθt+1,x, πθt,x) + η

〈
Fx(πθt,x)− Fx(πθt+1,x), π

⋆
β,x − πθt+1,x

〉
+ η

〈
Fx(πθt+1,x) + β∇h(πθt+1,x), π

⋆
β,x − πθt+1,x

〉
+ η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
, ∀x ∈ X , ∀π ∈ Π. (82)

Note that for any π ∈ Π and x ∈ X , we have〈
Fx(πx) + β∇h(πx), π⋆β,x − πx

〉
=
〈
Fx(πx)− Fx(π⋆β,x), π⋆β,x − πx

〉︸ ︷︷ ︸
=0 by (65)

+β
〈
∇h(πx)−∇h(π⋆β,x), π⋆β,x − πx

〉
+
〈
Fx(π

⋆
β,x) + β∇h(π⋆β,x), π⋆β,x − πx

〉︸ ︷︷ ︸
≤0 by (63)

≤ β
〈
∇h(πx)−∇h(π⋆β,x), π⋆β,x − πx

〉
(70)
= −β

(
Bh(πx, π

⋆
β,x) +Bh(π

⋆
β,x, πx)

)
. (83)

Combining the above two expressions (82) and (83), we have

Bh(π
⋆
β,x, πθt+1,x) ≤ Bh(π⋆β,x, πθt,x)−Bh(πθt+1,x, πθt,x) + η

〈
Fx(πθt,x)− Fx(πθt+1,x), π

⋆
β,x − πθt+1,x

〉
− βη

(
Bh(πθt+1,x, π

⋆
β,x) +Bh(π

⋆
β,x, πθt+1,x)

)
+ η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
(21)
≤ Bh(π

⋆
β,x, πθt,x)−Bh(πθt+1,x, πθt,x) + η

∥∥πθt,x − πθt+1,x

∥∥
1

∥∥π⋆β,x − πθt+1,x

∥∥
1

− βη
(
Bh(πθt+1,x, π

⋆
β,x) +Bh(π

⋆
β,x, πθt+1,x)

)
+ η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
≤ Bh(π⋆β,x, πθt,x)−Bh(πθt+1,x, πθt,x) +

1

2

∥∥πθt,x − πθt+1,x

∥∥2
1︸ ︷︷ ︸

≤0

+
η2

2

∥∥π⋆β,x − πθt+1,x

∥∥2
1︸ ︷︷ ︸

≤η2Bh(πθt+1,x,π⋆
β,x)

− βη
(
Bh(πθt+1,x, π

⋆
β,x) +Bh(π

⋆
β,x, πθt+1,x)

)
+ η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
≤ Bh(π⋆β,x, πθt,x) + η (η − β)︸ ︷︷ ︸

≤0

Bh(πθt+1,x, π
⋆
β,x)− βηBh(π⋆β,x, πθt+1,x) + η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
≤ Bh(π⋆β,x, πθt,x)− βηBh(π⋆β,x, πθt+1,x) + η

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
, (84)

where, in the third relation we use the 1-strong convexity of h w.r.t. the l1-norm (see the proof of Theorem 3)
to obtain that

−Bh(πθt+1,x, πθt,x) +
1

2

∥∥πθt,x − πθt+1,x

∥∥2
1

= −
(
h(πθt+1,x)− h(πθt,x)−

〈
∇h(πθt,x), πθt+1,x − πθt,x

〉
− 1

2

∥∥πθt,x − πθt+1,x

∥∥2
1

)
≤ 0.

Note that〈
δ(t)x , π⋆β,x − πθt+1,x

〉
(79)
=

〈
−1 + βη

η
δ
(t)
S,x − δ

(t)
P,x, π

⋆
β,x − πθt+1,x

〉
≤ 1 + βη

η

∣∣∣〈δ(t)S,x, π⋆β,x〉∣∣∣︸ ︷︷ ︸
(i)

+
1 + βη

η

∣∣∣〈δ(t)S,x, πθt+1,x

〉∣∣∣︸ ︷︷ ︸
(ii)

+
∥∥∥δ(t)P,x∥∥∥∞ ∥∥π⋆β,x − πθt+1,x

∥∥
1︸ ︷︷ ︸

(iii)

. (85)

To bound the error term, below we separately bound (i)-(iii).
To bound (i), we first unroll (76) similar as in (45) and obtain

log πθt+1
(y|x) = 1

1 + βη
log πθt(y|x) +

βη

1 + βη
πref(y|x)
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+
η

1 + βη

(
Ey′∼πθt (·|x)Px(y, y

′) +
1 + βη

η
δ
(t)
S (x, y) + δ

(t)
P (x, y)

)
= log πref(y|x) +

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i(
Ey′∼πθt−i

(·|x)Px(y, y
′)

+
1 + βη

η
δ
(t−i)
S (x, y) + δ

(t−i)
P (x, y)

)
+ zx (86)

for some zx related to x. The above expression gives

log

(
πθt+1(y

′|x)
πθt+1

(y|x)

)
= log

(
πref(y

′|x)
πref(y|x)

)
+

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i(
Ey′′∼πθt−i

(·|x)(Px(y
′, y′′)− Px(y, y′′))

+
1 + βη

η
δ
(t−i)
S (x, y′) + δ

(t−i)
P (x, y′)− 1 + βη

η
δ
(t−i)
S (x, y)− δ(t−i)P (x, y)

)
,

for any y, y′ ∈ Y. This relation yields

log

(
πθt+1

(y′|x)
πθt+1

(y|x)

)
≤ log

(
πref(y

′|x)
πref(y|x)

)
+

η

1 + ηβ

t∑
i=0

(
1

1 + βη

)i
· 2
(
δP +

1 + βη

η
L0 + 1

)
,

where we use (21) and (74). The above expression indicates

πθt+1(y
′|x)

πθt+1(y|x)
≤ πref(y

′|x)
πref(y|x)

exp

(
2

β

(
δP +

1 + βη

η
L0 + 1

))
︸ ︷︷ ︸

C2

,

Summing over y′ ∈ Y on both sides, we get

∀y ∈ Y :
1

πθt+1
(y|x)

≤ 1

πθref(y|x)
C2. (87)

Therefore, we have∣∣∣〈δ(t)S,x, π⋆β,x〉∣∣∣ = ∑
y∈Y

π⋆β(y|x)√
πθt(y|x)

√
πθt(y|x)

(
δ
(t)
S (x, y)

)2

≤

√√√√√√
∑
y∈Y

(
π⋆β(y|x)

)2
πθt(y|x)


∑
y∈Y

πθt(y|x)
(
δ
(t)
S (x, y)

)2
=

√
Ey∼π⋆

β(·|x)

[
π⋆β(y|x)
πθt(y|x)

]
Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]

≤

√
C2Ey∼π⋆

β(·|x)

[
π⋆β(y|x)
πref(y|x)

]
Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]

≤

√
C2Ey∼πref(·|x)

[
π⋆β(y|x)
πref(y|x)

]2
Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]

≤

√
C1Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
, (88)

where the second line follows from Cauchy-Schwartz inequality, and the last line uses Assumption 3.
By the same argument, we could also bound (ii):∣∣∣〈δ(t)S,x, πθt+1,x

〉∣∣∣ ≤√C1Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
. (89)
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For term (iii), note that
∥∥∥δ(t)P,x∥∥∥∞ ≤ δP , where δP is defined in (75), we have∥∥∥δ(t)P,x∥∥∥∞ ∥∥π⋆β,x − πθt+1,x

∥∥
1
≤ 2δP . (90)

Thus combining (88),(89),(90) with (85), we have

〈
δ(t)x , π⋆β,x − πθt+1,x

〉
≤ 2 · 1 + βη

η

√
C1Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
+ 2δP , ∀x ∈ X . (91)

Taking expectation w.r.t. x on both sides of (84) and making use of (91), we have

DKL
(
π⋆β∥πθt+1

)
= Ex∼ρ

[
Bh(π

⋆
β,x, πθt+1,x)

]
≤ 1

1 + βη
Ex∼ρ

[
Bh(π

⋆
β,x, πθt,x)

]
+ 2

(
Ex∼ρ

√
C1Ey∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
+

η

1 + βη
δP

)

≤ 1

1 + βη
DKL

(
π⋆β∥πθt

)
+ 2

(√
C1Ex∼ρ,y∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
+

η

1 + βη
δP

)

=
1

1 + βη
DKL

(
π⋆β∥πθt

)
+ 2

(√
C1Ex∼ρ,y∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
+

η

1 + βη
δP

)
(92)

where the second inequality follows from Jensen’s inequality and δ(t)S (x, y).
Note that

Ex∼ρ,y∼πθt (·|x)

[(
δ
(t)
S (x, y)

)2]
(74)
= Ex∼ρ,y∼πθt (·|x)

[(
ϕθt+1(y|x)− ϕθ⋆t+1

(y|x)
)2]

= Ex∼ρ,y∼πθt (·|x)

[(
ϕθt+1

(y|x) + ϕθ⋆t+1
(y|x)− 2Ey′∼πθt (·|x)[φt(x, y, y

′)|x, y]
)(

ϕθt+1
(y|x)− ϕθ⋆t+1

(y|x)
)]

= E x∼ρ,y∼πθt
(·|x),

y′∼πθt
(·|x)

[(
ϕθt+1

(y|x)− φt(x, y, y′)
)2 − (ϕθ⋆t+1

(y|x)− φt(x, y, y′)
)2]

= Rt(θt+1)−Rt(θ⋆t+1)

= Rt(θt+1)−R⋆t , (93)

where Rt is defined in (19), R⋆t := minθ∈ΘRt(θ) = Rt(θ
⋆
t+1), and the third line uses Assumption 1.

Combining the above expression (93) with (92), we obtain

DKL
(
π⋆β∥πθt+1

)
≤ 1

1 + βη
DKL

(
π⋆β∥πθt

)
+ 2

(√
C1(Rt(θt+1)−R⋆t ) +

η

1 + βη
δP︸ ︷︷ ︸

:=ξt

)
. (94)

The above expression implies we need to bound ξt. If for all t, ξt could be bounded by some finite ξ, then
by (94) we have

DKL
(
π⋆β∥πθt

)
≤
(

1

1 + βη

)t
DKL

(
π⋆β∥πθ0

)
+ 2

t−1∑
s=0

(
1

1 + βη

)s
ξ

≤
(

1

1 + βη

)t
DKL

(
π⋆β∥πθ0

)
+

2(1 + βη)

βη
ξ. (95)

In the following, we bound ξt by bounding the excess risk Rt(θt+1)−R⋆t .
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Step 3: bound the excess risk. To bound the excess risk, we first introduce the concept of uniform
stability [Bousquet and Elisseeff, 2002]. Suppose we have a training dataset D = {z1, · · · , zM} where each
zi is sampled i.i.d. from some unknown distribution P defined on some abstract set Z. Given D, a learning
algorithm produces the decision rule wM = wM (D) = wM (z1, · · · , zM ) ∈ W, where W is the set of all
decision rules and is assumed to be a closed subset of a separable Hilbert space. We use wM to refer to both
the algorithm and the decision rule. For the loss function ℓ : Z ×W → [0,∞), we define the risk and the
empirical risk of w ∈ W respectively as

R(w) = Ez∼P ℓ(z, w) and RM (w) =
1

M

M∑
i=1

ℓ(zi, w). (96)

Definition 1. An algorithm wM is uniformly γ-stable, if for any z, z′, z1, · · · , zM ∈ Z and any i ∈ [M ], it
holds that

|ℓ(z, wM (z1, · · · , zM ))− ℓ(z, wM (z1, · · · , zi−1, z
′, zi+1, · · · , xM ))| ≤ γ. (97)

We will also use the generalized Bernstein condition defined as follows:

Definition 2 (Assumption 1.1 in Klochkov and Zhivotovskiy [2021]). DefineW⋆ := argminw∈W R(w) where
W is a closed set. We say that (W, P, ℓ) satisfies the generalized Bernstein condition if there exists some
constant B > 0 such that for any w ∈ W, there exists w⋆ ∈ W⋆ that satisfies

Ez∈P
[
(ℓ(w, z)− ℓ(w⋆, z))2

]
≤ B(R(w)−R(w⋆)). (98)

With the above two lemmas, we now introduce the following important lemma that bounds the general-
ization error for uniformly stable algorithms:

Lemma 5 (Theorem 1.1 in Klochkov and Zhivotovskiy [2021]). Assume loss ℓ is bounded by C on Z ×W,
and (W, P, ℓ) satisfies the generalized Bernstein condition with the parameter B (c.f. Definition 2). Let w
be a γ-stable algorithm (c.f. Definition 1) that returns wM ∈ argminw∈W RM (w) given the training dataset
D. Then with probability at least 1− δ, it holds that

R(wM )− inf
w∈W

R(w) ≤ Cr
(
γ logM +

C +B

M

)
log

(
1

δ

)
, (99)

where Cr > 0 is an absolute constant.

To proceed, we analyze the generalization error at the t-th iterate of Algorithm 3 for a fixed arbitrary
t ∈ N. We’ll let θ̂ denote θt+1 and drop superscript/subscript t when this causes no confusion. For example,
we’ll simply write the update rule (73) as

θ̂ ← argmin
θ∈Θ

1

M

M∑
i=1

(φ(xi, yi, y
′
i)− ϕθ(yi|xi))

2
.

For notation simplicity, we also let ui = (xi, yi), vi = φ(xi, yi, y
′
i), zi = (ui, vi) ∈ Z := X × Y × R, and let

ϕθ(ui) denote ϕθ(yi|xi) for all i ∈ [M ]. Let Z := X . Then in our case, the loss function ℓ : Z ×Θ→ R+ has
the following form:

ℓ(z, θ) := (v − ϕθ(u))2 , (100)

where z = (u, v) ∈ Z, and similar as (96), our risk and empirical risk at the t-th itrerate satisfy:

∀θ ∈ Θ : R(θ) = Ez∼P ℓ(z, θ) and RM (θ) =
1

M

M∑
i=1

ℓ(zi, θ), (101)

where we let P denote the distribution of zi (i ∈ [M ]), and we have

θ⋆ = argmin
θ∈Θ

R(θ) and θ̂ = argmin
θ∈Θ

RM (θ). (102)
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Mote that (22) implies that L(z, θ) is L-Lipschitz over θ for any z ∈ Z. Then by Assumption 4 and
Remark 3 in Kang et al. [2022], we have that (Θ, P, ℓ) satisfies the generalized Bernstein condition with

B =
2L2

µ
. (103)

Furthermore, Corollary 4 in Charles and Papailiopoulos [2018] gives that, when Assumption 2,4 hold,
the empirical risk RM is γ-uniform stability (c.f. Definition 1) with

γ =
2L2

µ(M − 1)
. (104)

Substituting (103) and (104) into (99), we obtain that for any fixed t, with probability at least 1− δ, we
have

Rt(θ̂)−R⋆t ≤ Cr
(
2L2 logM

µ(M − 1)
+
C + 2L2/µ

M

)
log

(
1

δ

)
. (105)

By the independence of the samples in different rounds we know that with probability at least 1− δ, we
have

∀t ≤ T − 1 : Rt(θ̂)−R⋆t ≤ Cr
(
2L2 logM

µ(M − 1)
+
C + 2L2/µ

M

)
log

(
1

1− (1− δ)1/T

)
≤ Cr

(
2L2 logM

µ(M − 1)
+
C + 2L2/µ

M

)
log

(
T

δ

)
(106)

Step 4: put everything together. Let

ξ :=

√
C1Cr

(
2L2 logM

µ(M − 1)
+
C + 2L2/µ

M

)
log

(
T

δ

)
+

η

1 + βη
δP . (107)

Then (107), (106) and (95) together give the desired result.
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