
Scalable Dynamic Resource Allocation via Domain
Randomized Reinforcement Learning

Yiqi Wang
Electrical and Computer Engineering

Carnegie Mellon University
yiqiw2@andrew.cmu.edu

Laixi Shi
Computing and Mathematical Sciences

California Institute of Technology
laixis@caltech.edu

Martin Hyungwoo Lee
Electrical and Computer Engineering

Carnegie Mellon University
martinhwl@cmu.edu

Jaroslaw Sydir
Intel Labs

Intel Corporation
jerry.sydir@intel.com

Zhu Zhou
Intel Labs

Intel Corporation
zhu.zhou@intel.com

Yuejie Chi
Electrical and Computer Engineering

Carnegie Mellon University
yuejiechi@cmu.edu

Bin Li
Intel Labs

Intel Corporation
bin.li@intel.com

Abstract—In 5G wireless networks, the User Plane Function
(UPF) plays a crucial role in efficiently transferring users’ traffic
— a series of data packets — to manage internet communica-
tions. Setting the server’s processor frequency excessively high
can easily meet the packet drop requirements but may lead
to unnecessary power consumption. Therefore, as user traffic
fluctuates, selecting the optimal processor frequency is essential
for minimizing power consumption while satisfying packet drop
constraints. This challenge motivates us to address the dynamic
resource (frequency) allocation problem, where deep reinforce-
ment learning (RL) has shown significant potential. Most existing
studies train and evaluate the RL model in the same environment
with consistent traffic patterns. However, frequent variations in
user traffic can cause the policy trained on the outdated traffic
to fail catastrophically on unseen traffic.

To address such traffic distribution shifts, we propose a
two-phase RL approach augmented with Automatic Domain
Randomization (RL-ADR). This method includes a training
phase that utilizes domain randomization to create a library
of policy candidates, and an inference phase that selects the
optimal frequency using this policy library alongside a safe data
buffer. The proposed RL-ADR achieves zero packet drops on
two unseen long-horizon traffics (3 hours) after being trained
on 25 synthetic traffics that only span for 18 seconds. Compared
to static resource allocation baselines, RL-ADR reduces power
consumption by at least 14.5% and performs comparably to the
oracle solution.

Index Terms—Resource allocation, deep reinforcement learn-
ing, domain randomization.

I. INTRODUCTION

A growing number of mobile devices connect to wireless
networks on a daily basis, requiring a wireless network to
process users’ traffic efficiently to meet the quality of service
required by different applications (e.g., video streaming [1]).
In 5G core network, the 5G User Plane Function (UPF)
workload [2] plays an important role in transferring users’
traffic (consists a series of packets) to meet strict packet

This material is based upon work supported by the National Science
Foundation under grant no. CNS-2148212 and is supported in part by funds
from federal agency and industry partners as specified in the Resilient &
Intelligent NextG Systems (RINGS) program.

drop requirements from various applications. While it is
possible to meet the packet drops requirement easily by
increasing the processor frequency of the server (core or
uncore frequencies), higher processor frequency will result in
a rise in power consumption. This becomes a huge concern
of both the electric bills and sustainability regarding that
communication technology has contributed 2-2.5% worldwide
greenhouse gas emissions [3]. Thus, adaptively choosing the
processor frequency based on the user traffic becomes the key
to balancing two competing objectives: 1) minimizing packet
drops (ideally 0 drops), and 2) minimizing power consumption
(only allocating necessary resources).

Since consistently allocating high frequency leads to ex-
cessive power consumption when the packet rate is low,
adaptively allocating resources to match the dynamically
changing traffic rates are crucial for practical and power-
efficient networks. For such sequential decision making prob-
lems, deep reinforcement learning (RL) has shown significant
power when there are multiple competing objectives to be
considered. For instance, [4], [5] combines two objectives —
packet drops and cache allocations/power consumption — into
the reward functions to train a deep Q-network (DQN) [6] to
allocate resources for network packet processing workload.

Despite the recent progress in allocating resources via deep
RL, we notice that vanilla RL usually trains and evaluates the
policy in the same environment (with an identical traffic pro-
file), illustrated in Fig.1. In real-world applications, however,
the unseen traffic during inference process could deviate from
the one used in training, posing a generalization challenges.
Vanilla RL approaches can’t achieve zero packet drops and
low power consumption in such unseen environments.

To address the generalization challenges, in this paper,
we propose a novel 2-phase algorithm named RL-ADR to
train a deep RL control policy with Automatic Domain
Randomization (ADR) technique (see Fig. 1) to enable re-
source allocations on completely unseen traffics. The main
contributions are summarized as below:

Fig. 1. Vanilla RL (left) VS. Domain Randomized RL (right). Originally, a RL policy is trained and tested in the same environment characterized by the same
traffic pattern. It is not prepared to apply to any new environment during evaluation. Different from the original RL, we train a RL policy with a sequence
of short-horizon environments characterized by synthetic traffics only spans for 18 seconds. The resulted policies are able to dynamically allocate resource
for unseen environments (traffics) without dropping packets and consuming power close to the achievable minimum power in the environments.

• RL-ADR leverages the idea that long-horizon traffic
can be decomposed into short-horizon traffic sequences for
dynamic resource allocation. In phases 1 of RL-ADR, we train
a RL agent to solve a sequence of short-horizon synthetic traf-
fics (domain randomization) and build a library of RL policies
specialized in resource allocations in diverse traffic patterns.
In phase 2, the policies in the library are composed together
to solve an unseen long-horizon traffics during inference.
• In evaluation, RL-ADR reduces power consumption by

15.5% on a 3-hour synthetic traffic and 14.5% on a 24-hour
traffic profile scaled to 3 hours, with comparison to the static
resource allocation baseline.

II. BACKGROUND AND PROBLEM FORMULATION

A. Reinforcement Learning & Problem Formulation

Reinforcement learning (RL) enables an agent to improve
its decision-making by interacting with the environment. RL
could be formulated as Markov Decision Processes, described
by a tuple (S,A, T ,R, γ) [7]. At each time step t, the
agent observes its current state st from the state space S,
and chooses an action at from the action space A based
on its policy π(at|st). The environment transmits the agent
to the next state st+1 determined by the transition kernel
T (st+1|st, at), as the consequence of taking an action at. An
immediate reward will be given to the agent after it executes
the action at, represented by rt = R(st, at). Given a discount
factor γ ∈ [0, 1) and a horizon length of T , the objective of
RL is to find a policy π that maximizes the long-term reward:
Eat∼π(·|st),st+1∼T (·|st,at)[

∑T
t γt−1rt(st, at)].

This paper investigates dynamic resource allocation (i.e.,
processor frequency) using a RL agent, trained in an envi-
ronment characterized by a traffic profile [2] of horizon T .
At each time step t, an agent observes a state st including
performance counters and a packet rate p ∈ [pmin, pmax]. The
agent’s policy chooses an action at to allocate resources by

predicting processor core and uncore frequency. At t+1, the
agent observe st+1 and a scalar reward determined by the ob-
jectives of minimizing packet drops and power consumption
caused by taking the action at at state st. Readers interested
in details could refer to Section IV-A.

B. Domain Randomization

In our algorithm design, we have drawn inspiration from the
technique Automatic Domain Randomization (ADR), which
primarily used in robotics and RL to improve generalization
of the machine learning models to new environments [8].
By systematically changing key factors of the environment,
ADR aims to expose a wide range of scenarios to a model,
thereby improving its adaptability to novel environments
during inference. The systematically changing of environ-
mental factors will be done in a progressive manner. Once
a model demonstrates proficiency in handling the current
level of environmental complexity, it’s encouraged to tackle
more diverse and challenging scenarios to further enhance
its robustness and generalization capabilities. In our task,
we focus on progressively randomizing user traffic patterns
(1-d time series, different in scales and steepness) to help
the policy generalize across various real-world networking
scenarios characterized by inherently unpredictable and highly
variable user traffic.

III. METHODOLOGY

To address the generalization concerns raised in Section I,
we proposed a two-phase algorithm — RL-ADR. Inspired
by the process of ADR, the first phase is called domain
randomized RL, which trains a library of policies specialized
in resource allocation of diverse short-horizon traffics. Then,
the second phase of our algorithm named policy library
inference will compose the policies from the library trained on
short-horizon traffics to choose frequency (allocate resources)

for a long-horizon traffic. Finally, we highlight our design of
the neural network architecture for deep RL, tailored for the
resource allocation tasks with different types of states.

A. Domain Randomized RL

Motivated by the capability of ADR to enable generaliza-
tion (introduced in Section II-B), we designs an algorithm
to randomly generate traffics (a sequence of packet rates)
with constrained values and steepness. The packet rates range
[pmin, pmax] is divided into K intervals uniformly to construct
K2 traffics. For the interval k and its combination with all K
intervals, there’re K number of interval pairs. For each pair
of the intervals, we will 1) uniformly samples a start and
end rate from the first and second interval respectively; 2)
uniformly sampling a rate between the start and end rate; and
lastly 3) generates the full traffics by connecting the selected
3 rates smoothly. Note that all the traffics generated by the
above steps are simple traffics that are flat, monotonically
increasing or decreasing as time goes. Empirically, we found
learning from these simple traffics patterns are sufficient to
handle unseen real world traffics and challenging synthetic
traffics.

The overall procedure is described by Algorithm 1. The
policy of the RL agent is trained to solve K2 number of
short-horizon traffics generated by traffic generator G, each
with a total number of T steps. We reinitialize replay buffer
B when a new traffic is generated from G, while not the
policy π since the knowledge from previous training process
could be helpful. Given N = K2 number of randomized
traffics (environments), N corresponding trained policies will
be added to the library L, each is registered with a key (start
rate, end rate) used for policy retrieval.

Algorithm 1 Domain Randomized RL
1: procedure ADR(K,T)
2: N ← K2 ▷ Number of traffics in ADR
3: Initialize a RL policy π and a0. ▷ default action
4: Initialize a traffic generator G.
5: Initialize a RL environment to be interacted E
6: while N > 0 do
7: key, traffic← G ▷ yields the next traffic to train
8: Initialize an empty replay buffer B
9: s1, ← E(traffic)(a0)

10: for t = 1 to T do
11: at = π(st).
12: st+1, rt ← E(traffic)(at)
13: Add experience (st, at, rt, st+1) to B
14: Optimizes π by sampling experience from B
15: end for
16: Add { key: π } to the policy library L.
17: N ← N − 1
18: end while
19: return policy library L
20: end procedure

B. Policy Library Inference

Our inference algorithm combines the policy library L
obtained through the training process with a safe buffer b. Al-
though a library of policies from phase 1 is trained to allocate
resources for many different rates, the training process cannot
cover all possible rates given limited computation resources
and time. Thus, we introduce a safe buffer constructed based
on the the training data to 1) output safe actions (no packet
drops with reasonable power) when the rate is unseen for the
library or 2) output a lower bound action to remove trivially
bad actions from the policy’s predictions.

In buffer b, discrete rates are keys, and power-efficient
actions are values. Regarding that the prior data during
training is noisy, an action corresponding to a key rate p of b
in a low-rate regime is determined by: 1) finding all actions
from the training data with some rate p′ ≥ p, and 2) chooses
the action with the reward as high as the 98% percentile one
among all the actions. The lower rate range is defined by
rate ≤ 5 millions of packets per seconds (mpps). For higher
rate regimes (> 5 mpps), we use the 30% percentile instead
of 98%. The intuition behind this is that dropping packets
is more likely to take place when packet rates are high.
Therefore, we choose a safer action associated with smaller
rewards (i.e., 30%), which is equal to higher frequency. For
the lower rate, we choose the action that almost achieves
minimum power consumption. The hyperparameters including
5 mpps, 98%, and 30% percentile are determined based on
domain knowledge and empirical performance.

Armed with the prior brought by the safe buffer b, the pol-
icy library L inference procedure is summarized in Algorithm
2. At each time step, the proposed algorithm tries to 1) pick
up a candidate policy from the library L to output power-
efficient action and 2) combine with the information in the
safe buffer b to make the action power-efficient and safe. For
the first step (line 9-20, Algorithm 2), a policy from L will be
a candidate when the rate pattern matches the key of the policy
library. Specifically, we look through all the keys in libaray
L and consider those cases that the key (i.e., (start rate, end
rate)) and the current rates (last rate and current rate) have the
same tendency, namely increasing (i.e., key.start < key.end
and last rate < rate) or decreasing. In such cases, the policy
trained on the corresponding traffic is assumed to be capable
of allocating resources with efficient power consumption for
the current step. If such cases occur, we only output one
candidate (the policy corresponds to one key) whose packet
range is the smallest one (line 13, Algorithm 2). The reason is
that a smaller packet rate range indicates the policy is trained
on flatter traffic, which empirically yields better performance
given the traffic is easier to solve. After finalized the chosen
policy from L, it will predict an action. Then, a lower-bounded
action is retrieved from the buffer (line 21-22, Algorithm 2)
to make sure the action to be executed is not trivially unsafe
(dropping packets). The lower-bound action will be retrieved
by rounding the current rate down to the nearest key rate
in the safe buffer. The final action will be the maximum

Algorithm 2 Policy Library Inference
1: procedure INFERENCE(L, traffic, T, b)
2: Initialize a RL environment wrapper E
3: p′ ← 1 mpps ▷ initializes previous rate to minimum
4: for t = 1 to T do
5: idx← 0 ▷ Index to retrieve π from Library L
6: π ← None
7: p← traffic[t] ▷ current packet rate
8: range← +∞
9: while idx < len(L.keys) do

10: key← L.keys[idx]
11: if sign(p′ − p) = sign(key.start− key.end)
12: and min(key) ≤ p ≤ max(key) and
13: max(key)−min(key) ≤ range then
14: range← max(key)−min(key)
15: π ← L[key] ▷ prefers π trained on
16: flatter traffics
17: end if
18: idx← idx + 1
19: end while
20: if π is not None then
21: π predicts an action.
22: Lower bound the action by checking b.
23: else
24: Replays a safe action from buffer b.
25: end if
26: Execute the action in E(traffic).
27: p′ ← p
28: end for
29: end procedure

core and uncore frequencies between lower-bound action and
the predicted action since any action lower than the action
corresponding to a lower rate is prone to drop packets. If a
rate at test time cannot be matched to any policy in the library,
an action corresponding to the nearest round-up key rate in
the safe buffer will be replayed (line 24, Algorithm 2).

C. Feature-Aware Architecture Design

Recall that deep RL usually parameterizes the policy using
a deep neural network, such as one of the widely used
method DQN [6]. Tailored to our tasks, we propose a new
neural network architecture named DQN-FiLM, since a state
is composed of two types of inputs: 1) 8 performance counters
(large integers) and 2) one incoming packet rate (a floating
point number). Known from domain knowledge, the packet
rate involves more information for predicting the next action
than the performance counters. To address such information
bias, we insert FiLM [9] layers to the architecture used
in DQN (fully connected layers) to emphasize on packet
rates, shown in Fig. 2. Each FiLM layer transforms the
representation Xi from the previous layer by a γi and a
βi (both are scalars predicted by the FiLM generator) for
i = 0, 1, 2. The parameters {γi} and {βi} from all FiLM

Fig. 2. Illustration of the architecture used in DQN with FiLM layers. The
representation learned from counters will be transformed by the γ, β learned
by a separate network.

layers are predicted by a separate neural network (shown in
Fig. 2 in red), taking packet rate as the input. Lastly, the
decision backbone shown in red and blue in Fig. 2 will output
Z, which will be fed into the two prediction heads for state-
action value predictions, similar to Tavakoli et al. [10].

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setups

Task environmental settings. The state observed by an
RL policy on the UPF server is based on performance
counters and packet rates. In the experiments, we consider
8 performance counters (shown in Table I) selected through
the technique in [5]. We assume the RL policy can directly
observe the current ground truth packet rates as part of the
state during both training and inference. The policy chooses a
core frequency from the set [800, 900, ..., 2300] MHz and an
uncore frequency from [800, 900, ..., 2400] MHz as an action.
Frequency adjustments are made through the CPU governor
interface [11], while non-utilized cores are set to idle.

The reward signal is computed from both packet drops
D and power consumption P , shown in Algorithm 3. It
penalizes packet drops with negative values constructed from
current packet drops for 1 second, scaled by the maximum
possible packet drops profiled in advance. If there are no
packet drops, it will output a positive value to encourage the
actions with smaller power consumption. We use Intel PCM
Power monitor [12] to measure the power consumption of
the socket where the UPF workload runs on, and measure the
packet drops at the Network Interface Card (NIC).

Finally, The experiments are conducted on a two-server
system, where the UPF workload runs on dedicated cores on
one socket of an Intel Ice Lake Xeon® server. This server is

TABLE I
CPU PERFORMANCE COUNTERS USED BY RL.

cycle activity.stalls mem any
cycle activity.stalls l2 miss
frontend retired.latency ge 32
offcore requests outstanding.cycles with demand code rd
uops executed.core cycles ge 3
rs events.empty cycles
offcore requests.demand data rd
mem load retired.l2 miss

Algorithm 3 Reward function
1: procedure REWARD(Dcurrent, Dmax, Pcurrent, Pmin, Pmax)
2: if Dcurrent > 0 then ▷ If packet drops > 0
3: r = −Dcurrent/Dmax

4: else ▷ minimizing power consumption
5: r = (Pmax − Pcurrent)/(Pmax − Pmin)
6: end if
7: return r
8: end procedure

connected to a TREX [13] traffic generation server (Intel®
Xeon® server) through 100 Gb/s Ethernet links.

Our proposed method RL-ADR. RL-ADR is trained on
N = K2 = 25 randomized traffics following the procedure
described in Algorithm 1. The traffic generation process in
line 7 of Algorithm 1 generates traffic with packet rates ranged
from [pmin, pmax] = [1mpps to 15mpps], with each traffic
only spans for 18 seconds. The starting rates of the generated
traffics will gradually increased from 1 to 15 mpps, to make
the traffic more and more challenging. We use the DQN-FiLM
architecture proposed in Section III-C as the policy network.
The training takes around two and a half days.

Vanilla RL baseline. As described in the Fig. 1 (left), a
vanilla RL policy uses the same architecture as the proposed
RL-ADR (the proposed DQN-FiLM) and is trained and tested
in a same environment, detailed in the next sub-section. It is
trained by 334 episodes which takes around two days. For
training efficiency, we scale the 3 hour long-horizon traffic
to 104 seconds to significantly reduce the training time for
each episode. This is motivated by that RL agent generally
benefits from training more shorter episodes rather than a
small number of longer-horizon episode.

Oracle. The oracle represents the accessible optimal reward
(i.e., the smallest amount of power without dropping packets)
for packet rates within the range [1mpps to 15mpps]. It is
constructed by brute-forcing all possible resource configura-
tions (core and uncore frequencies) for a discrete set of packet
rates uniformly chosen within the range. Since the packet rate
space is continuous, we match each incoming packet rate with
the closest higher rate from the oracle set during inference.

Max power. A static baseline always outputs actions that
minimizes power consumption (minimal core and uncore
frequency) and maintains 0 packet drops for the maximum
packet rate (15 mpps). It is used to normalize the power
consumption for evaluation.

B. Evaluations in Unseen Traffics

Synthetic traffic of 3 hours. A random traffic is created
as a 1-dimensional time series that lasts for 3 hours and later
tunes the peaks to be higher or lower. All packet rates are
limited in [pmin, pmax] = [1mpps to 15mpps]. The resulting
traffic pattern is designed to have lots of steep spikes in
order to evaluate the algorithm performance on the traffic with
abrupt noise or changes (Fig. 3, top).

Fig. 3. Comparing power consumption (bottom) on synthetic traffics for 3
hours (top). Note that our proposed method RL-ADR library achieves power
consumption similar to the oracle. The power is normalized based on the
power achieved by maximum power baseline: power / max power.

Both vanilla RL and RL-ADR are going to test on the
3-hour version of the synthetic traffic. The difference is that
RL-ADR hasn’t seen this traffic during training process, while
vanilla RL is trained on a version of the traffic scaled to a
shorter time. The performance of oracle, RL-ADR, and vanilla
RL will be reported on packet drop counts and normalized
power saving based on the max power baseline.

The results are shown at the Fig. 3 (bottom), where RL-
ADR’s power consumption is close to oracle on a totally
unseen traffic pattern. Although vanilla RL has seen the
synthetic traffic at inference during its training, it still can’t
consistently allocate sufficient resources similar to the oracle
and drops 780 million packets in total. The proposed RL-
ADR successfully achieves 0 packet drops and saves 15.5%
of power whereas oracle saves 17.7%, as shown in Table II.

Real traffic of 3 hours. The real traffic originally spans for
24 hours, and we scale it to 3 hours for evaluation purposes,
shown in the Fig. 4 (top). All packet rates are scaled between
1 mpps to 15 mpps. The traffic has fewer peaks, reflecting
the real-world scenario.

Even though vanilla RL has seen the traffic it will be
evaluated on, it drops 1.13 million packets. RL-ADR achieves
zero packet drops and comparable power consumption as the
oracle, shown in the Fig. 4 and Table II. We notice that RL-
ADR sometimes consumes unnecessary power when the rate
is relatively low (i.e., ≤ 5 mpps), as shown in the Fig. 4.
This is because the maximum between a suboptimal policy’s
predicted action and its lower bound action may result in
a very safe but high-frequency action. This issue could be
mitigated by devising better ways to lower bound the action
predicted by the policy, which we leave to future work.

Fig. 4. Comparing power consumption on real traffic for 3 hours. Our
proposed RL-ADR method achieves power consumption similar to the oracle.
The peaks that are away from the oracle are the scenarios where the predicted
action is replaced by a safe action replayed from the buffer. The power is
normalized based on the power achieved by the maximum power baseline:
power / max power.

C. Effectiveness of Feature-Aware Architecture

We conduct an ablation study on the DQN-FiLM archi-
tecture proposed in Section III-C, following the vanilla RL
procedure (see Section IV-A). For convenience, we refer
DQN-FiLM as DQN-film counter rate in this subsection
given the usage of FiLM (shown in Fig. 2) with packet
rate and performance counters as input. To understand the
effectiveness of FiLM, a variant is constructed without FiLM
and using the standard architecture in DQN [6] to take
the concatenation of normalized counter and packet rate as
input (i.e., DQN counter rate). To understand the roles of
performance counter and packet rate, another two variants
(DQN counter and DQN rate) are created with the standard
architecture but take either the counters or the packet rate as
input.

As shown in Fig. 5, DQN-Film counter rate using the
FiLM architecture with both counter and rates performs the
best. While DQN counter rate also takes packet rate and
counters as input, it doesn’t have the ability to leverage two
types of inputs in different ways. As expected, leveraging
solely counters or rates doesn’t bring benefits.

V. CONCLUSION AND DISCUSSION

In this work, we focus on minimizing the power con-
sumption while simultaneously satisfying the packet drop
requirement (usually zero drop) when the input users’ traffic
(a series of packets) is unseen from the training process. To

TABLE II
SUMMARY TABLE ON POWER AND PACKET DROPS.

Traffic types Baselines Packet
drops total

Power saved
on average

Synthetic traffic
3 hour

Oracle 0 17.7%
RL-ADR library 0 15.5%
Vanilla RL 780 million 18.2%

Real traffic
3 hour

Oracle 0 17.5%
RL-ADR library 0 14.5%
Vanilla RL 1.13 million 18.9%

aThe saved power is normalized by the maximum power baseline
with the formula: (max power - power) / max power.

Fig. 5. The ablation study on architecture is shown in Fig. 2. In comparison
to the DQN variants lacking FiLM, the DQN with FiLM taking counters and
packet rates as input achieves most of the rewards per episode.

achieve this, we propose a two-phase RL algorithm based
on Automatic Domain Randomization called RL-ADR, which
achieves zero dropping packets while maintaining a desired
power consumption close to the oracle on two conducted
long-horizon unseen traffics for testing during inference. In
addition, considering the time cost, the training time of RL-
ADR only depends on the total number of synthetic short-
horizon traffics constructed during the training, while that of
vanilla RL heavily counts on the real traffic length which can
be much longer. It shows that RL-ADR is more scalable than
RL in vanilla setting.

REFERENCES

[1] O. Oyman, J. Foerster, Y.-j. Tcha, and S.-C. Lee, “Toward enhanced
mobile video services over wimax and lte [wimax/lte update],” IEEE
Communications Magazine, vol. 48, no. 8, pp. 68–76, 2010.

[2] D. Lee, J. Park, C. Hiremath, J. Mangan, and M. Lynch, “Towards
achieving high performance in 5g mobile packet core’s user plane
function,” Intel Corporation: Mountain View, CA, USA, 2018.

[3] R. Miftakhutdinov, Energy saving drives new approaches to telecom-
munications power system. IntechOpen, 2010.

[4] B. Li, Y. Wang, R. Wang, C. Tai, R. Iyer, Z. Zhou, A. Herdrich,
T. Zhang, A. Haj-Ali, I. Stoica, et al., “Rldrm: Closed loop dynamic
cache allocation with deep reinforcement learning for network function
virtualization,” in 2020 6th IEEE Conference on Network Softwarization
(NetSoft), pp. 335–343, IEEE, 2020.

[5] D. Penney, B. Li, J. J. Sydir, L. Chen, C. Tai, S. Lee, E. Walsh, and
T. Long, “Prompt: Learning dynamic resource allocation policies for
network applications,” Future Generation Computer Systems, vol. 145,
pp. 164–175, 2023.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[8] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. Mc-
Grew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schnei-
der, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, “Solving rubik’s cube with a robot hand,” arXiv preprint
arXiv:1910.07113, 2019.

[9] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, 2018.

[10] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching archi-
tectures for deep reinforcement learning,” in Proceedings of the aaai
conference on artificial intelligence, vol. 32, 2018.

[11] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Pro-
ceedings of the linux symposium, vol. 2, pp. 215–230, 2006.

[12] “Intel performance counter monitor.”
[13] “Cisco systems traffic generators.”

