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e Given training data X"™ ~ pyaia (1<i<N)inR?
—_——

from a general distribution

® Generate new samples Y ~ pgata



From generative models to generative Al

Generative Al is transforming nearly every field of our society. )




State-of-the-art diffusion models

Inspired by nonequilibrium thermodynamics

— Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli '15

Diffusion models

Stable Diffusion
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It is feasible as long as one knows the score function
(Anderson’82; Haussmann and Pardoux'86; Song et al.’20)...




It is feasible as long as one knows the score function
(Anderson’82; Haussmann and Pardoux'86; Song et al.’20)...

) dX, = —X,dr +V2dB
data dist ~ . - - d ‘. ~ noise dist

Forward SDE: Ornstein-Uhlenbeck Process



d
How to learn a reverse process s.t. V; = X; (1<t <T)?

It is feasible as long as one knows the score function
(Anderson’82; Haussmann and Pardoux'86; Song et al.’20)...

aY; = (¥ + ¥ logpx,._, (¥;)) dr

““““““ ReverseODE...""n,
4 dX, = —X.dr +V2dB,
data dist ~ Xo - — X7 =~ noise dist
} Forward SDE: Ornstein-Uhlenbeck Process .
________ Reverse SDE __,.-"‘

dY, = (YT + 2V longT_T(YT)) dr + \/idBT
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¢ score functions of marginals of forward process: V log px, (X)
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+-— learn s¢(-) = Vlogpx, (+)
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Score is all you need

¢ score functions of marginals of forward process: V log px, (X)
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w.r.t. X
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1. score learning/matching: learn estimates s;(-) for Vlogpx, (-)

2. data generation: sampling w/ the aid of score estimates {s;(-)}



Score matching via denoising

X0 ~ Pdatay Xt = VarXo++v1—a N(0, 1)



Score matching via denoising

X0 ~ Pdata, Xt =V Xo+ V1 —aN(0,1;)

Tweedie’s formula (Hyvarinen, 2005; Vincent, 2011):

1 - —
3?@) e Exowpdata,etrv./\/'(o,[d) [ﬁt | Vagxg + V1 — apep = 33] .

T-a

MMSE denoising



Score matching via denoising

X0 ~ Pdata;

X =vVaXo+vV1—aN0,I)

Tweedie’s formula (Hyvarinen, 2005; Vincent, 2011):

1

si(z) = T Ai-a E o ~paatas e~ (0,1,) [ﬁt | Varro + V1 — ey = x] .

U-Net
[Ronneberger, Fischer, Brox, 2015]

MMSE denoising
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This talk

&< decouple

score learning <« X — data generation
| —
this talk

Sampling:

When and how fast do diffusion samplers converge?

Acceleration:

Can we accelerate the convergence of diffusion samplers provably?

Inverse problems:

Can we design provably robust posterior samplers using diffusion priors?



Non-asymptotic convergence for diffusion-based
generative models

Gen Li Yuxin Chen Yuting Wei
CUHK UPenn UPenn

“A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models",
arXiv:2408.02320.



Two mainstream approaches

X0 ~ Pdata, Xt =V1—-5BXe 1+ VBN(0,1), 1<t<T

a7, = (v, + Wlogey () ir

""" Reverse ODE """+

) ' dX, = —X,dr + V2B, o
data dist ~ Xo > X1 ~ noise dist

Forward SDE: Ornstein-Uhlenbeck Process

.'
0
0
o
o

dY, = (YT + 2V longTfr(YT)) dr + \/§dBT
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Two mainstream approaches

— Ho, Jain, Abbeel '20

Xo ~ pdata, Xt = /1= BiXi1 + VBN(0, 1), 1<t<T

1. A stochastic sampler: denoising diffusion probabilistic models

DDPM
YT ~ N(Oa Id)

Y1 =V (Yi,noise), t=T,---,1

11



Two mainstream approaches

— Ho, Jain, Abbeel '20

Xo ~ pdata, Xt = /1= BiXi1 + VBN(0, 1), 1<t<T

1. A stochastic sampler: denoising diffusion probabilistic models

DDPM
YTNN(07[d>
1
Vit = e (Yot A1) + BN L), #=T 1

~~ random component
deterministic component

11



Probability flow ODE

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole 20

X0 ~ Pdatas Xt = V1= B Xe 1+ VBN(0,1g), 1<t<T

2. A deterministic sampler based on probability flow ODE

12



Probability flow ODE

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole 20

Xo ~ pdatas Xt = V1= B Xe 1 +V/BN(0,1g), 1<t<T
2. A deterministic sampler based on probability flow ODE

YT ~ N(Ov Id)

n—lzq)t(}/t)v t:T771

12



Probability flow ODE

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole 20

X0 ~ Pdatas Xt = V1= B Xe 1+ VBN(0,1g), 1<t<T

2. A deterministic sampler based on probability flow ODE

YTNN(Ovld)
Y; ! Y, + ﬁ Y; t="T 1
t—1 — m(t ( t)) — 4L,

purely deterministic

12



Stochastic versus deterministic samplers

\ L\

po(x) pi(z) > pr(z):

Figure credit: (Song et al '20)

® The stochastic sampler generates more diverse samples, while the
deterministic sampler is much faster.

13



Towards understanding the non-asymptotic convergence

Question: can we understand non-asymptotic convergence of diffusion
models in discrete time?

dY; = (Y, +Vlogpx,_. (¥2) dr

»y g
. dX, = —X,dr +V2dB .

data dist ~ Xo = z "+ X7 ~ noise dist
' Forward SDE: Ornstein-Uhlenbeck Process .

dY, = (Y, + 2V logpx, . (Yy)) dr +V2dB,
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Towards understanding the non-asymptotic convergence

Question: can we understand non-asymptotic convergence of diffusion
models in discrete time?

4y, = (V: +Vlogpx, . (02) dr

»

dX, = —X,dr +V2dB . .
X < = “» X7 ~ noise dist
Forward SDE: Ornstein-Uhlenbeck Process .

data dist ~ Xo
>,

dY, = (Y, + 2V logpx, . (Yy)) dr +V2dB,

Sources of errors:
® initialization error (dealing with the gap between X7 and Y7)
® discretization error

® score estimation error

14



Prior approaches

discrete-time
diffusion process

)

— Li, Lu, Tan'22

— Chen, Lee, Lu'22

— Chen, Chewi, Li, Li, Salim, Zhang '22
— Chen, Daras, Dimakis '23

— Chen, Chewi, Lee, Li, Lu, Salim '23

continuous-time limits via
SDE/ODE toolbox (e.g., Girsanov thm)
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— Chen, Chewi, Li, Li, Salim, Zhang '22
— Chen, Daras, Dimakis '23

— Chen, Chewi, Lee, Li, Lu, Salim '23

continuous-time limits via
SDE/ODE toolbox (e.g., Girsanov thm)

discrete-time
diffusion process

control discretization error

Analogy: (stochastic) gradient descent vs. gradient flow, TD learning via ODE

15
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Prior approaches

— Li, Lu, Tan'22

— Chen, Lee, Lu'22

— Chen, Chewi, Li, Li, Salim, Zhang '22
— Chen, Daras, Dimakis '23

— Chen, Chewi, Lee, Li, Lu, Salim '23

continuous-time limits via
SDE/ODE toolbox (e.g., Girsanov thm)

discrete-time
diffusion process

control discretization error

® Built upon toolboxes from SDE/ODE

® Existing analyses were inadequate for deterministic samplers

This talk: non-asymptotic convergence guarantees
for deterministic samplers

15



Assumptions

® Minimal data distributional assumptions:
P([| Xoll2 < T*) =1

for arbitrarily large constant cp > 0
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Assumptions

® Minimal data distributional assumptions:
P([| Xollo < T") =1
for arbitrarily large constant cp > 0
® /5 error of score functions:

1
T E

t=1 Xt

[HSt(X) - s:(xwﬂ <22

score*
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Assumptions

® Minimal data distributional assumptions:
P([| Xoll2 < T") =
for arbitrarily large constant cp > 0
® /5 error of score functions:

1 T
72 E

t=1 Xe

(15:X) = 5t (OI] < e

® Jacobian error of score functions: denote by Jsx = %—t and
Js, = %‘;‘ the Jacobian matrices of s;(-) and s;(- ) which obey

T
Z |:HJ§t(X) - JS; (X)||:| < €Jacobi-

’ﬂ \



Non-asymptotic complexity of generation

Learning rates: for some large constants ¢y, c; > 0,

1
B = o

cilogT . cilog T\t
By = 1Tg mm{,@l(l—l— 1Tg ),1}

Theorem (Li et al, 2024)
For the deterministic sampler (DDIM-type/prob. flow ODE),

d
TV (le,pyl) < T + Vdzscore + de Jacobi up to log factor.

17



Non-asymptotic complexity of generation

Learning rates: for some large constants ¢y, c; > 0,

1
b=

cilogT . c1logT\t
By = ng mm{ﬂl(l—l— 1Tg ),1}

Theorem (Li et al, 2024)
For the deterministic sampler (DDIM-type/prob. flow ODE),

d
TV (px,,pvi) S Tt Vdescore + de jacobi  Up to log factor.

Our results of deterministic samplers provide sharp bounds with near
optimal dependency with d up to log factors.

17



Non-asymptotic complexity of generation

Learning rates: for some large constants ¢y, c; > 0,

1
b=

cilogT . cilog T\t
eS80

Theorem (Li et al, 2024)
For the deterministic sampler (DDIM-type/prob. flow ODE),

d
v (leale) 5 T + \/gescore + d€ jacobi up to /Og factor.

Fast convergence for general data distribution,
given good score estimates.

17



Acceleration?

Low sampling speed!

100s-1000s steps

-
<
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Acceleration?

Low sampling speed!
100s-1000s steps

50k images: DDPM (20h) vs. single-step GANs (< 1min)

S

18



Acceleration?

® Training-based methods: progressive distillation (Salimans et al.,
2022), consistency model (Song et al., 2023)...

19
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Acceleration?

® Training-based methods: progressive distillation (Salimans et al.,
2022), consistency model (Song et al., 2023)...
&
Y

® Training-free methods: DPM-Solver/++ (Lu et al., 2022ab),
UniPC (Zhao et al., 2023)...

additional training steps are required

19



Can we develop training-free samplers that converge
provably faster?

Gen Li Yu Huang Timofey Efimov Yuting Wei Yuxin Chen
CUHK UPenn CMU UPenn UPenn

“Accelerating Convergence of Score-Based Diffusion Models, Provably”, ICML 2024.

20



Acceleration via high-order ODE discretization

Solving the probability flow ODE (a; := H’,i,zl ag with ap =1 — 34):

_ 1o Va [ .
X(at—l):@X(at)‘F 9 = \/773 SW(X('Y)) dy

approximated by?
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Acceleration via high-order ODE discretization

Solving the probability flow ODE (a; := H2:1 ag with ap =1 — 34):

_ 1 _ Vai—1 Q-1 .
X(a—1) = @X(at)—k 5 . 7 s (X(v)  dy

approximated by?

Scheme 1: 5% (X (7)) ~ s, (X (@) =~ s:(Xy)
1

]_ —
=% 5,(X,)) probability flow ODE

X(a—1) ~ 5

(X(at) +
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Acceleration via high-order ODE discretization

Solving the probability flow ODE (a; := H2:1 ag with ap =1 — 34):

_ 1 _ Vai—1 Q-1 .
X(a—1) = @X(at)—k 5 . 7 s (X(v)  dy

approximated by?

Scheme 1: 5% (X (7)) ~ s, (X (@) =~ s:(Xy)

at

]_ —
=% 5,(X,)) probability flow ODE

X(@—1)» — (X (@) + >

NG
Refined approximation?

ds? (X(y))
dy

e
T — Tert (5¢(Xe) = se41(Xe41))

s5(X (7)) ~ 55, (X (@) + (v — )
~ St(Xt) +

21



Acceleration via high-order ODE discretization

Solving the probability flow ODE (a; := H2:1 ag with ap =1 — 34):

_ 1o a1 .
X(at—l):@X(at)‘F 2 =, \/’YT)’ S’Y(X(’Y)) dy

approximated by?

Scheme 1: 5% (X (7)) ~ s, (X (@) =~ s:(Xy)
1

X@1) ~ —= (X (@) + %st(xt)) probability flow ODE
@

Scheme 2: 8; (X(’y)) ~ St(Xt) + e (St (Xt) — St+1 (Xt+1))

Qp—0t41

—_

1—
X(at_l) ~ e

(X(at) + st(Xt))

-7

(4(1_70“)2) (st (X¢) — aurr ser1 (Xeqr) )) Ours

Jr
(1— o

Jar

reuse

21



Acceleration via high-order ODE discretization
Solving the probability flow ODE (a; := HZ;:1 ag with ap =1 — )
X(at_l) = 1 X(at) + Qi1 -

1*
Jai R I BRI U

approximated by?

)~ sk, (X () ~ s4(Xe)

(X (@) + %st(xt))

Scheme 1: s} (X(v)
1

X(a—1) ~

3

probability flow ODE
Scheme 2: s* (X (7)) ~ si(Xy) + 212

s (5e(Xe) = se41(Xe41))
(X(at) 41 — st(Xt))

Vai (48:73221) (St (X¢) — aurr ser1 (Xeqr) )) Ours

—_

X(at_l) ~

-7

reuse

DPM-Solver-2 (Lu et al, 2022a): to construct second-order ODE solver

21



Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)
The accelerated deterministic sampler obeys

6

d
TV(leprl) 5 T2 + \/Egscore + de jacobi

e Improved rate O(1/T2) compared to probability flow ODE O(1/T)

22



Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)
The accelerated deterministic sampler obeys

6

d
TV (pole) ,S ﬁ + \/Esscore + d& Jacobi

e Improved rate O(1/T?) compared to probability flow ODE O(1/T)

Numbers of function evaluation (NFE) 4 s===== 50

| high-quality samples within 10 NFEs |

22



Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)
The accelerated deterministic sampler obeys

6

d
TV (pole) ,S ﬁ + \/Esscore + d& Jacobi

e Improved rate O(1/T?) compared to probability flow ODE O(1/T)

Sampled images with 5 NFEs: crisper and less noisy

22



Provably robust diffusion posterior sampling
for inverse problems

s

Xingyu Xu
CcMU

“Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play
Image Reconstruction”, NeurlPS 2024, arXiv:2403.17042.



Inverse problems

Forward model: we interrogate the signal of interest x through
forward model A and make measurements y.

y = A(x)

lll%lll
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Inverse problems

Forward model: we interrogate the signal of interest x through
forward model A and make measurements y.

y = A(x)

lll%lll

inverse problem

Inverse problem: recover the signal of interest « from y.

24



Ubiquitous, but often ill-posed

AN

Internet traffic

microscopy

Radio astronomy

seismic imaging

Can we exploit flexible / expressive data priors prescribed by
diffusion models for ill-posed inverse problems? J

25



Score-based diffusion model for inverse problems

likelihood

= y~p(|z)

inverse problem

Posterior sampling: sample from

Score-based generative prior

>

SO L T YT
si()

= Vlogpx, ()

p(ly) ocp(-)ply|z) = p(-) exp (L(-; y))
;iz' log-likelihood

26



Score-based diffusion model for inverse problems

likelihood

vrse pr‘M

Posterior sampling: sample from

Score-based generative prior

0 pp

Xo---- P X Pp 000 e

() = Vlogpx, ()

p(ly) o< p(-)p(y|x) = p(-) exp (L(-;y))
~~ SN——

prior log-likelihood

Score-based implicit prior: the data prior p(-) is accessed through its

unconditional score functions s:(-) = Vlogpyx,(-).



A highly incomplete list of prior work

(Song et al., 2021)
(Laumont et al., 2022)
(Kawar et al., 2022)
(Trippe et al., 2022)
(Graikos et al., 2022)
(Chung et al., 2023)
(Cardoso et al., 2023)
(Song et al., 2023)
(Mardani et al., 2023)
(Feng et al., 2023)
(Chen et al., 2023)
(Coeurdoux et al., 2023)
(Wu et al., 2022)
(Dou and Song, 2024)
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A highly incomplete list of prior work

(Song et al., 2021)
(Laumont et al., 2022)
(Kawar et al., 2022)
(Trippe et al., 2022)
(Graikos et al., 2022)
(Chung et al., 2023)
(Cardoso et al., 2023)
® (Song et al., 2023)
(Mardani et al., 2023)
(Feng et al., 2023)
(Chen et al., 2023)
(Coeurdoux et al., 2023)
(Wu et al., 2022)
(Dou and Song, 2024)

Majority of the existing algorithms are heuristic and/or tailored to
linear inverse problems. J




Towards provably efficient and accurate inversion

Compute

Fidelity
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Compute

Compute cheap, but
low fidelity

@
DPS (Chung et al, 22)

Fidelity
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Compute

Compute cheap, but
low fidelity

MCGdiff (Cardoso et al, 23)

()
Asymptotic exact,
compute expensive
(]
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Towards provably efficient and accurate inversion

MCGdiff (Cardoso et al, 23)
()

Asymptotic exact,
compute expensive

Compute cheap, but
low fidelity

DPS (Chung et al, 22) High fidelity,

compute efficient

Goal: develop provably compute-efficient and high-fidelity
diffusion-based inversion methods for arbitrary forward model.

28



Our approach: diffusion plug-and-play (DPnP)
Inspired by (Bouman and Buzzard, 2023; Viono et al., 2019; Lee et al., 2021)

p(1y) o exp (logp() + £(5 v))

Given an annealing schedule {7},

Proximal consistency sampler:

1
vy xex (£6 ) = gall-~3ul?)

C 2

Diffusion denoising sampler:

5 1 5
Fin ocoxp (1082() = 531l s )
k
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Inspired by (Bouman and Buzzard, 2023; Viono et al., 2019; Lee et al., 2021)

p(1y) o exp (logp() + £(5 v))

Given an annealing schedule {7},

Proximal consistency sampler: Readily implementable by, e.g
~ 1 ~ 2 T
Ty o X (c(-; D=5l &l MALA
k

C 2

Diffusion denoising sampler:

5 1 5
Fin ocoxp (1082() = 531l s )
k

29



Our approach: diffusion plug-and-play (DPnP)
Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

p(-y) oc exp <logp(‘) + L(; y))

Given an annealing schedule {n;},

Proximal consistency sampler: o

1 J Readily implementable by, e.g.,

2
gy xexp (£03) = gl <2l ALy
Diffusion denoising sampler:
How do we implement this step using
()= 5ol &
ZTr41 x exp | logp ) — 7| : —xk+;| diffusion score functions?
2n? 2 @
k

29



Diffusion denoising sampler

Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
nk 2 2

where w ~ N(0, I).

® Key insight: this can be solved by diffusion!

30
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Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
nk 2 2

where w ~ N(0, I).

e Key insight: this can be solved by diffusion!
® stochastic/deterministic samplers via reversing properly defined
forward processes (e.g., Ornstein-Uhlenbeck process), whose score
functions can be mapped from s;(-).
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Diffusion denoising sampler

Posterior sampling for AWGN denoising:
1 _ 1 = 2 * |k _ =
exp (logp(x) — 55 llz = Byy 1 [°) ) o p(a™ | 2" +mpw = By y 1)
T]k 2 2

where w ~ N(0, I).

® Key insight: this can be solved by diffusion!

® stochastic/deterministic samplers via reversing properly defined
forward processes (e.g., Ornstein-Uhlenbeck process), whose score
functions can be mapped from s;(-).

® The resulting update rules are similar to, but not the same as, the
ones used for generation.

30



Schematic view of DPnP

k=1 k=10
Proximal Diffusion Proximal Diffusion
consistency denoising |:> consistency denoising
sampler sampler sampler sampler

® FEach iteration of DPnP contains a “full” reverse denoising process
with multiple denoising steps.

® But, it can be easily combined with acceleration schemes, such as
distillation, to speed up.

31



Our theory

Theorem (Xu and Chi, 2024)
Set constant ny, = n > 0. Define a stationary distribution m, by

Wn(x) X p(I)QW(x)ﬂ Qn(x) = efliv) *pnC(m)7

where ( ~ N(0,1;) and = denotes convolution. There exists
A:=X(p, L,n) € (0,1), such that for any accuracy level € > 0, with

K =< 5 log(1/e), we have

1 1
TV(pzi. ™) S e/ (pz, | m) + 1_ )\(ﬁDDS + epcs) log (€>7
N————

init error
sampler error

where epcs and epps are the total variation error of PCS and DDS.

e A diminishing schedule {n;} ensures asymptotic consistency.
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Our theory

Theorem (Xu and Chi, 2024)
Set constant ny, = n > 0. Define a stationary distribution m, by

Wn(x) X p(m)qn(x)’ Qn(x) = efliv) *pnC(m)7

where ( ~ N(0,1;) and = denotes convolution. There exists
A:=X(p, L,n) € (0,1), such that for any accuracy level € > 0, with

K =< 5 log(1/e), we have

1 1
TV(pzi. ™) S e/ (pz, | m) + 1_ )\(GDDS + epcs) log (€>7
N————

init error
sampler error

where epcs and epps are the total variation error of PCS and DDS.

e A diminishing schedule {n;} ensures asymptotic consistency.

DPnP is the first provably-robust posterior sampling method for
nonlinear inverse problems using unconditional diffusion priors.
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Numerical experiments

Phase retrieval: recover an unknown image from the magnitude of its
masked Fourier transform.

DPS LGD-MC (n=5)
(Chung et al, 2023) (Song et al, 2023)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. )
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Numerical experiments

Quantized sensing: recover an unknown image from its one-bit
dithered measurements.

DPS LGD-MC (n=5) DPnP
(Chung etal, 2023)  (Song et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. )
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Numerical experiments

Super resolution: recover an unknown image from its 4x
downsampled version.

DPS LGD-MC (n=5) DPnP
(Chung et al, 2023)  (Song et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. J
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More metrics

Table: Performance on the ImageNet 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNR 1 LPIPS] PSNR® LPIPS] PSNR T
DPnP-DDIM (ours) 0.416 21.6 0.562 13.4 0.363 23.0 ~ 240s
DPS 0.473 20.2 0.677 13.4 0.542 18.7 ~ 150s

LGD-MC (n = 5) 0.416 20.9 0.592 12.8 0.384 22.3 ~ 150s

Table: Performance on the FFHQ 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNRt LPIPS| PSNR?T LPIPS| PSNR?T
DPnP-DDIM (ours) 0.301 24.2 0.376 224 0.293 24.2 ~ 90s
DPS 0.331 23.1 0.490 17.4 0.367 21.7 ~ 60s

LGD-MC (n =5) 0.318 23.9 0.522 16.4 0.317 23.9 ~ 60s
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More metrics

Table: Performance on the ImageNet 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNR 1 LPIPS] PSNR® LPIPS] PSNR T
DPnP-DDIM (ours) 0.416 21.6 0.562 13.4 0.363 23.0 ~ 240s
DPS 0.473 20.2 0.677 13.4 0.542 18.7 ~ 150s

LGD-MC (n = 5) 0.416 20.9 0.592 12.8 0.384 22.3 ~ 150s

Table: Performance on the FFHQ 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNRt LPIPS| PSNR?T LPIPS| PSNR?T
DPnP-DDIM (ours) 0.301 24.2 0.376 224 0.293 24.2 ~ 90s
DPS 0.331 23.1 0.490 17.4 0.367 21.7 ~ 60s

LGD-MC (n =5) 0.318 23.9 0.522 16.4 0.317 23.9 ~ 60s

DPnP achieves better performance with a bit more compute. )
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Extension to blind nonlinear inverse problems

Blind delurring with JPEG compression (w/ T. Efimov):

Compression

Ground truth Observation
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Extension to blind nonlinear inverse problems

Blind delurring with JPEG compression (w/ T. Efimov):

Compression

Blurring kernel

Ground truth Observation

Ongoing work:

Ground truth BlindDPS GibbsDDRM BlindDPnP (ours)
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Summary: diffusion models

MCGdiff (Cardoso et al, 23)

(]
3 ®
Q
g Asymptotic exact,
(] compute expensive
Compute cheap, but
low fidelity
y High fideli
igh fidelity,
DPS (Chung et al, 22) L Y A
Fidelity

Diffusion models are showing great promise in generative Al for Science.J




Summary: diffusion models

MCGdiff (Cardoso et al, 23)
®

Asymptotic exact,
compute expensive

Compute cheap, but
low fidelity

DPS (Chung et al, 22) ATl

compute efficient

Diffusion models are showing great promise in generative Al for Science.J

Future directions:
® Algorithm and theory for diffusion-based inverse problems:
provable guarantees, compute/fidelity trade-offs.
e Applications in imaging science and beyond: 3D /4D imaging,
sequence reconstruction, scalability.
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Thanks!

® Towards Non-Asymptotic Convergence for Diffusion-Based Generative Models,
ICLR 2024.

® Accelerating Convergence of Score-Based Diffusion Models, Provably, ICML
2024.

® A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion
Models, arXiv:2408.02320.

® Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play
Image Reconstruction, arXiv:2403.17042.
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https://users.ece.cmu.edu/~yuejiec/
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