Fantastic Diffusion Models and Where to Apply Them

Yuejie Chi

Carnegie Mellon University

IEEE Information Theory Workshop November 2024

Gen Li) CUHK

Xingyu Xu CMU

Yu Huang UPenn

CMU

UPenn

Yuxin Chen UPenn

Generative models

training data

• Given training data $\underbrace{X^{\text{train},i} \sim p_{\text{data}}}_{\text{from a general distribution}} (1 \le i \le N)$ in \mathbb{R}^d

Generative models

- Given training data $X^{\text{train},i} \sim p_{\text{data}}$ $(1 \le i \le N)$ in \mathbb{R}^d from a general distribution
- Generate new samples $Y \sim p_{\text{data}}$

From generative models to generative AI

Generative AI is transforming nearly every field of our society.

State-of-the-art diffusion models

Inspired by nonequilibrium thermodynamics

— Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli '15

Stable Diffusion

DALLE

Sora

• forward process: (progressively) diffuse data into noise

• forward process: (progressively) diffuse data into noise

- forward process: (progressively) diffuse data into noise
- reverse process: convert pure noise into data-like distributions

- forward process: (progressively) diffuse data into noise
- reverse process: convert pure noise into data-like distributions

How to learn a reverse process s.t. $Y_t \stackrel{\mathrm{d}}{\approx} X_t \ (1 \leq t \leq T)$?

How to learn a reverse process s.t. $Y_t \stackrel{d}{\approx} X_t \ (1 \le t \le T)$?

It is feasible as long as one knows the score function (Anderson'82; Haussmann and Pardoux'86; Song et al.'20)...

How to learn a reverse process s.t. $Y_t \stackrel{\mathrm{d}}{\approx} X_t \ (1 \leq t \leq T)$?

It is feasible as long as one knows the score function (Anderson'82; Haussmann and Pardoux'86; Song et al.'20)...

data dist
$$\approx X_0 \xrightarrow{dX_{\tau} = -X_{\tau}d\tau + \sqrt{2}dB_{\tau}} X_T \approx \text{noise dist}$$

Forward SDE: Ornstein-Uhlenbeck Process

How to learn a reverse process s.t. $Y_t \stackrel{d}{\approx} X_t \ (1 \le t \le T)$?

It is feasible as long as one knows the score function (Anderson'82; Haussmann and Pardoux'86; Song et al.'20)...

Score is all you need

• score functions of marginals of forward process: $\nabla \log p_{X_t}(X)$

Score is all you need

• score functions of marginals of forward process: $\underbrace{\nabla \log p_{X_t}(X)}_{\text{w.r.t. } X}$

1. score learning/matching: learn estimates $s_t(\cdot)$ for $\nabla \log p_{X_t}(\cdot)$

Score is all you need

- 1. score learning/matching: learn estimates $s_t(\cdot)$ for $\nabla \log p_{X_t}(\cdot)$
- 2. data generation: sampling w/ the aid of score estimates $\{s_t(\cdot)\}$

Score matching via denoising

$$X_0 \sim p_{\text{data}}, \quad X_t = \sqrt{\bar{\alpha}_t} X_0 + \sqrt{1 - \bar{\alpha}_t} \mathcal{N}(0, I_d)$$

Score matching via denoising

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{\bar{\alpha}_t} X_0 + \sqrt{1 - \bar{\alpha}_t} \, \mathcal{N}(0, I_d)$$

Tweedie's formula (Hyvarinen, 2005; Vincent, 2011):

$$s_t^{\star}(x) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \underbrace{\mathbb{E}_{x_0 \sim p_{\mathsf{data}}, \, \epsilon_t \sim \mathcal{N}(0, I_d)} \left[\epsilon_t \, | \, \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t = x\right]}_{\mathsf{MMSE denoising}}.$$

Score matching via denoising

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{\bar{\alpha}_t} X_0 + \sqrt{1 - \bar{\alpha}_t} \, \mathcal{N}(0, I_d)$$

Tweedie's formula (Hyvarinen, 2005; Vincent, 2011):

$$s_{t}^{\star}(x) = -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} \underbrace{\mathbb{E}_{x_{0} \sim p_{\mathsf{data}}, \epsilon_{t} \sim \mathcal{N}(0, I_{d})} \left[\epsilon_{t} \mid \sqrt{\bar{\alpha}_{t}}x_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon_{t} = x\right]}_{\mathsf{MMSE denoising}}.$$

U-Net [Ronneberger, Fischer, Brox, 2015] Diffusion Transformers [Peebles and Xie, 2022]

Sampling:

When and how fast do diffusion samplers converge?

Sampling:

When and how fast do diffusion samplers converge?

Acceleration:

Can we accelerate the convergence of diffusion samplers provably?

Sampling:

When and how fast do diffusion samplers converge?

Acceleration:

Can we accelerate the convergence of diffusion samplers provably?

Inverse problems:

Can we design provably robust posterior samplers using diffusion priors?

Non-asymptotic convergence for diffusion-based generative models

Gen Li CUHK

Yuxin Chen UPenn

Yuting Wei UPenn

"A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models", arXiv:2408.02320.

Two mainstream approaches

$$\begin{split} X_0 \sim p_{\mathsf{data}}, \quad X_t &= \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \leq t \leq T \\ dY_\tau &= \left(Y_\tau + \overline{\nabla \log p_{X_{T-\tau}}(Y_\tau)}\right) d\tau \\ & \\ \mathsf{Reverse ODE} \\ data \ \mathrm{dist} \approx \underbrace{X_0}_{\mathsf{Forward SDE: Ornstein-Uhlenbeck Process}} X_T \approx \mathrm{noise \ dist} \\ dY_\tau &= \left(Y_\tau + 2\overline{\nabla \log p_{X_{T-\tau}}(Y_\tau)}\right) d\tau + \sqrt{2} dB_\tau \end{split}$$

Two mainstream approaches

— Ho, Jain, Abbeel '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

- 1. A <u>stochastic</u> sampler: $Y_T \sim \mathcal{N}(0, I_d)$ **denoising diffusion probabilistic models** DDPM
 - $Y_{t-1} = \Psi_t(Y_t, \text{noise}), \quad t = T, \cdots, 1$

Two mainstream approaches

— Ho, Jain, Abbeel '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

1. A <u>stochastic</u> sampler: <u>denoising diffusion probabilistic models</u>

$$Y_T \sim \mathcal{N}(0, I_d)$$

$$Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \beta_t s_t(Y_t) \right)}_{\text{deterministic component}} + \underbrace{\sqrt{\beta_t} \mathcal{N}(0, I_d)}_{\text{random component}}, \quad t = T, \cdots, 1$$

Probability flow ODE

- Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

2. A deterministic sampler based on probability flow ODE

Probability flow ODE

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

2. A deterministic sampler based on probability flow ODE

 $Y_T \sim \mathcal{N}(0, I_d)$ $Y_{t-1} = \Phi_t(Y_t), \quad t = T, \cdots, 1$

Probability flow ODE

- Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

2. A deterministic sampler based on probability flow ODE

$$Y_T \sim \mathcal{N}(0, I_d)$$

$$Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right)}_{\text{purely deterministic}}, \qquad t = T, \cdots, 1$$

Stochastic versus deterministic samplers

Figure credit: (Song et al '20)

• The stochastic sampler generates more diverse samples, while the deterministic sampler is much faster.

Towards understanding the non-asymptotic convergence

Question: can we understand non-asymptotic convergence of diffusion models in discrete time?

Towards understanding the non-asymptotic convergence

Question: can we understand non-asymptotic convergence of diffusion models in discrete time?

Sources of errors:

- initialization error (dealing with the gap between X_T and Y_T)
- discretization error
- score estimation error

Prior approaches

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Daras, Dimakis '23 — Chen, Chewi, Lee, Li, Lu, Salim '23

discrete-time diffusion process

continuous-time limits via SDE/ODE toolbox (e.g., Girsanov thm)

Prior approaches

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Daras, Dimakis '23 — Chen, Chewi, Lee, Li, Lu, Salim '23

discrete-time diffusion process

continuous-time limits via SDE/ODE toolbox (e.g., Girsanov thm)

control discretization error
Prior approaches

-- Li, Lu, Tan '22 -- Chen, Lee, Lu '22 -- Chen, Chewi, Li, Li, Salim, Zhang '22 -- Chen, Chewi, Li, Li, Salim '23 -- Chen, Chewi, Lee, Li, Lu, Salim '23 -- Chen, Chewi, Lee, Li, Lu, Salim '23 SDE/ODE toolbox (e.g., Girsanov thm) control discretization error

Analogy: (stochastic) gradient descent vs. gradient flow, TD learning via ODE

Prior approaches

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Daras, Dimakis '23 — Chen, Chewi, Lee, Li, Lu, Salim '23

- Built upon toolboxes from SDE/ODE
- Existing analyses were inadequate for deterministic samplers

Prior approaches

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Daras, Dimakis '23 — Chen, Chewi, Lee, Li, Lu, Salim '23

- Built upon toolboxes from SDE/ODE
- Existing analyses were inadequate for deterministic samplers

This talk: non-asymptotic convergence guarantees for deterministic samplers

Assumptions

• Minimal data distributional assumptions:

 $\mathbb{P}(\|X_0\|_2 \le T^{c_R}) = 1$

for arbitrarily large constant $c_R > 0$

Assumptions

• Minimal data distributional assumptions:

 $\mathbb{P}(\|X_0\|_2 \le T^{c_R}) = 1$

for arbitrarily large constant $c_R > 0$

• ℓ_2 error of score functions:

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E}_{X \sim p_{X_t}} \left[\left\| s_t(X) - s_t^{\star}(X) \right\|_2^2 \right] \le \varepsilon_{\text{score}}^2.$$

Assumptions

• Minimal data distributional assumptions:

 $\mathbb{P}(\|X_0\|_2 \le T^{c_R}) = 1$

for arbitrarily large constant $c_R > 0$

• ℓ_2 error of score functions:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{X \sim p_{X_t}} \left[\left\| s_t(X) - s_t^{\star}(X) \right\|_2^2 \right] \le \varepsilon_{\text{score}}^2.$$

• Jacobian error of score functions: denote by $J_{s_t^\star} = \frac{\partial s_t^\star}{\partial x}$ and $J_{s_t} = \frac{\partial s_t}{\partial x}$ the Jacobian matrices of $s_t^\star(\cdot)$ and $s_t(\cdot)$, which obey

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{X \sim p_{X_t}} \left[\left\| J_{s_t}(X) - J_{s_t^{\star}}(X) \right\| \right] \leq \varepsilon_{\mathsf{Jacobi}}.$$

Non-asymptotic complexity of generation

Learning rates: for some large constants $c_0, c_1 > 0$,

$$\beta_1 = \frac{1}{T^{c_0}}$$
$$\beta_t = \frac{c_1 \log T}{T} \min\left\{\beta_1 \left(1 + \frac{c_1 \log T}{T}\right)^t, 1\right\}$$

Theorem (Li et al, 2024)

For the <u>deterministic</u> sampler (DDIM-type/prob. flow ODE),

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig) \lesssim rac{d}{T} + \sqrt{d}arepsilon_{\mathsf{score}} + darepsilon_{\mathsf{Jacobi}}$$
 up to log factor.

Non-asymptotic complexity of generation

Learning rates: for some large constants $c_0, c_1 > 0$,

$$\beta_1 = \frac{1}{T^{c_0}}$$
$$\beta_t = \frac{c_1 \log T}{T} \min\left\{\beta_1 \left(1 + \frac{c_1 \log T}{T}\right)^t, 1\right\}$$

Theorem (Li et al, 2024)

For the <u>deterministic</u> sampler (DDIM-type/prob. flow ODE),

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig)\lesssim rac{d}{T}+\sqrt{d}arepsilon_{\mathsf{score}}+darepsilon_{\mathsf{Jacobi}}$$
 up to log factor.

Our results of **deterministic samplers** provide *sharp* bounds with near optimal dependency with d up to log factors.

Non-asymptotic complexity of generation

Learning rates: for some large constants $c_0, c_1 > 0$,

$$\beta_1 = \frac{1}{T^{c_0}}$$
$$\beta_t = \frac{c_1 \log T}{T} \min\left\{\beta_1 \left(1 + \frac{c_1 \log T}{T}\right)^t, 1\right\}$$

Theorem (Li et al, 2024)

For the <u>deterministic</u> sampler (DDIM-type/prob. flow ODE),

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig)\lesssim rac{d}{T}+\sqrt{d}arepsilon_{\mathsf{score}}+darepsilon_{\mathsf{Jacobi}}$$
 up to log factor.

Fast convergence for general data distribution, given good score estimates.

50k images: DDPM (20h) vs. single-step GANs (< 1min)

• **Training-based methods:** progressive distillation (Salimans et al., 2022), consistency model (Song et al., 2023)...

• **Training-based methods:** progressive distillation (Salimans et al., 2022), consistency model (Song et al., 2023)...

additional training steps are required

• **Training-based methods:** progressive distillation (Salimans et al., 2022), consistency model (Song et al., 2023)...

additional training steps are required

Can we develop training-free samplers that converge provably faster?

Gen Li CUHK

Yu Huang UPenn

Timofey Efimov CMU

Yuting Wei UPenn

Yuxin Chen UPenn

"Accelerating Convergence of Score-Based Diffusion Models, Provably", ICML 2024.

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star} (X(\gamma))}_{\text{approximated by}?} d\gamma$$

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s^{\star}_{\gamma}(X(\gamma)) \approx s^{\star}_{\overline{\alpha}_t}(X(\overline{\alpha}_t)) \approx s_t(X_t)$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right) \quad \text{probability flow ODE}$$

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2} s_{t}(X_{t}) \right) \quad \text{probability flow ODE}$$

Refined approximation?

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star} (X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2} s_{t}(X_{t}) \right) \quad \text{probability flow ODE}$$

Refined approximation?

$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) + \frac{\mathrm{d}s_{\gamma}^{\star}(X(\gamma))}{\mathrm{d}\gamma}(\gamma - \overline{\alpha}_{t})$$
$$\approx s_{t}(X_{t}) + \frac{\gamma - \overline{\alpha}_{t}}{\overline{\alpha}_{t} - \overline{\alpha}_{t+1}}(s_{t}(X_{t}) - s_{t+1}(X_{t+1}))$$

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{\mathfrak{s}^*_{\gamma}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s^{\star}_{\gamma}(X(\gamma)) \approx s^{\star}_{\overline{\alpha}_t}(X(\overline{\alpha}_t)) \approx s_t(X_t)$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right) \quad \text{probability flow ODE}$$

Scheme 2:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_t(X_t) + \frac{\gamma - \overline{\alpha}_t}{\overline{\alpha}_t - \overline{\alpha}_{t+1}} \left(s_t(X_t) - s_{t+1}(X_{t+1}) \right)$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right)$$

$$+ \frac{1}{\sqrt{\alpha_t}} \left(\frac{(1 - \alpha_t)^2}{4(1 - \alpha_{t+1})} \left(s_t(X_t) - \sqrt{\alpha_{t+1}} \underbrace{s_{t+1}(X_{t+1})}_{\text{reuse}} \right) \right) \quad \text{Ours}$$

Solving the probability flow ODE ($\overline{\alpha}_t \coloneqq \prod_{k=1}^t \alpha_k$ with $\alpha_t = 1 - \beta_t$):

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{\mathfrak{s}_{\gamma}^{\star}(X(\gamma))}_{\mathsf{approximated by}?} \mathrm{d}\gamma$$

Scheme 1:
$$s^{\star}_{\gamma}(X(\gamma)) \approx s^{\star}_{\overline{\alpha}_t}(X(\overline{\alpha}_t)) \approx s_t(X_t)$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right) \quad \text{probability flow ODE}$$

Scheme 2:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_t(X_t) + \frac{\gamma - \overline{\alpha}_t}{\overline{\alpha}_t - \overline{\alpha}_{t+1}} \left(s_t(X_t) - s_{t+1}(X_{t+1}) \right)$$

$$X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right)$$

$$+ \frac{1}{\sqrt{\alpha_t}} \left(\frac{(1 - \alpha_t)^2}{4(1 - \alpha_{t+1})} \left(s_t(X_t) - \sqrt{\alpha_{t+1}} \underbrace{s_{t+1}(X_{t+1})}_{\text{reuse}} \right) \right) \quad \text{Ours}$$

DPM-Solver-2 (Lu et al, 2022a): to construct second-order ODE solver

Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)

The accelerated deterministic sampler obeys

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig)\lesssim rac{d^6}{T^2}+\sqrt{d}arepsilon_{\mathsf{score}}+darepsilon_{\mathsf{Jacobi}}$$

- Improved rate $\widetilde{O}(1/T^2)$ compared to probability flow ODE $\widetilde{O}(1/T)$

Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)

The accelerated deterministic sampler obeys

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig) \lesssim rac{d^6}{T^2} + \sqrt{d}arepsilon_{\mathsf{score}} + darepsilon_{\mathsf{Jacobi}}$$

- Improved rate $\widetilde{O}(1/T^2)$ compared to probability flow ODE $\widetilde{O}(1/T)$

Accelerated deterministic sampler

Theorem (Li et al. 2024, informal)

The accelerated deterministic sampler obeys

$$\mathsf{TV}ig(p_{X_1},p_{Y_1}ig)\lesssim rac{d^6}{T^2}+\sqrt{d}arepsilon_{\mathsf{score}}+darepsilon_{\mathsf{Jacobi}}$$

- Improved rate $\widetilde{O}(1/T^2)$ compared to probability flow ODE $\widetilde{O}(1/T)$

Sampled images with 5 NFEs: crisper and less noisy

Provably robust diffusion posterior sampling for inverse problems

Xingyu Xu CMU

"Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction", NeurIPS 2024, arXiv:2403.17042.

Inverse problems

Forward model: we interrogate the signal of interest x through forward model A and make measurements y.

Inverse problems

Forward model: we interrogate the signal of interest x through forward model A and make measurements y.

Inverse problem: recover the signal of interest x from y.

Ubiquitous, but often ill-posed

healthcare

Radio astronomy

hyperspectral

Internet traffic

seismic imaging

microscopy

Can we exploit flexible / expressive data priors prescribed by diffusion models for ill-posed inverse problems?

Score-based diffusion model for inverse problems

Posterior sampling: sample from

$$p(\cdot|y) \propto p(\cdot) p(y|x) = \underbrace{p(\cdot)}_{\text{prior}} \exp \underbrace{(\mathcal{L}(\cdot; y))}_{\text{log-likelihood}}$$

Score-based diffusion model for inverse problems

Posterior sampling: sample from

$$p(\cdot|y) \propto p(\cdot) \, p(y \,|\, x) = \underbrace{p(\cdot)}_{\text{prior}} \, \exp \underbrace{(\mathcal{L}(\cdot \,;\, y))}_{\text{log-likelihood}}$$

Score-based implicit prior: the data prior $p(\cdot)$ is accessed through its *unconditional* score functions $s_t(\cdot) = \nabla \log p_{X_t}(\cdot)$.

A highly incomplete list of prior work

- (Song et al., 2021)
- (Laumont et al., 2022)
- (Kawar et al., 2022)
- (Trippe et al., 2022)
- (Graikos et al., 2022)
- (Chung et al., 2023)
- (Cardoso et al., 2023)
- (Song et al., 2023)
- (Mardani et al., 2023)
- (Feng et al., 2023)
- (Chen et al., 2023)
- (Coeurdoux et al., 2023)
- (Wu et al., 2022)
- (Dou and Song, 2024)
- ...

A highly incomplete list of prior work

- (Song et al., 2021)
- (Laumont et al., 2022)
- (Kawar et al., 2022)
- (Trippe et al., 2022)
- (Graikos et al., 2022)
- (Chung et al., 2023)
- (Cardoso et al., 2023)
- (Song et al., 2023)
- (Mardani et al., 2023)
- (Feng et al., 2023)
- (Chen et al., 2023)
- (Coeurdoux et al., 2023)
- (Wu et al., 2022)
- (Dou and Song, 2024)
- ...

Majority of the existing algorithms are heuristic and/or tailored to linear inverse problems.

Goal: develop provably compute-efficient and high-fidelity diffusion-based inversion methods for arbitrary forward model.
Our approach: diffusion plug-and-play (DPnP)

Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

$$p(\cdot|y) \propto \exp\left(\log p(\cdot) + \mathcal{L}(\cdot; y)\right)$$

Given an annealing schedule $\{\eta_k\}$,

Our approach: diffusion plug-and-play (DPnP)

Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

$$p(\cdot|y) \propto \exp\left(\log p(\cdot) + \mathcal{L}(\cdot; y)\right)$$

Given an annealing schedule $\{\eta_k\}$,

Readily implementable by, e.g., MALA

Our approach: diffusion plug-and-play (DPnP)

Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

$$p(\cdot|y) \propto \exp\left(\log p(\cdot) + \mathcal{L}(\cdot; y)\right)$$

Given an annealing schedule $\{\eta_k\}$,

Diffusion denoising sampler

Posterior sampling for AWGN denoising:

$$\exp\left(\log p(x) - \frac{1}{2\eta_k^2} \|x - \hat{x}_{k+\frac{1}{2}}\|^2\right) \propto p(x^* \,|\, x^* + \eta_k w = \hat{x}_{k+\frac{1}{2}})$$

where $w \sim \mathcal{N}(0, I_d)$.

• Key insight: this can be solved by diffusion!

Diffusion denoising sampler

Posterior sampling for AWGN denoising:

$$\exp\left(\log p(x) - \frac{1}{2\eta_k^2} \|x - \hat{x}_{k+\frac{1}{2}}\|^2\right) \propto p(x^* \,|\, x^* + \eta_k w = \hat{x}_{k+\frac{1}{2}})$$

where $w \sim \mathcal{N}(0, I_d)$.

- Key insight: this can be solved by diffusion!
 - stochastic/deterministic samplers via reversing properly defined forward processes (e.g., Ornstein-Uhlenbeck process), whose score functions can be mapped from $s_t(\cdot)$.

Diffusion denoising sampler

Posterior sampling for AWGN denoising:

$$\exp\left(\log p(x) - \frac{1}{2\eta_k^2} \|x - \hat{x}_{k+\frac{1}{2}}\|^2\right) \propto p(x^* \,|\, x^* + \eta_k w = \hat{x}_{k+\frac{1}{2}})$$

where $w \sim \mathcal{N}(0, I_d)$.

- Key insight: this can be solved by diffusion!
 - stochastic/deterministic samplers via reversing properly defined forward processes (e.g., Ornstein-Uhlenbeck process), whose score functions can be mapped from $s_t(\cdot)$.
- The resulting update rules are similar to, <u>but not the same as</u>, the ones used for generation.

Schematic view of DPnP

- Each iteration of DPnP contains a "full" reverse denoising process with multiple denoising steps.
- But, it can be easily combined with acceleration schemes, such as distillation, to speed up.

Our theory

Theorem (Xu and Chi, 2024)

Set constant $\eta_k = \eta > 0$. Define a stationary distribution π_η by

$$\pi_{\eta}(x) \propto p(x)q_{\eta}(x), \qquad q_{\eta}(x) = e^{\mathcal{L}(\cdot; y)} * p_{\eta\zeta}(x),$$

where $\zeta \sim \mathcal{N}(0, I_d)$ and * denotes convolution. There exists $\lambda := \lambda(p, \mathcal{L}, \eta) \in (0, 1)$, such that for any accuracy level $\epsilon > 0$, with $K \asymp \frac{1}{1-\lambda} \log(1/\epsilon)$, we have

$$\mathsf{TV}(p_{\widehat{x}_{K}}, \pi_{\eta}) \lesssim \underbrace{\epsilon \sqrt{\chi^{2}(p_{\widehat{x}_{1}} \| \pi_{\eta})}}_{\text{init error}} + \underbrace{\frac{1}{1 - \lambda}(\epsilon_{\mathsf{DDS}} + \epsilon_{\mathsf{PCS}})\log\left(\frac{1}{\epsilon}\right)}_{\text{sampler error}},$$

where ϵ_{PCS} and ϵ_{DDS} are the total variation error of PCS and DDS.

• A diminishing schedule $\{\eta_k\}$ ensures asymptotic consistency.

Our theory

Theorem (Xu and Chi, 2024)

Set constant $\eta_k = \eta > 0$. Define a stationary distribution π_η by

$$\pi_{\eta}(x) \propto p(x)q_{\eta}(x), \qquad q_{\eta}(x) = e^{\mathcal{L}(\cdot; y)} * p_{\eta\zeta}(x),$$

where $\zeta \sim \mathcal{N}(0, I_d)$ and * denotes convolution. There exists $\lambda := \lambda(p, \mathcal{L}, \eta) \in (0, 1)$, such that for any accuracy level $\epsilon > 0$, with $K \asymp \frac{1}{1-\lambda} \log(1/\epsilon)$, we have

$$\mathsf{TV}(p_{\widehat{x}_{K}}, \pi_{\eta}) \lesssim \underbrace{\epsilon \sqrt{\chi^{2}(p_{\widehat{x}_{1}} \parallel \pi_{\eta})}}_{\text{init error}} + \underbrace{\frac{1}{1 - \lambda}(\epsilon_{\mathsf{DDS}} + \epsilon_{\mathsf{PCS}})\log\left(\frac{1}{\epsilon}\right)}_{\text{sampler error}},$$

where ϵ_{PCS} and ϵ_{DDS} are the total variation error of PCS and DDS.

• A diminishing schedule $\{\eta_k\}$ ensures asymptotic consistency.

DPnP is the first provably-robust posterior sampling method for nonlinear inverse problems using unconditional diffusion priors.

Numerical experiments

Phase retrieval: recover an unknown image from the magnitude of its masked Fourier transform.

DPnP recovers the fine-grained details more faithfully.

Numerical experiments

Quantized sensing: recover an unknown image from its one-bit dithered measurements.

DPnP recovers the fine-grained details more faithfully.

Numerical experiments

Super resolution: recover an unknown image from its 4x downsampled version.

DPnP recovers the fine-grained details more faithfully.

More metrics

	Super-resolution (4x, linear)		Phase retrieval (nonlinear)		Quantized sensing (nonlinear)		Time per sample
Algorithm	LPIPS ↓	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	
DPnP-DDIM (ours)	0.416	21.6	0.562	13.4	0.363	23.0	$\sim 240 {\rm s}$
DPS	0.473	20.2	0.677	13.4	0.542	18.7	$\sim 150 {\rm s}$
LGD-MC $(n = 5)$	0.416	20.9	0.592	12.8	0.384	22.3	$\sim 150 {\rm s}$

Table: Performance on the ImageNet 256×256 validation dataset.

Table: Performance on the FFHQ 256×256 validation dataset.

	Super-resolution		Phase retrieval		Quantized sensing		Time
	(4x, linear)		(nonlinear)		(nonlinear)		per sample
Algorithm	LPIPS \downarrow	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	
DPnP-DDIM (ours)	0.301	24.2	0.376	22.4	0.293	24.2	$\begin{array}{l} \sim 90 {\rm s} \\ \sim 60 {\rm s} \\ \sim 60 {\rm s} \end{array}$
DPS	0.331	23.1	0.490	17.4	0.367	21.7	
LGD-MC $(n = 5)$	0.318	23.9	0.522	16.4	0.317	23.9	

More metrics

	Super-resolution (4x, linear)		Phase retrieval (nonlinear)		Quantized sensing (nonlinear)		Time per sample
Algorithm	LPIPS \downarrow	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	
DPnP-DDIM (ours)	0.416	21.6	0.562	13.4	0.363	23.0	$\sim 240 {\rm s}$
DPS	0.473	20.2	0.677	13.4	0.542	18.7	$\sim 150 {\rm s}$
LGD-MC $(n = 5)$	0.416	20.9	0.592	12.8	0.384	22.3	$\sim 150 {\rm s}$

Table: Performance on the ImageNet 256×256 validation dataset.

Table: Performance on the FFHQ 256×256 validation dataset.

	Super-resolution (4x, linear)		Phase retrieval (nonlinear)		Quantized sensing (nonlinear)		Time per sample
Algorithm	LPIPS \downarrow	PSNR ↑	LPIPS \downarrow	PSNR ↑	$LPIPS\downarrow$	PSNR ↑	
DPnP-DDIM (ours)	0.301	24.2	0.376	22.4	0.293	24.2	$\sim 90 {\rm s}$
DPS	0.331	23.1	0.490	17.4	0.367	21.7	$\sim 60 {\rm s}$
LGD-MC $(n = 5)$	0.318	23.9	0.522	16.4	0.317	23.9	$\sim 60 {\rm s}$

DPnP achieves better performance with a bit more compute.

Extension to blind nonlinear inverse problems

Blind delurring with JPEG compression (w/ T. Efimov):

Extension to blind nonlinear inverse problems

Blind delurring with JPEG compression (w/ T. Efimov):

Ongoing work:

Ground truth

BlindDPS

GibbsDDRM

BlindDPnP (ours)

Summary: diffusion models

Diffusion models are showing great promise in generative AI for Science.

Summary: diffusion models

Diffusion models are showing great promise in generative AI for Science.

Future directions:

- Algorithm and theory for diffusion-based inverse problems: provable guarantees, compute/fidelity trade-offs.
- Applications in imaging science and beyond: 3D/4D imaging, sequence reconstruction, scalability.

Thanks!

- Towards Non-Asymptotic Convergence for Diffusion-Based Generative Models, ICLR 2024.
- Accelerating Convergence of Score-Based Diffusion Models, Provably, ICML 2024.
- A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models, arXiv:2408.02320.
- Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction, arXiv:2403.17042.

Thanks!

https://users.ece.cmu.edu/~yuejiec/