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Recent successes in reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

At last — a computer program that
can beat a champion Go player PAg 484
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RL holds great promise in the next era of artificial intelligence.



Challenges of RL

e explore or exploit: unknown or changing environments
e credit assignment problem: delayed rewards or feedback

e enormous state and action space

e nonconcavity in value maximization




Sample efficiency

Collecting data samples might be expensive or time-consuming
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Sample efficiency

Collecting data samples might be expensive or time-consuming

b e

- I —

clinical trials autonomous driving online ads

Calls for design of sample-efficient RL algorithms!



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Running RL algorithms might take a long time and space
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many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!



From asymptotic to non-asymptotic analyses

]

PTIRTINY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic

analysis
Reinforcement Learning:
Theory and Algorithms
Alekh Agarwal ~ NanJiang ~ Sham M. Kakade ~ Wen Sun
December 9, 2020

Non-asymptotic analyses are key to understand sample and
computational efficiency in modern RL.




This talk:

sample

Log Policy Difference
10 <
(log scale)

—————— Natural Policy Gradient
Policy Gradient

[

1000 2000 3000 4000 5000
#iterations

Value-based Policy-based
approach: approach:
Q-learning Policy Optimization

non-asymptotic analysis of RL

sample
complexity

) o
fe \5#‘
2 «\“@%
L
E \\/X .

Model-based
approach:
Offline RL



This talk: non-asymptotic analysis of RL

Log Policy Difference sample
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Does reinforcement learning learn the optimal policy, optimaIIy?J




Backgrounds: Markov decision processes



Markov decision process (MDP)
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Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|3t,at)

e A: action space

S: state space

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)

P(-|s,a): transition probabilities
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Value function

action
state s
a; ~ 7(-|st)
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Value function

action

state s a ~ s
------- ) noonon

T3 T4

reward I :> S0 ‘I S1 ‘I S2 ‘I S3 ‘I S4 ‘I
re =1(S¢, ar v T T L T
4--- environment |¢= — ag ay az az ay
<

St ~ P(“st;at)

Value function of policy 7:
Vse S VT(s) :=E Zytrt‘sozs
t=0

e v €[0,1) is the discount factor; ﬁ is effective horizon

e Expectation is w.r.t. the sampled trajectory under w
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Q-function

To 71 T2 T3 T4 Ts
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Q-function of policy :
V(s,a) eSxA: Q7 (s,a): E V(s ar) | so =

* (ge7 s1,a1,82,az2,---): generated under policy ™

S,a0 =a
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Searching for the optimal policy

Reinforcement |
Learning

______ —_— Dynamic 'Prugramming
r and Optimal Control
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Goal: find the optimal policy 7* that maximize V™ (s)

o optimal value / Q function: V* := V7™, Q* := Q™

e optimal policy 7*(s) = argmax,c 4 Q*(s, a)
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Bellman’s optimality principle

Bellman operator

T(@Q)(s,a) = r(s,a) +7

——

immediate reward

e one-step look-ahead

E
s'~P(:|s,a)

/ !
max Q(s', ¢')

next state's value
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Bellman’s optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s’,a’)
N—— s'~P(-|s,a) La’€A
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T@) =Q
-contraction of Bellman operator:
1T(Q1) — T(Q2)llse < VI1Q1 — Q2lloo Richard
Bellman

13



Is Q-learning minimax-optimal?



RL with a generative model / simulator

— Kearns and Singh, 1999

generative moolel

Query any state-action pair (s, a), collect sample transition

(s,a,s")
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RL with a generative model / simulator

— Kearns and Singh, 1999

generative moolel

Query any state-action pair (s, a), collect sample transition

(s,a,s")

Question: How many samples are necessary and sufficient to solve
the RL problem without worrying about exploration? J

15



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

where

T(Q)(s,a):= r(s,a) +v E [maxQ(s',a’)]

—— s'~P(|s,a) aeA
immediate reward —

next state’s value

16



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q@ = T(Q)

Qi+1(s,a) = (1 —n)Qi(s,a) + mTi(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q@ = T(Q)

Qi+1(s,a) = (1 —n)Qi(s,a) + mTi(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)

Te(Q)(s,a) = r(s,a) + ymaxQ(s', a’)
T(Q)(S,a) = T’(S,a) +v E [maXQ(S/,a/)}

s/~P(:|s,a) ~ a’

17



Prior art: achievability

Question: How many samples are needed for ||Q — Q*||oc < €?
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Prior art: achievability

Question: How many samples are needed for ||Q — Q*||oc < €?

paper sample complexity sample K
1 complexity N
Even-Dar & Mansour '03 21—~ % (log scale) {ooo(\ ‘7
Beck & Srikant '12 %
Wainwright '19 %
Chen et al.'20 % 1—~ (log scale)
. . . S|| A
All prior results require sample size of at least %! J
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Prior art: achievability

Question: How many samples

are needed for [|Q — Q*[|oc < €?

paper sample complexity sample S
1 complexity N
Even-Dar & Mansour '03 21—~ % (log scale) {oo\)(\ \?
2 412 (
Beck & Srikant '12 %
Wainwright '19 %
Chen et al.'20 % 1—~ (log scale)
. . . S|| A
All prior results require sample size of at least %! J

Is Q-learning sub-optimal, or is it an analysis artifact?

18



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

o(a-ya)
1

e Improves dependency on effective horizon —

19



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

o(a-ya)
1

e Improves dependency on effective horizon —

e Allows both constant and rescaled linear learning rate:

1
— 7 <M S 7
a(-—T — " = c2(1=y)t
L+ log? T L+ log? T

19



A curious numerical example

. . S
Numerical evidence: % samples seem necessary ...

— observed in Wainwright '19

=)
>
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>
D

sample size per state-action: N

10%
4’7 _ 1 ——— Q-learning
_ 3 ———~ Theory: N = ﬁ
v 102 - 15 0 25 30 35 40
r(0,1)=0, r(1,1)=r(1,2) =1 e
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Q-learning is not minimax optimal

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exists an MDP such that to achieve
|IQ — Q*||co < €, Q-learning needs at least a sample complexity of

(k)

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

1
2

a
a

21



Where we stand now

sample
complexity

(log scale)

(log scale)

:17

Q-learning requires a sample size of —4_5(1|f|7|34|5 _
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Where we stand now

sample
complexity

(log scale)

(log scale)

Q-learning is not minimax optimal! J
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

e max,c4 EX(a) tends to be
over-estimated (high positive
bias) when EX (a) is replaced
by its empirical estimates using
a small sample size;

e often gets worse with a large
number of actions (Hasselt,
Guez, Silver, 2015).

15

I max, Q(s,a) — Vi(s)
5 1.0 mm Q'(s,argmax,Q(s,a)) — Vi(s)
5,
0.0 H
@ e d-’ﬁ@’ %{136%3
number of actions
Figure 1: The orange bars show the bias in a single Q-

learning update when the action values are Q(s,a)
Vi(8) + €, and the errors {€,} 7%, are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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TD-learning: when the action space is a singleton

&

Richard Sutton

Stochastic approximation for solving Bellman equation V = T (V)

Virr(s) = (1= n)Vils) + (Vi) (5)
= Vils) +me[r(s) + Vils) = Vils)], 120

temporal difference

Te(V)(s) = r(s) + vV (s")
TWV)(s)=r(s)+y  E V()

s'~P(]s)

24



A sharpened sample complexity of TD-learning
Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < € < 1, TD-learning yields
IV = Voo < €

with sample complexity at most

(o ya)

e Near minimax-optimal without the need of averaging or
variance reduction.

25



A sharpened sample complexity of TD-learning
Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < € < 1, TD-learning yields
IV =Vl <€

with sample complexity at most

(o ya)

e Near minimax-optimal without the need of averaging or
variance reduction.

e Allows both constant and rescaled linear learning rate.
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How to accelerate the convergence of policy
gradient methods?



Policy optimization

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;

e work with both continuous and discrete problems.

T Y,
__'.\*\w, w7
N w. el
—— AN =7 o< 59 -
.‘\\\%‘/) a f\;/;;/, AN,
5% @G-~
——@<Z¥@<T < _ 5o
TR o S L AN
_ TEMDEDN, T TG~
% S, NN
/7, i g
—

input layer output layer
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Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, e.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many many more.

Can we understand and accelerate the global convergence of
policy gradient methods?

28



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]

29
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) astod) |
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]

@ softmax parameterization:
rolals) & exp(0(s,0)) |

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,---
e(t—i-l) — G(t) + nvevﬂ.ét) (p)

where ) is the learning rate.

— we'll assume exact gradient evaluation

29



Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.
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Global convergence of the PG method?

Loading...
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e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in

O(%) iterations.
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],[A[, 2=, -+ ) O(2) iterations.

1—v?
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],[A[, 2=, -+ ) O(2) iterations.

1—v?

Is the rate of PG good, bad or ugly? )

30



A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)

Starting from a uniform initial state distribution, there exists an
MDP s.t. it takes softmax PG at least
o)

1
~|S8/?
1

iterations to achieve ||[V(®) — V*|| < 0.15.

31



A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)

Starting from a uniform initial state distribution, there exists an
MDP s.t. it takes softmax PG at least
o)

1
~|S8/?
1

iterations to achieve ||[V(®) — V*|| < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

31



A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)

Starting from a uniform initial state distribution, there exists an
MDRP s.t. it takes softmax PG at least

o)

1
~|S8/?
1

iterations to achieve ||[V(®) — V*|| < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap ﬁ Sses [V (s) = V*(s)].

31



What is happening in our constructed MDP?

(a1 | 1)

v

We constructed a chain-structured MDP where the convergence
time for state s grows geometrically as s increases
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We constructed a chain-structured MDP where the convergence
time for state s grows geometrically as s increases

convergence-time(s) > (convergence-time(s — 2))1'5
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Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

0D = 90 4 (F0) VeV (p)
where 1 is the learning rate and ]-'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Ve log7rg(a|s))T] .

34



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

00 = 0 4 () VeV (o)

where 1 is the learning rate and ]—'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Vg log 7T9((1|8))T] .

In fact, popular heuristic TRPO (Schulman et al., 2015) = NPG + line search.

34



Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

35



Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8

UOT)RZIIR[NSSI 9SBIIOUT

=2
log (ar) log m(ar)



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?

36



Entropy-regularized NPG in the tabular setting

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
_nT_

a0 (s) o 7O ([s) 1T exp(QW(s, ) /) 57
—— S——

current policy soft greedy

where Q(Tt) = Qim is the soft Q-function of #¥), and 0 < n < 1777

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when n = 1=y

P

37



Linear convergence with exact gradient

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)
For any learning rate 0 < n < (1 —~)/7, the entropy-regularized

NPG needs no more than
1 C
— log (17)
7]T €

iterations to reach ||Q* — (t+1) ”oo <e.

T

)
e Soft policy iteration ( = :=2): ﬁ log (Wy>

38



Linear convergence with exact gradient

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 —~)/7, the entropy-regularized
NPG needs no more than

1
1 oe (C’W>
nT €

iterations to reach ||Q* — (t+1) ”oo <e.

T

)
e Soft policy iteration ( = :=2): ﬁ log (Wy>

Global linear convergence of entropy-regularized NPG




Entropy helps

Regularized NPG
7 =0.001

—>— n=0.01

100 7=0.1

—— =1

B

Q- QY

0 1000 2000 3000 4000 5000
#iterations

. .1 1
Linear rate: .- log (1)
Ours

Vanilla NPG

T =
g
=
|
&
10-12
0 1000 2000 3000 4000 5000
#iterations
. . 1
Sublinear rate:

min{n,(1—y)?}e

(Agarwal et al. 2019)
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Entropy helps

Regularized NPG Vanilla NPG
7 =0.001

T =

—>— n=0.01

100 7=0.1

—— =1

B

Qr— QY
lor - @i,

0 1000 2000 3000 4000 5000 10° 0 1000 2000 3000 4000 5000
#iterations #iterations
: .1 1 : L1
Linear rate: ;- log (1) Sublinear rate:
Ours (Agarwal et al. 2019)

Entropy regularization enables fast convergence! J
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0a)

immediate reward

+ E max E Q(S/,a/) _TIOgT('(a/|S/):|
S/NP(.|57(1) 7r(.|s/) a’~7r(~|5’) —_—— N

next state's value entropy

40



A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0a)

immediate reward

+v E max [ Q(s',a) - Tlogﬂ(a’|s’)}
s'~P(|s,a) | T([s") a/oom(c]s’) b N~ —r —_—
next state's value entropy

Soft Bellman equation: @)} is unique solution to

T T

~-contraction of soft Bellman operator:

/N
TAQ) = Q: ﬁ@

| T7(Q1) — TH(Q2)|lso < 7[|Q1 — Q2| Richard

Bellman

40



Analysis of soft policy iteration (7

Policy iteration

Bellman operator

41



Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator

41



Offline RL: learning without exploration



Offline RL / Batch RL

e Sometimes we can not explore or generate new data

e But we have already stored tons of historical data

THE COMING! INAUTONOMOUS VEHICLES

{ o
J
i ./ L i mEm

HOSGRES

1= O

R 3
Rl T T

5@‘1% é

medical records data of self-driving  clicking times of ads
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Offline RL / Batch RL

e Sometimes we can not explore or generate new data

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES
PO 3 i
” f\ $ HTONOHOLS VEHELES
, ﬂ z é\! s PERDAY.EACHDAY = "““;“
% 5 TR
medical records data of self-driving  clicking times of ads

Can we learn a good policy based solely on historical data
without active exploration?

43



A simplified model of history data from behavior policy

44



A simplified model of history data from behavior policy
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A simplified model of history data from behavior policy

initial distribution ®Behavior policy No longer Transition kernel
arbitrary!

Goal of offline RL: given history data D := {(s;,a;, s})}),, find
an e-optimal policy 7 obeying

V¥(p) =V (p) < e

— in a sample-efficient manner
44



Challenges of offline RL

Partial coverage of state-action space:

T R 4 \o
/ N\,
{ Y
- -~ samples cover all (s,a) & all policies,
; A
T h )
2 N /
@ - AN y
ofall T b e
T2 /
~=3, ! 7

uniform coverage over entire space
(sufficiently explored)
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Challenges of offline RL

Partial coverage of state-action space:

/,/\\(//7\‘1’/ > \\\\ } T ‘( ’ ‘\\\
y N / Practically, N\
/ \ { \
{ o0 A )
. | s . . A
5 T samples cover all (s,a) & all poI|C|e§/\ . Hiatorical datasetD A
= X / 7T om
™ L \ T
|- \ 2
2 / p— , Oo,
TS ! Ve AN . P
S \ o L y
uniform coverage over entire space . partial coverage
(sufficiently explored) (inadequately explored)
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Challenges of offline RL

Partial coverage of state-action space:

TN - //’ ~ .
7 L \ / Practically, N
/
A L
_{ samples cover all (s,a) & all poI|C|es/ e Ristorical dataset D A
\ | ]
i RS )
N / pa—
m \\\ /// ‘( ™
i H \ | \ T2
T yi AN , 0c>°
] v AN 5 ST
N R S L

partial coverage

uniform coverage over entire space .
(inadequately explored)

(sufficiently explored)

Distribution shift:

distribution(D) # target distribution under 7*

45



How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

where d” (s, a) is the state-action occupation density of policy .
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How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

e captures distribution shift
e allows for partial coverage \‘}\\

e Behavior cloning C* =1
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A “plug-in" model-based approach

— (Azar et al. '13, Agarwal et al. '19, Li et al. '20)

[ empirical MDP \
planning T
\Qj_‘ oracle
e

- INEEEEEEEE

H u
.g. dynamic programming

empirical P

Planning (e.g., value iteration) based on the the empirical MDP P

Qs,a) « r(s,a) +9(P(]5,0), V), V(s) = maxQ(s,a).

Issue: poor value estimates under partial and poor coverage. |
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism -._
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism -._

Value iteration with lower confidence bound (VI-LCB):

Q(s,a) + max {r(s,a) + 7(13( | 3,a),17> — b(s,a; V) , 0},

uncertainty penalty

where V(s) = max, Q(s, a).
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism :.: L with
pessnmlsm

Value iteration with lower confidence bound (VI-LCB):

Q(s,a) + max {r(s,a) + 7(13( | 3,a),17> — b(s,a; V) , 0},

uncertainty penalty

where V(s) = max, Q(s, a).
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A benchmark of prior arts

sample
complexity e
LA
Yan et al.
sc*
-y L 1 > L
& @& 2
N N
N i
N >
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A benchmark of prior arts

sample
complexity

Yan et al.
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A benchmark of prior arts

sample

complexity i e
72
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>N Yan et al.
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Can we close the gap with the minimax lower bound? J
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 < e < ﬁ the policy 7@ returned by VI-LCB using a
Bernstein-style penalty term achieves

V(p) =V (p) < e

with high prob., with sample complexity at most

O (a=a).
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 < e < ﬁ the policy 7@ returned by VI-LCB using a
Bernstein-style penalty term achieves

V(p) =V (p) < e

with high prob., with sample complexity at most

O (a=a).

e matches minimax lower bound: (%)
e depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)
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sample
. A
complexity

Model-based RL is minimax optimal with no burn-in cost! J




Concluding remarks



Concluding remarks

FIRST-ORDER METHODS
IN OPTIMIZATION

Reinforcement | \\
Learnin,

and ﬂnllmal c.:mrm

/( 1 reward

inext state

state
a
______ agent
Dynamic Programming r
1
1
1

Amir Beck

Understanding non-asymptotic performances of RL algorithms
sheds light to their empirical successes (and failures)! J

Future directions:

e function approximation e robust RL
e multi-agent RL e many more...
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Thank you!

https://users.ece.cmu.edu/~yuejiec/
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