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Abstract

To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain ro-
bustness against environmental uncertainties. While robust RL has been widely studied in single-agent
regimes, in multi-agent environments, the problem remains understudied—despite the fact that the prob-
lems posed by environmental uncertainties are often exacerbated by strategic interactions. This work
focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov
games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when
the deployed environment deviates within its own prescribed uncertainty set. This results in a set of
robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria.
Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient
model-based algorithm (DR-NVI) with finite-sample complexity guarantees for learning robust variants of
various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for
solving RMGs, which confirms the near-optimal sample complexity of DR-NVI with respect to problem-
dependent factors such as the size of the state space, the target accuracy, and the horizon length.

Keywords: model uncertainty, distribution shift, multi-agent reinforcement learning, robust Markov games.
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1 Introduction
Many real-world applications of artificial intelligence naturally involve multiple agents in dynamically evolv-
ing environments. Examples include ecosystem protection (Fang et al., 2015), board games (Silver et al.,
2017), strategic management (Saloner, 1991), and autonomous driving (Zhou et al., 2020) among many
others. One of the most promising algorithmic paradigms for addressing these problems is that of (deep)
multi-agent reinforcement learning (MARL) (Lanctot et al., 2019; Silver et al., 2017; Vinyals et al., 2019)
through a decision-making perspective. In full generality, it allows for agents with misaligned and possibly
conflicting interests to optimize their own long-term rewards in an unknown dynamic environment, while
taking one another into account. As such, MARL can often be modeled as learning in Markov games (MGs)
(Littman, 1994; Shapley, 1953). Due to the game-theoretic nature of MGs, one often relies on solution
concepts which take the form of equilibria — strategies/policies that are stable under rational deviations for
all agents — like Nash equilibria (NE) (Nash, 1951; Shapley, 1953), correlated equilibria (CE) (Aumann,
1987), and coarse correlated equilibra (CCE) (Aumann, 1987; Moulin and Vial, 1978).

1.1 Environmental uncertainty in MARL
However, the equilibria of MGs can be very sensitive to environmental perturbations. Environmental uncer-
tainties caused by system noise, model mismatch, and sim-to-real gaps can cause dramatic changes to both
the qualitative outcomes of the game as well as agents’ payoffs. While this problem is present in single-agent
RL, the need for robustness is even more acute in the multi-agent setting where the game-theoretic interac-
tions can cause instabilities (Slumbers et al., 2023). Indeed, playing an equilibrium solution learned in the
simulated environment might lead to a catastrophic drop in a single agent’s payoff or even all agents’ payoffs
when the deployed environment deviates slightly from what is expected (Balaji et al., 2019; Yeh et al., 2021;
Zeng et al., 2022; Zhang et al., 2020c), a point we illustrate in the following example.

Example: fishing protection. To emphasize the impact of model uncertainty in MARL, in Figure 1,
we present a concrete example of a simple two-player game that models the interaction between a fisherman
and law enforcement trying to prevent illegal fishing. The state s ∈ {0, 1, · · · , 100} represents the number
of punishments received by the fisherman, with the license being revoked at s = 100. The environment is
governed by a model parameter p. We observe from Figure 1(b) that for slightly perturbed environments, city
A (p = 0.049) and city B (p = 0.051), the solutions of the MGs are two Nash equilibria with drastically
different outcomes: no punishment under policy πB learned from city B (in red) and a revoked license under
policy πA learned from city A (in blue). More details are presented in Appendix A.1. The example above
illustrates how the standard formulation of a MG can be vulnerable to model uncertainties and result in
unstable solutions with divergent outcomes. As such, robustness and stability become a pressing need and
key challenge for the deployment of MARL algorithms.

To address this, we consider robust MARL problems as (distributionally) robust Markov games (RMGs)
— a robust counterpart of standard MGs (Kardeş et al., 2011; Zhang et al., 2020c). The natural solution
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Figure 1: A two-player general-sum Markov game modeling preventing illegal fishing. (a) shows the state
space (circles) and the simplified transitions; the fisherman arrives at distinct states by executing different
Nash equilibrium solutions πA (from city A) or πB (from city B). (b) in two slightly different environments
(city A versus city B), it shows the solutions πA, πB of the standard game, and the consistent solution robust
Nash πrob of a robust variant of the game (detailed in Appendix A.1).

concepts for RMGs are equilibria not only between agents, but also between multiple natural adversaries
that choose the worst-case environments within some prescribed uncertainty set for each agent. By design,
they exhibit more robustness and consistency in the face of unmodeled disturbances. To illustrate this,
consider the example in Figure 1, where one can observe that the solutions of a RMG (πrob in gray) remains
consistent and stable across similar environments city A and city B.

Despite some recent efforts (Blanchet et al., 2023; Kardeş et al., 2011; Ma et al., 2023; Zhang et al.,
2020c), a fundamental understanding of learning in RMGs is lacking. Indeed, while the robust formulation
of single-agent RL has been well studied (Iyengar, 2005; Nilim and El Ghaoui, 2005; Shi et al., 2023; Xu
et al., 2023), understanding how to efficiently learn equilibrium policies in robust Markov games remains
an open question. We focus on understanding and achieving near-optimal sample efficiency in robust MGs,
reflecting the fact that in many large-scale applications, agents must learn from samples from an unknown
but potentially extremely large environment (Achiam et al., 2023; Silver et al., 2016; Vinyals et al., 2019).
While some attempts have been made to design sample-efficient algorithms for robust MARL (Blanchet
et al., 2023; Wang et al., 2023a), the current solutions are still far from optimal. With that in mind, we
investigate the following open question:

Can we achieve robustness and near-optimal sample efficiency in MARL simultaneously?

1.2 Main contributions
To address the open question, this work concentrates on designing algorithms for robust MGs with near-
optimal sample complexity guarantees. We consider three solution concepts for RMGs, which are robust
variants of standard equilibria — robust NE, robust CE, and robust CCE. We focus on a class of RMGs,
where the uncertainty sets of the environment are constructed following an agent-wise (s,a)-rectangularity
condition for computational tractability (Iyengar, 2005; Wiesemann et al., 2013) (see Section 3). Such a
condition allows each agent to independently consider its uncertainty set according to their personal interest.
We consider total variation (TV) distance as the distance metric for the uncertainty set, motivated by its
practical (Lee et al., 2021; Pan et al., 2023) and theoretical appeal (Blanchet et al., 2023; Panaganti and
Kalathil, 2022; Shi et al., 2023).

Concretely, our study focuses on finite-horizon RMGs with n agents. We denote the episode length by H,
the size of the state space by S, the size of the i-th agent’s action space by Ai, and use σi ∈ (0, 1] to represent
the uncertainty level of the i-th agent. We assume access to a generative model that can draw samples from
the nominal environment in a non-adaptive manner. The goal is to find an ε-approximate equilibrium for
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RMGs — a joint policy such that each agent’s benefit is at most ε away under rational deviations. The main
contributions are summarized as follows.

• Near-optimal sample complexity upper bound. We design a model-based algorithm — distributionally
robust Nash value iteration (DR-NVI), which can provably find any solution among ε-approximate
robust-{NE, CCE, CE} with high probability, when the sample size exceeds

Õ

(
SH3

∏n
i=1Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
. (1)

This significantly improves upon prior art (Blanchet et al., 2023) Õ
(
S4 (

∏n
i=1Ai)

3
H4/ε2

)
1 (Blanchet

et al., 2023) by at least a factor of Õ
(
S3 (

∏n
i=1Ai)

2 ), and further delineates the impact of the un-
certainty levels. Our results are derived by addressing the intricate statistical dependencies arising
from game-theoretical interactions among agents, a challenge not present in robust single-agent RL.
Additionally, we employ distributionally robust optimization to address the nonlinear payoffs of agents
in RMGs, which lack a closed form.

• Information-theoretic lower bound. To understand the optimality of our algorithm we establish a lower
bound for solving RMGs, showing that no algorithm can learn any of ε-approximate robust-{NE, CCE,
CE} with fewer samples than

Õ

(
SH3 max1≤i≤nAi

ε2
min

{
H,

1

min1≤i≤n σi

})
. (2)

To the best of our knowledge, this is the first information-theoretic lower bound for RMGs, regardless
of the distance metric in use. We construct new hard scenarios for tightness, differing from existing
ones in both robust single-agent RL and standard MGs, which may be of independent interest. This in
turn establishes that the sample complexity of DR-NVI is optimal for all RMGs with respect to many
critical problem-dependent parameters such as S,H, {σi}1≤i≤n, making DR-NVI the first near-optimal
finite-sample guarantee for robust MGs, regardless of the divergence metric in use.

Notation. Throughout this paper, we introduce the notation [T ] := {1, · · · , T} for any positive integer
T > 0. We denote by ∆(S) the probability simplex over a set S and x =

[
x(s, a)

]
(s,a)∈S×A ∈ RSA (resp. x =[

x(s)
]
s∈S ∈ RS) as any vector that constitutes certain values for each state-action pair (resp. state).

2 Background: Standard Markov Games
We begin by covering the foundational aspects of multi-agent general-sum standard Markov games in a
finite-horizon setting.

Standard Markov games. A finite-horizon multi-agent general-sum Markov game can be represented as
MG =

{
S, {Ai}1≤i≤n, P, r,H

}
. This game involves n agents who optimizes their own benefits in a shared

environment, consisting of the following key components.

• State space S = {1, · · · , S} of the shared environment with S different states.

• Joint action space A: for each 1 ≤ i ≤ n, we represent Ai = {1, · · · , Ai} as the action space of the i-th
agent that contains Ai different actions. In addition, we denote the joint action space for all agents (or
a subset of agents) as A := A1 × · · · × Am (or A−i :=

∏
j:j 6=iAj for all 1 ≤ i ≤ n). For convenience,

we denote the boldface letter a ∈ A (resp. a−i ∈ A−i) as a joint action profile for all agents (resp. all
agents excluding the i-th agent).

1Note that Blanchet et al. (2023) targets a different (and more challenging) setting with offline data. We translate the results
of Blanchet et al. (2023) to the generative setting we consider.
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• Probability transition kernel P = {Ph}1≤h≤H with Ph : S × A 7→ ∆(S). Specifically, Ph(s′ | s,a)
represents the probability of MG transitioning from current state s ∈ S to the next state s′ ∈ S at
time step h, given the agents choose the joint action profile a ∈ A.

• Reward function r = {ri,h}1≤i≤n,1≤h≤H with ri,h : S × A 7→ [0, 1]. Specifically, for any (i, h, s,a) ∈
[n]× [H]× S ×A, let ri,h(s,a) be the immediate (deterministic) reward received by the i-th agent in
state s when the joint action profile is a, which is normalized to [0, 1] without loss of generality.

• H is the horizon length of the standard MG.

Markov policies and value functions. Throughout the paper, we focus on the class of Markov policies,
namely, the action selection rule is solely determined by the current state s, independent from previous
trajectories (including visited states, executed actions, and received rewards) of all agents. Specifically, for
any 1 ≤ i ≤ n, the i-th agent executes actions according to a policy πi = {πi,h : S 7→ ∆(Ai)}1≤h≤H , with
πi,h(a | s) the probability of selecting action a in state s at time step h. The joint Markov policy of all agents
can be defined as π = (π1, . . . , πn) : S× [H] 7→ ∆(A), namely, the joint action profile a of all agents is chosen
according to the distribution specified by πh(· | s) = (π1,h, π2,h . . . , πn,h)(· | s) ∈ ∆(A) conditioned on state s
at time step h.

With the above notation in mind, for any given joint policy π and transition kernel P of the MG, we
characterize the long-term cumulative reward by defining the value function V π,Pi,h : S 7→ R (resp. Q-function
Qπ,Pi,h : S ×A 7→ R) of the i-th agent as follows: for all (h, s, a) ∈ [H]× S ×A,

V π,Pi,h (s) := Eπ,P

[
H∑

t=h

γtri,t
(
st,at

)
| sh = s

]
,

Qπ,Pi,h (s,a) := Eπ,P

[
H∑

t=h

γtri,t
(
st,at

)
| sh = s,ah = a

]
, (3)

where the expectation is taken over the Markovian trajectory {(st,at)}h≤t≤H by executing the joint policy
π under the transition kernel P , i.e., at ∼ πt(· | st) and st+1 ∼ P (· | st,at).

Best-response policy. For any given joint policy π, we employ π−i to represent the policies of all agents
excluding the i-th agent. We define the maximum value function of the i-th agent at time step h against the
joint policy π−i of the other agents as

V
?,π−i,P
i,h (s) := max

π′i:S×[H]→∆(Ai)
V
π′i×π−i,P
i,h (s), (4)

where π′i × π−i represents the joint policy of all agents when the i-th agent executes policy π′i. It is well-
known (Filar and Vrieze, 2012) that there exists at least one Markovian policy, the best-response policy, that
achieves V ?,π−i,Pi,h (s) for all s ∈ S and all h ∈ [H] simultaneously. We denote the best-response policy using
π?,Pi

(
π−i
)

: S × [H] 7→ ∆(Ai).

Solution concepts: equilibria. In MGs, strategic agents are modeled in a possibly competitive frame-
work and focus on finding some sort of equilibrium strategies. Here, we consider three common types of
equilibria — NE, CE, and CCE for MGs.

• Nash equilibrium (NE). A product policy π = π1× · · · × πn ∈ ∆(A1)×∆(A2)× · · · ×∆(An) is said to
be a (mixed-strategy Markov) NE if

for all (s, i) ∈ S × [n] : V π,Pi,1 (s) = V
?,π−i,P
i,1 (s). (5)

Namely, as long as all players act independently, no player can benefit by unilaterally diverging from
its present policy, given the current policies of the opponents.

5



• Coarse correlated equilibrium (CCE). A joint policy π ∈ ∆(A) is said to be a CCE (Aumann, 1987;
Moulin and Vial, 1978) if it holds that

for all (s, i) ∈ S × [n] : V π,Pi,1 (s) ≥ V ?,π−i,Pi,1 (s). (6)

As a relaxation of NE, CCE also guarantees that no player has incentive to unilaterally deviated
from the current policy. The key difference from the NE definition is that it permits policies to be
interrelated among players.

• Correlated equilibrium (CE). Before proceeding, for each 1 ≤ i ≤ n, we define a set of function
fi := {fi,h,s}h∈[H],s∈S with fi,h,s : Ai 7→ Ai, and denoting Fi as the set of possible fi. Armed with
this, we can combine such fi with any joint policy π to reach a new policy fi�π, where fi�π will choose
(a1, . . . , ai−1, fi(ai), ai+1, . . . , an) when policy π selects (a1, . . . , ai−1, ai, ai+1, . . . , an). With these in
place, a joint policy π ∈ ∆(A) is said to be a CE (Aumann, 1987; Moulin and Vial, 1978) if it holds
that

for all (s, i) ∈ S × [n] : V π,Pi,1 (s) ≥ max
fi∈Fi

V fi�π,Pi,1 (s). (7)

CE is a also a relaxation of NE, which does not require the joint policy π to be a product policy.

3 Distributionally Robust Markov Games
We consider a robust variant of standard MGs incorporating environmental uncertainties — termed distri-
butionally robust Markov games (RMGs). RMGs represent a richer class than standard MGs, allowing for
different prescribed environmental uncertainty sets as long as they meet a rectangularity condition, detailed
below.

3.1 Distributionally robust Markov games
A distributionally robust multi-agent general-sum Markov game (RMG) in the finite-horizon setting is defined
by

MGrob =
{
S, {Ai}1≤i≤n, {Uσiρ (P 0)}1≤i≤n, r,H

}
,

where S, {Ai}, r, and H are identical to those of standard MGs (see Section 2). A notable deviation from
standard MGs is that: for 1 ≤ i ≤ n, instead of assuming a fixed transition kernel, each i-th agent anticipates
that the transition kernel is allowed to be chosen arbitrarily from a prescribed uncertainty set Uσiρ (P 0). Here,
the uncertainty set Uσiρ (P 0) is constructed centered on a nominal kernel P 0 : S × A 7→ ∆(S), with its size
and shape defined by a certain distance metric ρ and a radius parameter σi > 0. Note that, for generality,
to accommodate individual robustness preferences, each agent is permitted to tailor its own uncertainty set
Uσiρ (P 0) by choosing different size σi and even the shape determined by different divergence function ρ. Here,
we consider the same divergence function for all agents for simplicity. And we focus on the discussion of the
transition kernel’s uncertainty in this work, it’s worth noting that similar uncertainty can also be considered
for each agent’s reward function.

Uncertainty set with agent-wise (s, a)-rectangularity. In the following, we specify the construction
of the transition kernel uncertainty sets Uρ(P 0) = {Uσiρ (P 0)}1≤i≤n for RMGs. Drawing inspiration from the
rectangularity condition advocated in robust single-agent RL (Iyengar, 2005; Shi et al., 2023; Wiesemann
et al., 2013; Zhou et al., 2021), we consider a multi-agent variant of rectangularity in RMGs — agent-wise
(s, a)-rectangularity. This condition enables the robust counterpart of Bellman recursions and computational
tractability of the problems. It allows for each agent to independently choose its own uncertainty set that
can be decomposed into a product of subsets over each state-action pair.

In particular, we assume all agents use the same distance metric ρ for their uncertainty sets.2 Each i-th
agent can choose their own uncertainty level σi > 0 independently. With ρ and {σi}1≤i≤n in hand, the

2Generally, each agent can decide their own (possibly different) distance metric for the uncertainty set. We consider the
same ρ for simplicity.
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uncertainty set Uρ(P 0) of all agents obeying agent-wise (s, a)-rectangularity is mathematically specified as:

∀i ∈ [n] : Uσiρ (P 0) := ⊗ Uσi(P 0
h,s,a) with (8)

Uσiρ (P 0
h,s,a) :=

{
Ph,s,a ∈ ∆(S) : ρ

(
Ph,s,a, P

0
h,s,a

)
≤ σi

}
,

where ⊗ represents the Cartesian product and we denote a vector of the transition kernel P or P 0 at any
state-action pair (s,a) ∈ S ×A respectively as

Ph,s,a := Ph(· | s,a) ∈ R1×S , P 0
h,s,a := P 0

h (· | s,a) ∈ R1×S . (9)

Here, the ‘distance’ function ρ for each agent’s uncertainty set can be chosen from many candidate functions
that measure the difference between two probability vectors, such as f -divergence (including total variation
(TV), chi-square, and Kullback-Leibler (KL) divergence) (Yang et al., 2022), `q norm (Clavier et al., 2023),
and Wasserstein distance (Xu et al., 2023). In this work, we focus on the uncertainty sets that are constructed
using TV distance:

ρTV
(
Ph,s,a, P

0
h,s,a

)
:=

1

2

∥∥Ph,s,a − P 0
h,s,a

∥∥
1
. (10)

Robust value functions. For a RMG, each agent aims to maximize its own worst-case performance over
all possible transition kernels in its own (possibly different) prescribed uncertainty set Uσiρ (P 0). For any
joint policy π ∈ ∆(A), the worst-case performance of the i-th agent at time step h can be measured by the
robust value function V π,σii,h and the robust Q-function Qπ,σii,h , defined as

V π,σii,h (s) := inf
P∈Uσiρ (P 0)

V π,Pi,h (s) and Qπ,σii,h (s,a) := inf
P∈Uσiρ (P 0)

Qπ,Pi,h (s,a) (11)

for all (i, h, s,a) ∈ [n] × [H] × S × A. Similar to standard MGs, given a fixed joint policy π−i for all
agents but the i-th agent, by optimizing over π′i : S × [H] → ∆(Ai) that is executed independently from
π−i, we can further define the maximum of the robust value function for each agent as follows: for all
(i, h, s) ∈ [n]× [H]× S :

V
?,π−i,σi
i,h (s) := max

π′i:S×[H]7→∆(Ai)
V
π′i×π−i,σi
i,h (s)

= max
π′i:S×[H] 7→∆(Ai)

inf
P∈Uσiρ (P 0)

V
π′i×π−i,P
i,h (s). (12)

Similar to standard MGs, it can be easily verified that there exists at least one policy (Blanchet et al., 2024,
Section A.2), denoted by π?,σii

(
π−i
)

: S × [H]→ ∆(Ai) and referred to as the robust best-response policy for
the i-th agent, that can simultaneously attain V ?,π−i,σii,h (s) for all s ∈ S and h ∈ [H].

Robust Bellman equations. Analogous to standard MGs, RMGs feature a robust counterpart of the
Bellman equation — robust Bellman equation. In particular, the robust value functions {V π,σii,h } of RMGs
associated with any joint policy π obey: for all (i, h, s) ∈ [n]× [H]× S,

V π,σii,h (s) = Ea∼πh(s)

[
ri,h(s,a) + inf

P∈Uσiρ (P 0
h,s,a)

PV π,σii,h+1

]
. (13)

We emphasize that the above robust Bellman equation is fundamentally linked to the agent-wise (s, a)-
rectangularity condition (cf. (8)) imposed on the designed uncertainty set. Specifically, this condition decou-
ples the dependency of uncertainty subsets across different agents, each state-action pair, and different time
steps, leading to the Bellman recursive equation.
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3.2 Solution concepts for robust Markov games
For RMGs, the games are no longer n-agent games, but become 2n-agent games between agents and n
natural adversaries to choose the worst-case transitions. Given the possibly conflicting objectives, finding an
equilibrium becomes a core goal for RMGs. Below, we introduce three robust variants of widely considered
standard solution concepts — robust NE, robust CE, and robust CCE for any RMG.

• Robust NE. A product policy π = π1 × π2 × · · · × πn is said to be a robust NE if (cf. (5))

∀(i, s) ∈ [n]× S : V π,σii,1 (s) = V
?,π−i,σi
i,1 (s). (14)

Robust NE indicates that given the current strategy of the opponents π−i, when each agent considers
the worst-case performance over its own uncertainty set Uσiρ (P 0), no player can benefit by unilaterally
diverging from its present strategy.

• Robust CCE. A (possibly correlated) joint policy π ∈ S × [H] 7→ ∆(A) is said to be a robust CCE if it
holds that (cf. (6))

∀(i, s) ∈ [n]× S : V π,σii,1 (s) ≥ V ?,π−i,σii,1 (s). (15)

As a relaxation of robust NE, robust CCE also guarantees that no player has incentive to unilaterally
deviate from the current policy, where the policies are not necessarily independent among players.

• Robust CE. A joint policy π ∈ ∆(A) is said to be a robust CE if it holds that (cf. (7))

∀(s, i) ∈ S × [n] : V π,σii,1 (s) ≥ max
fi∈Fi

V fi�π,σii,1 (s). (16)

It is known that computing exact robust equilibria is challenging and may not be necessary in practice.
As a result, people usually search for approximate equilibria. Toward this, as a slightly relaxation from (14),
a product policy π ∈ ∆(A1)× · · · ×∆(An) is said to be an ε-robust NE if

gapNE(π) := max
s∈S,1≤i≤n

{
V
?,π−i,σi
i,1 (s)− V π,σii,1 (s)

}
≤ ε. (17)

Similarly, relaxing (15) or (16), a (possibly correlated) joint policy π ∈ ∆(A) is said to be an ε-robust
CCE if

gapCCE(π) := max
s∈S,1≤i≤n

{
V
?,π−i,σi
i,1 (s)− V π,σii,1 (s)

}
≤ ε, (18)

or an ε-robust CE if

gapCE(π) := max
s∈S,1≤i≤n

{
max
fi∈Fi

V fi�π,σii,1 (s)− V π,σii,1 (s)

}
≤ ε. (19)

The existence of robust NE has been verified (Blanchet et al., 2023) under general divergence functions
for the uncertainty set. Indeed, the robust equilibria defined here can be reduced to the standard equilibria
associated with the robust variant of standard payoffs (robust Q-functions), which have been verified obeying
{NE} ⊆ {CE} ⊆ {CCE} (Roughgarden, 2010). Therefore, the existence of robust NE directly indicates the
existence of robust CE and robust CCE.

3.3 Non-adaptive sampling from a generative model
Given the formulation of distributionally robust Markov games, a question of prime interest is how to learn
the robust equilibria without knowing the model exactly in a sample-efficient manner.
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Sampling mechanism: a generative model. As a widely used sampling mechanism in standard MARL
(Li et al., 2022a; Zhang et al., 2020a), in this paper, we assume access to a generative model (simulator)
(Kearns and Singh, 1999) and collect samples in a non-adaptive manner. Specifically, for each tuple (s,a, h) ∈
S ×A× [H], we collect N independent samples generated based on the true nominal transition kernel P 0:

si,h,s,a
i.i.d∼ P 0

h (· | s,a), i = 1, 2, . . . , N. (20)

The total number of samples is thus Nall = NS
∏n
i=1Ai.

Armed with the collected dataset from the nominal environment, the goal is to learn a solution among
ε-robust-{NE, CCE, CE} for the gameMGrob — w.r.t. some prescribed uncertainty set U(P 0) around the
nominal kernel — using as few samples as possible.

4 Algorithm and Theory
In this and the following sections, we focus on the class of robust MGs with uncertainty set measured by TV
distance, namely, the uncertainty set Uσiρ (·) = UσiρTV(·) w.r.t the TV distance ρ = ρTV defined in (10). For
convenience, we abbreviate Uσi(·) := UσiρTV(·).

4.1 Distributionally robust Nash value iteration
We develop a model-based approach tailored to solve robust Markov games, which involves two separate
steps. First, we construct an empirical nominal transition kernel P̂ 0 using the collected samples from the
generative model. Then armed with P̂ 0, we propose to apply distributionally robust Nash value iteration
(DR-NVI) to compute a robust equilibrium solution for all agents.

Nominal model estimation. Based on the empirical frequency of state transitions, we estimate the
empirical nominal transition kernel P̂ 0 = {P̂ 0

h}h∈[H], where the entries of P̂ 0
h ∈ RS

∏n
i=1 Ai×S at each time

step h is constructed as follows: for all (h, s,a) ∈ S ×A,

P̂ 0
h (s′ | s,a) :=

1

N

N∑

i=1

1
{
si,h,s,a = s′

}
. (21)

Distributionally robust Nash value iteration (DR-NVI). With the empirical nominal kernel P̂ 0 in
hand, to compute a robust equilibrium solution, we propose DR-NVI by adapting a model-based algorithm
for standard Markov games — Nash value iteration (Liu et al., 2021), summarized in Algorithm 1.

The process starts from the last time step h = H and proceeds with h = H − 1, H − 2, · · · , 1. At
each time step h ∈ [H], the robust Q-function can be estimated as Q̂i,h (see line 5) as: for all (i, h, s,a) ∈
[n]× [H]× S ×A,

Q̂i,h(s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a)
PV̂i,h+1. (22)

Directly solving (22) presents significant computational challenges due to the need to optimize over an S-
dimensional probability simplex, a task whose complexity increases exponentially with the state space size
S. Fortunately, leveraging strong duality enables us to solve (22) equivalently via its dual problem (Iyengar,
2005):

Q̂i,h(s,a) = ri,h(s,a) + max
α∈[mins V̂i,h+1(s),maxs V̂i,h+1(s)]

{
P̂ 0
h,s,a

[
V̂i,h+1

]
α
− σi

(
α−min

s′

[
V̂i,h+1

]
α

(s′)
)}

,

(23)

where [V ]α denotes the clipped version of any vector V ∈ RS determined by some level α ≥ 0, namely,

[V ]α(s) :=

{
α, if V (s) > α,

V (s), otherwise.
(24)
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Algorithm 1: Distributionally robust equilibrium value iteration (DR-NVI).

1: input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty levels {σi}i∈[n].
2: initialization: Q̂i,h(s, a) = 0, V̂i,h(s) = 0 for all (s,a, h) ∈ S ×A× [H + 1].
3: for h = H,H − 1, · · · , 1 do
4: for i = 1, 2, · · · , n and s ∈ S,a ∈ A do
5: Set Q̂i,h(s,a) according to (22).
6: end for
7: for s ∈ S do
8: Get πh(s) = {πi,h(s)}1≤i≤n ← Equilibrium

(
{Q̂i,h(s, ·)}1≤i≤n

)
.

9: Set V̂i,h(s) = Ea∼πh [Q̂i,h(s,a)].
10: end for
11: end for
12: output: {Q̂i,h}, {V̂i,h}, and π̂ = {πh}1≤h≤H .

With robust Q-function estimates {Q̂i,h}i∈[n] available for all agents at time step h, the sub-routine in line 8
Equilibrium ∈ Compute−{Nash,CE,CCE} represents the algorithm for computing the corresponding robust-
{NE, CE, CCE}, respectively. Note that for the studied RMGs, a robust-NE/CE/CCE is equivalent to a
corresponding NE/CE/CCE associated with the payoff matrices {Q̂i,h}i∈[n]. On the computing and learning
front of the sub-routine Equilibrium(·), for a general standard MG, the NE has been proved PPAD-hard
to compute (Daskalakis, 2013), even for two-player matrix games (except for two-player zero-sum games).
Notably, even when the non-robust standard MG associated with the nominal transition kernel is a two-player
zero-sum game, the corresponding robust MG is generally not because agents may select different worst-case
transition kernels. Conversely, computing CE/CCE is computationally tractable within polynomial time
through linear programming (Liu et al., 2021).

4.2 Sample complexity: upper and lower bounds
We now present our main theoretical results regarding the sample complexity of learning robust equilibria
of robust Markov games, including an upper bound of DR-NVI (Algorithm 1) and an information-theoretic
lower bound. First, we introduce the finite-sample guarantee for DR-NVI, which is proven in Appendix B.

Theorem 1 (Upper bound for DR-NVI). Recall the TV uncertainty set Uσi(·) = UσiρTV(·) defined in (9).
Consider any δ ∈ (0, 1) and any RMG MGrob =

{
S, {Ai}1≤i≤n, {Uσi(P 0)}1≤i≤n, r,H

}
with σi ∈ (0, 1] for

all i ∈ [n]. For any ε ≤
√

min
{
H, 1

min1≤i≤n σi

}
, Algorithm 1 can output any robust equilibrium among ε-

robust {NE, CCE, CE} by executing different subroutine Equilibrium ∈ Compute−{Nash,CE,CCE} in line 8.
Namely, for some constant C1, we can achieve any of the following results

gapNE(π̂) ≤ ε,
gapCCE(π̂) ≤ ε,
gapCE(π̂) ≤ ε

with probability at least 1− δ, as long as the total number of samples obeys

Nall ≥
C1SH

3
∏

1≤i≤nAi
ε2

min
{
H,

1

min1≤i≤n σi

}
log

(
18S

∏n
i=1AinHN

δ

)
.

Before delving into the implications of Theorem 1, we provide a lower bound for solving robust Markov
games. The proof is provided in Appendix C.

Theorem 2 (Lower bound for solving robust MGs). Consider any tuple
{
S, {Ai}1≤i≤n, {σi}1≤i≤n, H

}
obey-

ing σi ∈ (0, 1− c0] with 0 < c0 ≤ 1
4 being any small enough positive constant, and H > 16 log 2. Let

ε ≤
{
c2
H , if σ1 ≤ c2

2H ,

1 otherwise
(25)
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Figure 2: Illustration of the sample complexity of DR-NVI with respect to the uncertainty levels σ1 and σ2

for two-player RMGs, where we only highlight the dependency with respect to the horizon length H.

for any c2 ≤ 1
4 . We can construct a set of RMGs— denoted as M = {MGi}i∈[I], such that for any dataset

with in total Nall independent samples over all state-action pairs generated from the nominal environment
(for any gameMGi ∈M): one has

inf
π̂

max
MGi∈M

{
PMGi

(
gapNE(π̂) > ε

)}
≥ 1

8
,

inf
π̂

max
MGi∈M

{
PMGi

(
gapCCE(π̂) > ε

)}
≥ 1

8
, (26)

inf
π̂

max
MGi∈M

{
PMGi

(
gapCE(π̂) > ε

)}
≥ 1

8
,

provided that

Nall ≤
C2SH

3 max1≤i≤nAi
ε2

min
{
H,

1

min1≤i≤n σi

}
. (27)

Here, C2 is some small enough constant, the infimum is taken over all estimators π̂, and PMGi denotes the
probability when the game isMGi for allMGi ∈M.

We now highlight several key implications and comparisons that follow from the above results.

Near-optimal sample complexity for RMGs. Theorem 1 shows that the proposed model-based algo-
rithm DR-NVI can achieve any robust solution among ε-robust {NE, CCE, CE} when the total number of
samples exceeds the order of

Õ

(
SH3

∏
1≤i≤nAi
ε2

min
{
H,

1

min1≤i≤n σi

})
. (28)

Combining this with the lower bound in (27) of Theorem 2 confirms that the sample complexity of DR-NVI
is optimal with respect to many salient factors, including ε, S,H, {σi}1≤i≤n. To the best of our knowledge,
this is the first near-optimal sample complexity upper bound for solving robust MGs. As illustrated in
Figure 2, it uncovers that the sample requirement of DR-NVI depends on all agents’ uncertainty levels {σi}
and is inversely proportional to mini∈[n] σi when mini∈[n] σi & 1/H. Furthermore, the sample complexity
of DR-NVI (Theorem 1) significantly improve upon the prior art Õ

(
S4 (

∏n
i=1Ai)

3
H4/ε2

)
(Blanchet et al.,

2023).
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Minimax-optimal sample complexity for single-agent RMDP. We observe that when the size of
the action space reduces to one except one agent, i.e. A2 = A3 = · · · = An = 1, the robust MG simplifies to
a single-agent robust Markov decision process (known as RMDP) (Iyengar, 2005). Consequently, the upper
bound of (cf. (28)) indicates that a simplified DR-NVI learns an ε-optimal policy for the RMDP associated
with the first agent as soon as the sample complexity is on the order of

Õ

(
SA1H

3

ε2
min

{
H,

1

σ1

})
, (29)

which is minimax-optimal in view of the lower bound (cf. (27) of Theorem 2). To the best of our knowledge,
these findings introduce the first minimax-optimal sample complexity for RMDPs in the finite-horizon setting,
complementary to the infinite-horizon result established in Shi et al. (2023).

Benchmarking with standard MGs under non-adaptive sampling. Note that DR-NVI is based on
a non-adaptive sampling mechanism from the generative model. Focusing on the same sampling mechanism,
we compare the sample complexity of DR-NVI for solving robust MGs with the state-of-the-art approach
(model-based NVI) (Liu et al., 2021; Zhang et al., 2020b) for solving standard MGs as below3:

Standard MGs (by NVI): Robust MGs (by our DR-NVI in Theorem 1):

Õ

(
S
∏n
i=1AiH

4

ε2

)




Õ
(
S
∏n
i=1 AiH

4

ε2

)
if 0 < min

1≤i≤n
σi . 1

H

Õ
(
S
∏n
i=1 AiH

3

ε2 min1≤i≤n σi

)
if 1
H . min

1≤i≤n
σi < 1

. (30)

It shows that DR-NVI achieves enhanced robustness against model uncertainty in comparison to the prior art
NVI for standard MGs, using the same or even sometimes fewer number of samples (min1≤i≤n σi & 1/H).
In particular, as illustrated in Figure 2,

• When 0 < min1≤i≤n σi . 1
H : the sample complexity dependency of DR-NVI on H matches that of NVI

in the order of H4.

• When min1≤i≤n σi & 1
H : DR-NVI’s sample complexity decreases towards H3 as min1≤i≤n σi increases,

which improves upon the sample complexity of NVI for standard MGs by a factor of H min1≤i≤n σi
that goes to H when min1≤i≤n σi = O(1).

Technical challenges and insights. Compared to robust single-agent RL, robust MARL introduces
complex statistical dependencies due to game-theoretical interactions between multiple agents and their
natural adversaries to choose the worst-case transitions for each agent. Additionally, robust MGs are more
intricate than standard MGs since the agents’ payoffs become highly nonlinear without closed form, in
contrast to being linear in standard MGs. To mitigate these challenges, we carefully control the statistical
errors and exploit technical tools from distributionally robust optimization to achieve a near-optimal upper
bound. Additionally, note that the established lower bound (Theorem 2) is the first information-theoretic
lower bound for solving robust MGs, which is achieved by creating a new class of hard instances for the
tightness with respect to H and uncertainty levels {σi}1≤i≤n.

5 Related Works
In this section, we discuss a non-exhaustive set of related works, limiting our discussions primarily to provable
RL algorithms in the tabular setting, which are most related to this paper.

3Zhang et al. (2020b) considered a two-player zero-sum standard MGs in the infinite-horizon setting. Liu et al. (2021)
considered both two-player zero-sum and multi-player general sum standard MGs in online setting. We show the best possible
outcomes after transferring into our settings
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Finite-sample studies of standard Markov games. Multi-agent reinforcement learning (MARL), orig-
inated from the seminal work (Littman, 1994), has been widely studied under the framework of standard
Markov games (Shapley, 1953); see Busoniu et al. (2008); Oroojlooy and Hajinezhad (2023); Zhang et al.
(2021b) for detailed reviews. There has been no shortage of provably convergent MARL algorithms with
asymptotic guarantees (Littman et al., 2001; Littman and Szepesvári, 1996).

A line of recent efforts have concentrated on understanding and developing algorithms for standard
MGs with non-asymptotic guarantees (finite-sample analysis). Within this field, Nash equilibrium (NE)
is arguably one of the most compelling solution concepts for standard MGs. Research on calculating NE
primarily focuses on an important basic class: standard two-player zero-sum MGs (Bai and Jin, 2020; Chen
et al., 2022; Cui and Du, 2022a,b; Dou et al., 2022; Jia et al., 2019; Mao and Başar, 2022; Tian et al., 2021;
Wei et al., 2017, 2021; Yan et al., 2022b; Yang and Ma, 2022; Zhong et al., 2022). This focus arises because
computing NEs in scenarios beyond the standard two-player zero-sum MGs is generally computationally
intractable (i.e., PPAD-complete) (Daskalakis, 2013; Daskalakis et al., 2009).

For discounted infinite-horizon two-player zero-sumMarkov games, the state-of-the-art sample complexity
for learning NE (Zhang et al., 2020e) remains suboptimal due to the "curse of multiple agents" issue (Zhang
et al., 2020e). In contrast, for episodic finite-horizon two-player zero-sum Markov games standard MGs, Bai
et al. (2020); Jin et al. (2021a); Li et al. (2022a) have overcome this curse, progressively achieving minimax-
optimal sample complexity in the order of O(Smax1≤i≤nAiH4/ε2). Besides NE, Daskalakis et al. (2022);
Jin et al. (2021a); Li et al. (2022a); Liu et al. (2021); Mao and Başar (2022); Song et al. (2021) have extended
this achievement to other computationally tractable solution concepts (e.g., CE/CCE) in general-sum multi-
player MGs. Focusing on the same non-adaptive sampling mechanism considered in this work, the sample
complexity for learning NE/CE/CCE in standard MGs with the state-of-the-art approaches (Liu et al., 2021;
Zhang et al., 2020e) still suffers from the curse of multiple agents, calculated as O(S

∏
1≤i≤nAiH

4/ε2).

Robustness in MARL. Despite significant advances in standard MARL, current algorithms may fail
dramatically due to perturbations or uncertainties in game components, resulting in significantly deviated
equilibrium, as illustrated in Figure 1. A growing body of research is now addressing the robustness of
MARL algorithms against uncertainties in various components of Markov games, such as state (Han et al.,
2022; He et al., 2023; Zhang et al., 2023c; Zhou and Liu, 2023), environment (reward and transition kernel),
the type of agents (Zhang et al., 2021a), or other agents’ policies (Kannan et al., 2023; Li et al., 2019); see
Vial et al. (2022) for a recent review.

This work considers the robustness against environmental uncertainty, adopting distributionally robust
optimization (DRO) that has primarily been investigated in the context of supervised learning (Bertsimas
et al., 2018; Blanchet and Murthy, 2019; Duchi and Namkoong, 2018; Gao, 2020; Rahimian and Mehrotra,
2019). Applying DRO for single-agent RL (Iyengar, 2005) to handle model uncertainty has garnered sig-
nificant attention. When turning to MARL, the problem is conceptualized as robust Markov games within
the DRO framework, an area that remains relatively underexplored with only a few provable algorithms
developed (Blanchet et al., 2023; Kardeş et al., 2011; Ma et al., 2023; Zhang et al., 2020c). Notably, Kardeş
et al. (2011) verifies the existence of Nash equilibrium for robust Markov games under mild assumptions;
Zhang et al. (2020c) derives asymptotic convergence for a Q-learning type algorithm under certain conditions;
Blanchet et al. (2023); Ma et al. (2023) are the most related works that provide algorithms with finite-sample
guarantees for various types of uncertainty set. Especially, Ma et al. (2023) considers a restricted uncertainty
level that could fail to bring robustness to MARL in certain scenarios. In particular, as the required accuracy
level (ε goes to zero or the robust MGs has a small minimal positive transition probabilities (pmin → 0),
the required uncertainty level becomes quite restrictive (obeying σi ≤ max{ ε

SH2 ,
pmin
H } for all i ∈ [n]) —

potentially reducing robust MARL to standard MARL and failing to maintain desired robustness.

Single-agent distributionally robust RL (robust MDPs). For single-agent RL, considering robust-
ness to model uncertainty using DRO framework — i.e., distributionally robust dynamic programming and
robust MDPs — has gained significant attention across both theoretical and practical domains (Badrinath
and Kalathil, 2021; Derman et al., 2018; Derman and Mannor, 2020; Goyal and Grand-Clement, 2022; Ho
et al., 2018, 2021; Iyengar, 2005; Kaufman and Schaefer, 2013; Mankowitz et al., 2019; Roy et al., 2017;
Smirnova et al., 2019; Tamar et al., 2014; Wolff et al., 2012; Xu and Mannor, 2012). Recently, a substantial
body of work has been dedicated to exploring the finite-sample performance of provable robust single-agent
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RL algorithms, where different sampling mechanisms, diverse divergence function of the uncertainty set, and
other related problems/issues has been investigated a lot (Badrinath and Kalathil, 2021; Blanchet et al.,
2023; Clavier et al., 2023; Dong et al., 2022; Kumar et al., 2023; Li and Lan, 2023; Li et al., 2022b; Liang
et al., 2023; Liu et al., 2022; Ma et al., 2022; Panaganti and Kalathil, 2022; Panaganti et al., 2022; Ramesh
et al., 2023; Shi and Chi, 2022; Shi et al., 2023; Wang et al., 2024, 2023a,b,c; Wang and Zou, 2021; Xu et al.,
2023; Yang et al., 2023, 2022; Zhang et al., 2023a; Zhou et al., 2021).

Among the studies of robust MDPs, those particularly relevant to this paper employ the uncertainty set
using total variation (TV) distance in a tabular setting (Dong et al., 2022; Liu and Xu, 2024; Panaganti and
Kalathil, 2022; Xu et al., 2023; Yang et al., 2022). It has been established that solving robust MDPs requires
no more samples than solving standard MDPs in terms of the sample requirement (Shi et al., 2023) with
a generative model. However, robust MARL involves additional complexities compared to robust single-
agent RL. It remains an open question whether the findings from robust MDPs can be generalized to robust
MARL, which includes more technical challenges and strategic interactions. Our work takes a step towards
the question, confirming that similar phenomena apply in robust MARL, albeit with increased difficulties
due to the multi-agent dynamics.

RL with a generative model. Access to a generative model (or simulator) serves as a fundamental and
idealistic sampling protocol that has been widely used to study finite-sample guarantees for diverse types
of RL algorithms, such as various model-based, model-free, and policy-based algorithms (Agarwal et al.,
2020; Azar et al., 2013; Beck and Srikant, 2012; Even-Dar and Mansour, 2003; Kakade, 2003; Kearns et al.,
2002; Khamaru et al., 2020; Li et al., 2023, 2020; Pananjady and Wainwright, 2020; Sidford et al., 2018;
Wainwright, 2019; Woo et al., 2023; Yang and Wang, 2019; Zanette et al., 2019). This work follows this
fundamental protocol with a non-adaptive sampling mechanism to understand and design algorithms for
robust Markov games. Besides generative model, there also exist other sampling protocols that involve more
realistic scenarios such as online exploration setting (Dong et al., 2019; Jafarnia-Jahromi et al., 2020; Li
et al., 2021; Liu and Su, 2020; Yang et al., 2021; Zhang et al., 2023b, 2020d,e) or offline setting (Jin et al.,
2021b; Li et al., 2024; Rashidinejad et al., 2021; Shi et al., 2022; Uehara and Sun, 2021; Woo et al., 2024;
Xie et al., 2021; Yan et al., 2022a; Yin and Wang, 2021), which are interesting directions in the future.

6 Conclusion
Providing robustness guarantees is a pressing need for RL, one that is especially crucial in multi-agent
RL (MARL) since game-theoretical interactions between agents bring in extra instability. We address the
vulnerability of MARL to environmental uncertainty by focusing on robust Markov games (RMGs) that
consider robustness against worst-case distribution shifts of the shared environment. We design a provable
sample-efficient model-based algorithm (DR-NVI) with a finite-sample complexity guarantee. In addition, we
provide a lower bound for solving RMGs, which highlights that DR-NVI has near-optimal sample complexity
with respect to the size of the state space, the target accuracy, and the horizon length. To the best of our
knowledge, this is the first algorithm with near-optimal sample complexity for RMGs. Our work opens up
interesting future directions for robust MARL including but not limited to taming the curse of multi-agents
and studying other divergence functions for the uncertainty set.
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A Preliminaries

A.1 Details of the example shown in Figure 1
The standard Markov game for fishing protection. To simulate a scenario of defense against il-
legal fishing, we can formulate a two-player general sum finite-horizon standard Markov game between
a fisher (the first player) and a police officer (the second player). This MG can be represented as
MGe =

{
S, {Ai}1≤i≤2, p, r,H

}
. Here, S := {0, 1, · · · , 100} is the state space, where each state s ∈ S

represents the number of punishments received by the fisherman, with the license being revoked at s = 100;
A1 = A2 = {0, 1} is the action space. At each time step (round), the fisher chooses a1 among space
A1 = {legal fishing (0), illegal fishing (1)}, while the officer chooses a2 among A2 = {no patrols (0), go
patrols (1)}; H is the horizon-length; the transition kernel is governed by a model parameter p ∈ [0, 1],
shown in Figure 3(a) (a detailed version of Figure 1(a)), specified as

∀h ∈ [H] : Ph(s′ | s, a1, a2) =

{
p1(s′ = s+ 1) + (1− p)1(s′ = s) if s ∈ S \ {100}, a1 = 1,
1(s′ = s) otherwise. (31)

In words, the state s transit to s′ = s + 1 with probability p when a1 = 1, otherwise staying in s′ = s, i.e.,
In addition, r = {ri,h}i∈{1,2},h∈[H] represents the immediate reward (benefit) function of two players at each
time step h ∈ [H]. Here, we consider time-invariant reward function ri,h = ri for all h ∈ [H]. In particular,
at any time step h ∈ [H], r1(s, a1, a2, s

′) (resp. r2(s, a1, a2, s
′)) denotes the immediate benefit that the first

agent (resp. the second player) receives conditioned on the current state s, the actions of two players (a1, a2),
and the next state s′. The reward function for any state s ∈ S \ {100} is defined in Figure 3(b). And the
reward function at state s = 100 for two players is specified as below:

∀a2 ∈ {0, 1} : r1(100, 0, a2, 100) = −1 and r1(100, 1, a2, 100) = −20p

r2(100, 0, 0, 100) = 1 and r2(100, 0, 1, 100) = 0

r2(100, 1, 0, 100) = 1 and r2(100, 1, 1, 100) = 3− 2p. (32)

Computing the Nash equilibrium (NE). Notice that the NE of a standard Markov game is indeed
a series of NE of the matrix games associated with the Q-function at each time step h ∈ [H]. We denote
the NE of MGe as π? = (µ?, ν?) = {µ?h, ν?h}h∈[H] with µ?h : S 7→ ∆(A1), ν?h : S 7→ ∆(A2) for all h ∈ [H].
To proceed, we start from characterizing the Q-function and Bellman consistency equation of the fishing
protection game.

It is easily verified that for time step H + 1, one has for any joint policy π = (µ, ν),

∀(i, a1, a2) ∈ {1, 2} × A1 ×A2 : Qπ,Pi,H+1(s, a1, a2) = Qπ,Pi,H+1(s′, a1, a2) = 0. (33)
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Agent 2: Officer

𝑎! = 1 [go patrols]𝑎! = 0 [no patrols]
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illegal fishing

(b) Reward: 	𝑟! 𝑠, 𝑎!, 𝑎", 𝑠# , 𝑟" 𝑠, 𝑎!, 𝑎", 𝑠# 	 	 for 𝑠 = {0,1,⋯ , 99}		

(
(�20, 1) if s0 = s + 1

(0, 1) if s0 = s
<latexit sha1_base64="ZjEbewLpCoso+b2gdV3w9qtbMGg="></latexit>

𝑠 = 0
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𝑠 = 1
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𝑠 = 2 ... 𝑠 =

100
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1 1 1 1

(a) States and Transitions
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100 punishment

𝑠 = 0 times
punishment
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otherwise

(
(�20, 1) if s0 = s = 1

(0, 3) if s0 = s
<latexit sha1_base64="W5kiEGLVdmerfnp6G6xBtFAVgXg="></latexit>

Figure 3: (a) shows the transition kernels of the game at each time step h. (b) illustrates the immediate
reward function of two agents.

Then, we characterize the Bellman consistency equation at time step h = H,H−1, · · · , 1 for the optimal
policy π?. Notice that the rewards and the transition kernels have similar structures for all states except
s = 100. So we start from the cases when s ∈ S \ {100}. Recalling the definition of Q-function in (3), the
reward function r (defined in Figure 3(b)) and the transition kernel in (31), we have for any state s ∈ S\{100}
and any time step h ∈ [H], the Q-function of the fisher (the first player) obeys

Qπ
?,P

1,h (s, 0, 0) = −1 + V π
?,P

1,h+1(s)

Qπ
?,P

1,h (s, 0, 1) = −1 + V π
?,P

1,h+1(s)

Qπ
?,P

1,h (s, 1, 0) = −20p+ pV π
?,P

1,h+1(s+ 1) + (1− p)V π
?,P

1,h+1(s)

Qπ
?,P

1,h (s, 1, 1) = −20p+ pV π
?,P

1,h+1(s+ 1) + (1− p)V π
?,P

1,h+1(s). (34)

Similarly, for the officer (the second player), we observe that for any state s ∈ S \ {100} and any time
step h ∈ [H]:

Qπ
?,P

2,h (s, 0, 0) = 1 + V π
?,P

2,h+1(s)

Qπ
?,P

2,h (s, 0, 1) = 0 + V π
?,P

2,h+1(s),

Qπ
?,P

2,h (s, 1, 0) = 1 + pV π
?,P

2,h+1(s+ 1) + (1− p)V π
?,P

2,h+1(s),

Qπ
?,P

2,h (s, 1, 1) = 3− 2p+ pV π
?,P

2,h+1(s+ 1) + (1− p)V π
?,P

2,h+1(s). (35)

Armed with above results, we are now ready to show that the NE for all (h, s) ∈ [H]×S are the same, which
determined by the model parameter p as below:

∀(h, s) ∈ [H]× S :

{
π?h(s) = πB = (0, 0) if p > 0.05

π?h(s) = πA = (1, 1) if p ≤ 0.05.
(36)

We will verify it by induction as below:

• Base case: when h = H. Applying (34) and (35) for h = H with the fact in (33), we arrive at for any
state s ∈ S \ {100}:

∀a2 ∈ {0, 1} : Qπ
?,P

1,H (s, 0, a2) = −1 and Qπ
?,P

1,H (s, 1, a2) = −20p

Qπ
?,P

2,H (s, 0, 0) = 1 and Qπ
?,P

2,H (s, 0, 1) = 0

Qπ
?,P

2,H (s, 1, 0) = 1 and Qπ
?,P

2,H (s, 1, 1) = 3− 2p (37)

Similarly, when state s = 100, recalling the reward function in (32), we achieve the same Q-function
on state s = 100. Therefore, one has for all s ∈ S:

∀a2 ∈ {0, 1} : Qπ
?,P

1,H (s, 0, a2) = −1 and Qπ
?,P

1,H (s, 1, a2) = −20p
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Qπ
?,P

2,H (s, 0, 0) = 1 and Qπ
?,P

2,H (s, 0, 1) = 0

Qπ
?,P

2,H (s, 1, 0) = 1 and Qπ
?,P

2,H (s, 1, 1) = 3− 2p. (38)

Consequently, in view of (44), it can be verified that if p < 0.05 (resp. p > 0.05), the unique NE
of two agents on any state s ∈ S at time step H is the policy pair π?H(s) = (µ?H(s), ν?H(s)) = (1, 1)
(resp. π?H(s) = (µ?H(s), ν?H(s)) = (0, 0)), leading to Nash πA := (1, 1) when p = pA = 0.049 (resp. Nash
πB := (0, 0) when p = pB = 0.051).

In addition, we observe the optimal value function satisfies that:

∀s ∈ S :

{
V π

?,P
1,H (s) = −1 and V π

?,P
2,H (s) = 1 if p > 0.05

V π
?,P

1,H (s) = −20p and V π
?,P

2,H (s) = 3− 2p if p ≤ 0.05
. (39)

• Induction. The rest of this paragraph is to verify (36) for all (h, s) ∈ [H − 1] × S by induction. So
suppose (36) holds for time step h+ 1, then we will show that it also holds for time step h.

To begin with, we introduce the following claim which will be verified in Appendix A.1.1: for any
policy π = (µ, ν) and any s, s′ ∈ S:

∀(i, h) ∈ {1, 2} × [H] : V π,Pi,h (s) = V π,Pi,h (s′). (40)

To proceed, armed with the fact in (40), invoking the results in (34) and (35) yields that for all s ∈ S:

Qπ
?,P

1,h (s, 0, 0) = −1 + V π
?,P

1,h+1(s) and Qπ
?,P

2,h (s, 0, 0) = 1 + V π
?,P

2,h+1(s)

Qπ
?,P

1,h (s, 0, 1) = −1 + V π
?,P

1,h+1(s) and Qπ
?,P

2,h (s, 0, 1) = 0 + V π
?,P

2,h+1(s)

Qπ
?,P

1,h (s, 1, 0) = −20p+ V π
?,P

1,h+1(s) and Qπ
?,P

2,h (s, 1, 0) = 1 + V π
?,P

2,h+1(s)

Qπ
?,P

1,h (s, 1, 1) = −20p+ V π
?,P

1,h+1(s) and Qπ
?,P

2,h (s, 1, 1) = 3− 2p+ V π
?,P

2,h+1(s). (41)

The above fact directly indicates that at time step h, the NE of the matrix games associated with the
payoff Qπ

?,P
1,h (s) and Qπ

?,P
2,h (s) satisfies

∀s ∈ S :

{
π?h(s) = (0, 0) if p > 0.05

π?h(s) = (1, 1) if p ≤ 0.05.
(42)

Summing up the base case and the induction results, we complete the proof for (36).

The robust MG and computing the robust Nash equilibrium (robust NE). When turns to
the robust formulation of the fishing protection game, we construct a robust Markov game represented as
MGerob =

{
S, {Ai}1≤i≤2, p

0, σ, r,H
}
, where S, {Ai}1≤i≤2, r,H are the same as those defined in the standard

MGMGe. Note that this example is designed to illustrate general environmental uncertainty (includes both
the reward and transition kernel uncertainty) and is not tailored to the specific class of robust MGs defined
in Section 3. For simplicity, let each agent consider that the model parameter p can perturb around some
nominal one p0 with uncertainty level σ = 0.005, i,e., p ∈ [p0−σ, p0 +σ]. Other components of the transition
kernel is not allowed to perturb. With abuse of notation, for any joint policy π, we still denote the robust
value function (resp. robust Q-function) for i-th agent at time step h as V π,σi,h (resp. Qπ,σi,h ). In addition, we
denote the robust NE of MGerob as π?,σ = (µ?,σ, ν?,σ) = {µ?,σh , ν?,σh }h∈[H], where µ

?,σ
h : S 7→ ∆(A1), ν?,σh :

S 7→ ∆(A2).
Observe that in city A (resp. city B), the nominal model parameter p0 = 0.049 (resp. p0 = 0.051).

Without loss of generality, we first focus on city A. To proceed, we shall verify the following claim using the
same routine for computing NE of the standard MGMGe (cf. (36)):

In city A : (µ?,σh (s), ν?,σh (s)) = (0, 0), ∀(h, s) ∈ [H]× S. (43)
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• Base case: when h = H. Recall the definitions of robust value/Q-function (cf. (11)), one has at time
step H: for all s ∈ S,

∀a2 ∈ {0, 1} : Qπ
?,σ

1,H (s, 0, a2) = −1 and Qπ
?,σ

1,H (s, 1, a2) = −20(p0 + σ) = −1.08

Qπ
?,σ

2,H (s, 0, 0) = 1 and Qπ
?,σ

2,H (s, 0, 1) = 0

Qπ
?,σ

2,H (s, 1, 0) = 1 and Qπ
?,σ

2,H (s, 0, 1) = 3− 2(p0 + σ) = 2.892. (44)

As a result, it is easily verified that the unique robust NE of two agents on any state s ∈ S at time
step H is the policy pair (µ?,σH (s), ν?,σH (s)) = (0, 0).

• Induction. First of all, for any policy π = (µ, ν) and s, s′ ∈ S, similar to (40)

∀(i, h) ∈ {1, 2} × [H] : V π,σi,h (s) = V π,σi,h (s′). (45)

which indicates that the worst-case performance are indeed influenced by the uncertainty of the reward
function but not the transition kernel perturbation. Armed with above fact, invoking the robust
Bellman consistency equation, similar to (41), we can achieve that for all h ∈ 1, 2, · · · , H − 1,

Qπ
?,σ,σ

1,h (s, 0, 0) = −1 + V π
?,σ,σ

1,h+1 (s) and Qπ
?,σ,σ

2,h (s, 0, 0) = 1 + V π
?,σ,σ

2,h+1 (s)

Qπ
?,σ,σ

1,h (s, 0, 1) = −1 + V π
?,σ,σ

1,h+1 (s) and Qπ
?,σ,σ

2,h (s, 0, 1) = 0 + V π
?,σ,σ

2,h+1 (s)

Qπ
?,σ,σ

1,h (s, 1, 0) = −1.08 + V π
?,σ,σ

1,h+1 (s) and Qπ
?,σ,σ

2,h (s, 1, 0) = 1 + V π
?,σ,σ

2,h+1 (s)

Qπ
?,σ,σ

1,h (s, 1, 1) = −1.08 + V π
?,σ,σ

1,h+1 (s) and Qπ
?,σ,σ

2,h (s, 1, 1) = 2.892 + V π
?,σ,σ

2,h+1 (s). (46)

As a consequence, the robust NE of the matrix games associated with the payoff Qπ
?,σ,σ

1,h (s) and
Qπ

?,σ,σ
2,h (s) satisfies (µ?,σh (s), ν?,σh (s)) = (0, 0) for all h ∈ 1, 2, · · · , H − 1.

Summing up the results in the base case and the induction, we verify the unique robust NE for MGerob
in city A as (43). The same unique robust NE can be verified in city B by following the same routine, which
we omit for brevity. Thus, we show the unique robust NE in two slightly different environments (city A and
city B) are identical.

Deriving the states of executing different equilibrium solutions. In view of (36), we know that
the NE of the standard MG MGe in city A when p = pA = 0.049 (resp. city B when p = pB = 0.051) is
πA = (1, 1) (resp. πB = (0, 0)) for all (h, s) ∈ [H] × S. And the MG MGe has some one-way transition
structure, namely state s can only transit to itself or a larger state s + 1, while not any states s′ < s. So
as long as H is large enough, the final state of executing πA = (1, 1) will be state s = 100 with the fishing
license revoked since the fisher will always do illegal fishing (a1 = 1). The agents who execute the joint
policy πB = (0, 0) or the robust NE (µ?,σh (s), ν?,σh (s)) = (0, 0) will stay in s = 0 with no punishment since
the fisher will never choose illegal fishing (a1 = 1).

A.1.1 Proof of claim (40)

We will proof (40) by induction. Note that the base case when h = H has already been verified in (39).
Then suppose the claim holds at time step h+ 1, i.e.,

∀(i, s, s′) ∈ {1, 2} × S × S : V π,Pi,h+1(s) = V π,Pi,h+1(s′), (47)

it remains to show that the claim holds at time step h as well.
Towards this, we first consider the cases when state s ∈ S \ {100}. Recall the recursion in (34), we arrive

at

Qπ,P1,h (s, 0, 0) = −1 + V π,P1,h+1(s)

Qπ,P1,h (s, 0, 1) = −1 + V π,P1,h+1(s)
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Qπ,P1,h (s, 1, 0) = −20p+ pV π,P1,h+1(s+ 1) + (1− p)V π
?,P

1,h+1(s)
(i)
= −20p+ V π,P1,h+1(s)

Qπ,P1,h (s, 1, 1) = −20p+ pV π,P1,h+1(s+ 1) + (1− p)V π
?,P

1,h+1(s)
(ii)
= −20p+ V π,P1,h+1(s), (48)

where (i) and (ii) holds by the induction assumption in (50).
Analogously, recalling (35) for the second player (protector), we arrive at for any state s ∈ S \ {100} and

time step h ∈ [H],

Qπ,P2,h (s, 0, 0) = 1 + V π,P2,h+1(s)

Qπ,P2,h (s, 0, 1) = 0 + V π,P2,h+1(s),

Qπ,P2,h (s, 1, 0) = 1 + V π,P2,h+1(s),

Qπ,P2,h (s, 1, 1) = 3− 2p+ V π,P2,h+1(s). (49)

Combining (48) and (49) gives that for any s, s′ ∈ S \ {100},

∀(i, a1, a2) ∈ {1, 2} ×∆(A1)×∆(A2) : Qπ,Pi,h (s, a1, a2) = Qπ,Pi,h (s′, a1, a2), (50)

which indicates

V π,Pi,h (s) = E(a1,a2)∈µ(s)×µ(s)[Q
π,P
i,h (s, a1, a2)] = E(a1,a2)∈µ(s)×µ(s)[Q

π,P
i,h (s′, a1, a2)] = V π,Pi,h (s′). (51)

Similarly, when s = 100, it can be verified that (48) and (49) also hold. Therefore, we complete the
induction argument by observing that for all s, s′ ∈ S, V π,Pi,h (s) = V π,Pi,h (s′) is satisfied.

A.2 Additional notation and basic facts
For convenience, for any two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means
xi ≤ yi (resp. xi ≥ yi) for all 1 ≤ i ≤ n. We denote by x ◦ y =

[
x(s) · y(s)

]
s∈S the Hadamard product of

any two vectors x, y ∈ RS . And for any vecvor x, we let x◦2 =
[
x(s, a)2

]
(s,a)∈S×A (resp. x◦2 =

[
x(s)2

]
s∈S).

With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one) vector, and ei ∈ RS as a
S-dimensional basis vector with the i-th entry being 1 and others being 0. Recall that we abbreviate the
subscript ρTV when the divergence function is specified to TV distance to write Uσ(·) = UσρTV(·).

Additional matrix notation. For any (i, h) ∈ [n]× [H], we recall or introduce some additional notation
and matrix notation that is useful throughout the analysis

• ri,h = [ri,h(s,a)](s,a)∈S×A ∈ RS
∏n
i=1 Ai : a reward vector that represents the reward function for the

i-th player at time step h.

• Ππ
h ∈ RS×S

∏n
i=1 Ai : a projection matrix associated with time step h and a given joint policy π =

{πh}h∈[H] in the following form

Ππ
h =



πh(1)> 0> · · · 0>

0> πh(2)> · · · 0>

...
...

. . .
...

0> 0> · · · πh(S)>


, (52)

where we recall πh(s) = [πh(s,a)]a∈A ∈ ∆(A) for all s ∈ S denote the joint policy vectors from all
agents.

• rπi,h ∈ RS : a reward vector associated with the distribution of actions chosen by any joint policy
π = {πh}h∈[H] at time step h. Here, rπi,h(s) = Ea∼πh(s)[ri,h(s,a)] for all s ∈ S, or equivalently
rπi,h = Ππ

hri,h (see (52)).

• P 0
h ∈ RS

∏n
i=1 Ai×S : the matrix of the nominal transition kernel at time step h, with P 0

h,s,a ∈ R1×S

serves as the (s,a)-th row for any (s,a) ∈ S ×A.
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• P̂ 0
h ∈ RS

∏n
i=1 Ai×S : the matrix of the estimated nomimal transition kernel at time step h, with P̂ 0

h,s,a ∈
R1×S serves as the (s,a)-th row for any (s,a) ∈ S ×A.

• PVi,h ∈ RS
∏n
i=1 Ai×S , P̂Vi,h ∈ RS

∏n
i=1 Ai×S : at time step h, those matrices represent the worst-case prob-

ability transition kernel within the i-th agent’s uncertainty set around the nominal/estimated nominal
transition kernel, associated with any vector V ∈ RS . As a result, we denote PVi,h,s,a (resp. P̂Vi,h,s,a) as
the (s,a)-th row of the transition matrix PVi,h (resp. P̂Vi,h), defined by

PVi,h,s,a = argminP∈Uσiρ (P 0
h,s,a)PV, and P̂Vi,h,s,a = argminP∈Uσiρ (P̂ 0

h,s,a)PV. (53a)

Similarly, we define the corresponding probability transition matrices for some special value vectors that
are useful: Pπ,Vi,h ∈ RS

∏n
i=1 Ai×S , Pπ,V̂i,h ∈ RS

∏n
i=1 Ai×S , P̂π,Vi,h ∈ RS

∏n
i=1 Ai×S and P̂π,V̂i,h ∈ RS

∏n
i=1 Ai×S .

Here, we already use the following short-hand notation:

Pπ,Vi,h := P
V
π,σi
i,h+1

i,h and Pπ,Vi,h,s,a := P
V
π,σi
i,h+1

i,h,s,a = argminP∈Uσiρ (P 0
h,s,a)PV π,σii,h+1,

Pπ,V̂i,h := P
V̂
π,σi
i,h+1

i,h and Pπ,V̂h,s,a := P
V̂
π,σi
i,h+1

h,s,a = argminP∈Uσiρ (P 0
h,s,a)PV̂ π,σii,h+1,

P̂π,Vi,h := P̂
V
π,σi
i,h+1

i,h and P̂π,Vh,s,a := P̂
V
π,σi
i,h+1

h,s,a = argminP∈Uσiρ (P̂ 0
h,s,a)PV

π,σi
i,h+1,

P̂π,V̂i,h := P̂
V̂
π,σi
i,h+1

i,h and P̂π,V̂h,s,a := P̂
V̂
π,σi
i,h+1

h,s,a = argminP∈Uσiρ (P̂ 0
h,s,a)PV̂

π,σi
i,h+1. (53b)

• Pπh ∈ RS×S , P̂πh ∈ RS×S , Pπ,Vi,h ∈ RS×S , Pπ,V̂i,h ∈ RS×S , P̂
π,V

i,h ∈ RS×S and P̂
π,V̂

i,h ∈ RS×S : at time
step h, those six square probability transition matrices w.r.t. a given joint policy π are defined by
multiplying the projection matrix in (52) as below, resepctively:

Pπh := Ππ
hP

0
h , P̂

π

h := Ππ
hP̂

0
h , Pπ,Vi,h := Ππ

hP
π,V
i,h , Pπ,V̂i,h := Ππ

hP
π,V̂
i,h ,

P̂
π,V

i,h := Ππ
hP̂

π,V
i,h , and P̂

π,V̂

i,h := Ππ
hP̂

π,V̂
i,h . (54)

We then introduce two notations of the variance. First, for any probability vector P ∈ R1×S and vector
V ∈ RS , we denote the variance

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ). (55)

Then in addition, for any transition kernel P ∈ RS
∏n
i=1 Ai×S and vector V ∈ RS , we denote VarP (V ) ∈

RS
∏n
i=1 Ai as a vector of variance whose (s,a)-th row of VarP (V ) is taken as

VarP (s,a) := VarPs,a(V ). (56)

A.3 Preliminary facts of RMGs and empirical RMGs
Dual equivalence of robust Bellman operator with TV uncertainty set. Opportunely, when the
prescribed uncertainty set is in a benign form (such as using TV distance as the divergence function), the
robust Bellman operator can be computed efficiently by solving its dual formulation instead (Clavier et al.,
2023; Iyengar, 2005; Shi et al., 2023). In particular, the following lemma describes the equivalence between
the robust Bellman operator and its dual form due to strong duality in the case of TV distance.

Lemma 1 (Lemma 4, Shi et al. (2023)). Consider any TV uncertainty set Uσ(P ) = UσρTV(P ) associated with
any probability vector P ∈ ∆(S), fixed uncertainty level σ ∈ (0, 1]. For any vector V ∈ RS obeying V ≥ 0,
recalling the definition of [V ]α in (24), one has

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ

(
α−min

s′
[V ]α (s′)

)}
. (57)

The above lemma ensures that the computation cost of applying robust Bellman operator is relatively
the same as applying standard Bellman operator (Iyengar, 2005) up to some logarithmic factors.
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Notations and facts of RMGs and empirical RMGs. First, recall that for any robust Markov game
MGrob =

{
S, {Ai}1≤i≤n, {Uσiρ (P 0)}1≤i≤n, r,H

}
, according to robust Bellman equations in (13), one has for

any joint policy π : S × [H]→ ∆(A) and any (h, i, s,a) ∈ [H]× [n]× S ×A:

Qπ,σii,h (s,a) = ri,h(s,a) + inf
P∈Uσiρ (P 0

h,s,a)
PV π,σii,h+1, where V π,σii,h (s) = Ea∼πh(s)[Q

π.σi
i,h (s,a)]. (58)

Combined with the matrix notation in Appendix A.2, we arrive at

V π,σii,h = rπi,h + Ππ
h inf
P∈Uσiρ (P 0

h)
PV π,σii,h+1 = rπi,h + Pπ,Vi,h V

π,σi
i,h+1. (59)

Then we denote the empirical robust Markov games based on the estimated nominal distribution P̂ 0

constructed in (21) as M̂Grob =
{
S, {Ai}1≤i≤n, {Uσiρ (P̂ 0)}1≤i≤n, r,H

}
. Analogous to (11), we can define the

corresponding robust value function (resp. robust Q-function) of any joint policy π in M̂Grob as
{
V̂ π,σii,h

}
1≤i≤n

(resp.
{
Q̂π,σii,h

}
1≤i≤n). In addition, similar to (12), we can define the maximum of the robust value function

for each agent over M̂Grob as follows :

∀s ∈ S : V̂
?,π−i,σi
i,h (s) := max

π′i:S×[H]→∆(Ai)
V̂
π′i×π−i,σi
i,h (s) = max

π′i:S×[H]→∆(Ai)
inf

P∈Uσi (P̂ 0)
V̂
π′i×π−i,P
i,h (s), (60)

which can be achieved by at least one robust best-response policy for all s ∈ S simultaneously (Blanchet
et al., 2024, Section A.2).

Moreover, applying the robust Bellman equation in (13) for the empirical RMG M̂Grob, for any joint
policy π,

Q̂π,σii,h (s,a) = ri,h(s,a) + inf
P∈Uσiρ (P̂ 0

h,s,a)
PV̂ π,σii,h+1, where V̂ π,σii,h (s) = Ea∼πh(s)[Q̂

π,σi
i,h (s,a)], (61)

which combined with the matrix notations in Appendix A.2 leads to the matrix form of the robust Bellman
equation:

V̂ π,σii,h = rπi,h + Ππ
h inf
P∈Uσi (P̂ 0

h)
PV̂ π,σii,h+1 = rπi,h + P̂

π,V̂

i,h V̂
π,σi
i,h+1. (62)

Encouragingly, the above property of the robust Bellman equations ensure that the policy π̂ output by
the proposed method DR-NVI (cf. Algorithm 1) is a robust-{NE,CE,CCE} of the empirical RMG M̂Grob
when executing different corresponding subroutines, summarized in the following lemma:

Lemma 2. The output policy π̂ by DR-NVI (cf. Algorithm 1) is a robust-{NE,CE,CCE} of the empirical
RMG M̂Grob =

{
S, {Ai}1≤i≤n, {Uσiρ (P̂ 0)}1≤i≤n, r,H

}
when executing different subroutine Equilibrium ∈

Compute−{Nash,CE,CCE} accordingly, namely

∀(i, h) ∈ [n]× [H] :





V̂i,h = V̂ π̂,σii,h = V̂
?,π̂−i,σi
i,h when Equilibrium = Compute− Nash

V̂i,h = V̂ π̂,σii,h ≥ V̂ ?,π̂−i,σii,h when Equilibrium = Compute− CCE

V̂i,h = V̂ π̂,σii,h ≥ maxfi∈Fi V
fi�π̂,σi
i,h when Equilibrium = Compute− CE.

(63)

Proof. See Appendix B.3.1.

B Proof of Theorem 1
Before starting, let us introduce an essential lemma that characterize the difference between robust MGs and
standard MGs. For each agent, the possible range of the robust value function shrinks as the uncertainty
level σi of its own uncertainty set increases, shown below.
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Lemma 3. Consider the uncertainty set Uσi(·) = UσiρTV(·) and any robust Markov game MGrob ={
S, {Ai}1≤i≤n, {Uσi(P )}1≤i≤n, r,H

}
. The robust value function {V π,σii,h }i∈[n],h∈[H] associated with any joint

policy π satisfies:

∀(i, h) ∈ [n]× [H] : max
s∈S

V π,σii,h (s)−min
s∈S

V π,σii,h (s) ≤ min

{
1

σi
, H − h+ 1

}
.

Proof. See Appendix B.3.2

Equipped with the preceding lemma, we are now prepared to prove Theorem 1 for three different robust
solution concepts, respectively.

B.1 Proof of learning robust NE/robust CCE
In this subsection, we focus on the two equilibrium concepts — robust NE and robust CCE. The proof is
separated into several key steps as below.

Step 1: decomposing the error. Before proceeding, recall the goal is to prove that the output policy
π̂ from Algorithm 1 is an ε-robust NE/CCE with corresponding subroutine (cf. line 8). Namely, π̂ ∈
∆(A1)×∆(A2)×∆(An) is a product policy satisfies

gapNE(π̂) := max
s∈S,i∈[n]

{
V
?,π̂−i,σi
i,1 (s)− V π̂,σii,1 (s)

}
≤ ε (64)

or π̂ ∈ ∆(A) is a (possibly correlated) policy obeys

gapCCE(π̂) := max
s∈Si∈[n]

{
V
?,π̂−i,σi
i,1 (s)− V π̂,σii,1 (s)

}
≤ ε. (65)

We note that gapNE and gapCCE exhibit similar properties, differing only in the feasible set of policy π̂. So
we consider them together.

To continue, we introduce the following best-response policy of the i-th player given other players policy
π̂−i:

π̃?i = {π̃?i,h}1≤h≤H = argmaxπ′i∈S×[H]→∆(Ai)V
π′i×π̂−i,σi
i,1 , (66)

which indicates that

V
π̃?i×π̂−i,σi
i,1 = V

?,π̂−i,σi
i,1 . (67)

Armed with above notations and facts, the term of interest V ?,π̂−i,σii,1 −V π̂,σii,1 for any i ∈ [n] can be decomposed
as

V
?,π̂−i,σi
i,1 − V π̂,σii,1 =

(
V
?,π̂−i,σi
i,1 − V̂ π̃

?
i×π̂−i,σi

i,1

)
+
(
V̂
π̃?i×π̂−i,σi
i,1 − V̂ π̂,σii,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)

(i)

≤
(
V
?,π̂−i,σi
i,1 − V̂ π̃

?
i×π̂−i,σi

i,1

)
+
(
V̂
π̃?i×π̂−i,σi
i,1 − V̂ ?,π̂−i,σii,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)

≤
(
V
?,π̂−i,σi
i,1 − V̂ π̃

?
i×π̂−i,σi

i,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)
(68)

where (i) holds by V̂ π̂,σii,1 = V̂
?,π̂−i,σi
i,1 (resp. V̂ π̂,σii,1 ≥ V̂

?,π̂−i,σi
i,1 ) when the subroutine in line 8 is

Compute − Nash (resp. Compute − CCE) implied by Lemma 2, and the last inequality follows from
V̂
π̃?i×π̂−i,σi
i,1 ≤ maxπ′i∈S×[H]→∆(Ai) V̂

π′i×π̂−i,σi
i,1 = V̂

?,π̂−i,σi
i,1 by definition.
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Step 2: developing the recursion. We consider a more general form for any time step h ∈ [H] and
any joint policy π. Towards this, one has

V π,σii,h − V̂ π,σii,h

(i)
= rπi,h + Ππ

h inf
P∈Uσi (P 0

h,s,a)
PV π,σii,h+1 −

(
rπi,h + Ππ

h inf
P∈Uσi (P̂ 0

h,s,a)
PV̂ π,σii,h+1

)

(ii)
= Pπ,Vi,h V

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1 (69)

=
(
Pπ,Vi,h V

π,σi
i,h+1 − P

π,V̂
i,h V̂

π,σi
i,h+1

)
+

(
Pπ,V̂i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

)

(iii)

≤ Pπ,V̂i,h

(
V π,σii,h+1 − V̂

π,σi
i,h+1

)
+

∣∣∣∣P
π,V̂
i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

∣∣∣∣
︸ ︷︷ ︸

=:aπi,h

(70)

where (i) and (ii) hold by the matrix version of robust Bellman consistency equations in (59) and (62), and
(iii) follows from the observation

Pπ,Vi,h V
π,σi
i,h+1 ≤ P

π,V̂
i,h V

π,σi
i,h+1

due to the definition of Pπ,Vi,h = Ππ
h arg minP∈Uσi (P 0

h,s,a) PV
π,σi
i,h+1 ≤ Ππ

h arg minP∈Uσi (P 0
h,s,a) PV̂

π,σi
i,h+1 (cf. (53)

and (54)).
Recursively applying (70) leads to

V π,σii,h − V̂ π,σii,h

≤ Pπ,V̂i,h P
π,V̂
i,h+1

(
V π,σii,h+2 − V̂

π,σi
i,h+2

)
+ Pπ,V̂i,h

∣∣∣∣P
π,V̂
i,h+1V̂

π,σi
i,h+2 − P̂

π,V̂

i,h+1V̂
π,σi
i,h+2

∣∣∣∣+

∣∣∣∣P
π,V̂
i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

∣∣∣∣

≤ · · · ≤
H∑

j=h

(
j−1∏

k=h

Pπ,V̂i,k

)
aπi,j , (71)

where the last inequality holds by adopting the following notations
(
h−1∏

k=h

Pπ,V̂i,k

)
= I and

(
j−1∏

k=h

Pπ,V̂i,k

)
= Pπ,V̂i,h · P

π,V̂
i,h+1 · · ·P

π,V̂
i,j−1. (72)

Next, similar to (70), we can achieve

V̂ π,σii,h − V π,σii,h

(i)
= P̂

π,V̂

i,h V̂
π,σi
i,h+1 − P

π,V
i,h V

π,σi
i,h+1

=

(
P̂
π,V̂

i,h V̂
π,σi
i,h+1 − P

π,V̂
i,h V̂

π,σi
i,h+1

)
+
(
Pπ,V̂i,h V̂

π,σi
i,h+1 − P

π,V
i,h V

π,σi
i,h+1

)

≤ Pπ,Vi,h
(
V̂ π,σii,h+1 − V

π,σi
i,h+1

)
+

∣∣∣∣P
π,V̂
i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

∣∣∣∣ (73)

where (i) holds by (69), and the last inequality follows from the fact Pπ,V̂i,h V̂
π
i,h+1 ≤ Pπ,Vi,h V̂

π
i,h+1 (see the

definition of Pπ,V̂i,h , i.e., (53) and (54)).
Then following the routine of achieving (71), we arrive at

V̂ π,σii,h − V π,σii,h ≤
H∑

j=h

(
j−1∏

k=h

Pπ,Vi,k

)
aπi,j . (74)

Summing up (71) and (74), one has for any joint policy π,
∣∣∣V̂ π,σii,h − V π,σii,h

∣∣∣ ≤ max{V π,σii,h − V̂ π,σii,h , V̂ π,σii,h − V π,σii,h }
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≤ max





H∑

j=h

(
j−1∏

k=h

Pπ,V̂i,k

)
aπi,j ,

H∑

j=h

(
j−1∏

k=h

Pπ,Vi,k

)
aπi,j



 , (75)

where the max operator is taken entry-wise for the vectors.
To continue, we introduce an important concentration result about the value estimation error as follows:

Lemma 4. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has for any joint policy π,

∀(h, i) ∈ [H]× [n] : aπi,h =

∣∣∣∣P
π,V̂
i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

∣∣∣∣

≤ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√
VarPπh (V̂ πi,h+1) +

log(
18S

∏n
i=1 AinHN

δ )H

N
1

≤ 3

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
1 (76)

where VarPπh (·) is defined in (56).

Proof. See Appendix B.3.3.

Step 3: controlling the first term in (75). Let us introduce some additional notations for convenience.
Recall es denote a S-dimensional standard basis supported on the s-th element. We denote

dhh = es and djh = e>s

(
j−1∏

k=h

Pπ,V̂i,k

)
∀j = h+ 1, · · · , H. (77)

Armed with above notations and facts, for any s ∈ S, we have

V π,σii,h (s)− V̂ π,σii,h (s) =
〈
es, V

π,σi
i,h − V̂ π,σii,h

〉
=

H∑

j=h

〈
djh, a

π
i,j

〉

≤
H∑

j=h

〈
djh,


2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√
VarPπj (V̂ π,σii,j+1) +

log(
18S

∏n
i=1 AinHN

δ )H

N
1



〉

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

H∑

j=h

〈
djh,
√
VarPπj (V̂ π,σii,j+1)

〉

(i)

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√√√√H

H∑

j=h

〈
djh,VarPπj (V̂ π,σii,j+1)

〉

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉

︸ ︷︷ ︸
=:B1

+ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√√√√H

H∑

j=h

〈
djh,

∣∣∣∣VarPπj (V̂ π,σii,j+1)− Var
Pπ,V̂i,j

(V̂ π,σii,j+1)

∣∣∣∣
〉

︸ ︷︷ ︸
=:B2

(78)

where (i) holds by the Cauchy-Schwarz inequality.
Then we control the two main terms in (78) separately.
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• Controlling B1. To begin with, we introduce the following lemma about
∑H
j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉

whose proof is postponed to Appendix B.3.4.

Lemma 5. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has for any joint policy π,

∀(h, i) ∈ [H]× [n] :

H∑

j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉

≤ 3H

(
max
s∈S

V̂ π,σii,j+1(s)−min
s∈S

V̂ π,σii,j+1(s)

)
1 + 2H

√
log(

18S
∏n
i=1 AinHN

δ )

N


 .

(79)

Applying Lemma 5 to B1 in (78), we arrive at

B1 = 2

√√√√H log
(

18S
∏n
i=1 AinHN

δ

)

N

√√√√
H∑

j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉

≤ 2

√√√√H log
(

18S
∏n
i=1 AinHN

δ

)

N

√√√√√
3H

(
max
s∈S

V̂ π,σii,j+1(s)−min
s∈S

V̂ π,σii,j+1(s)

)(
1 + 2H

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

)

(i)

≤ 2

√√√√√3H2 log
(

18S
∏n
i=1 AinHN

δ

)

N
min

{
1

σi
, H − h+ 1

}(
1 + 2H

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

)

≤ 6

√√√√H2 min {1/σi, H} log
(

18S
∏n
i=1 AinHN

δ

)

N
, (80)

where (i) holds by applying Lemma B.3.2, and the last inequality follows by taking N ≥
4H2 log

( 18S
∏n
i=1 AinHN

δ

)
.

• Controlling B2. We introduce another lemma; refer to the proof in Appendix B.3.5.

Lemma 6. Consider the standard RMG MG =
{
S, {Ai}1≤i≤n, {Uσi(P 0)}1≤i≤n, r,H

}
and empirical

RMGMGrob =
{
S, {Ai}1≤i≤n, {Uσi(P̂ 0)}1≤i≤n, r,H

}
. Considering any joint policy π, any transition

kernel P ′ ∈ RS and any P̃ ∈ RS obeying P̃ ∈ Uσi(P ), one has

∀(i, j) ∈ [n]× [H] :
∣∣∣VarP ′(V̂ π,σii,j+1)− VarP̃ (V̂ π,σii,j+1)

∣∣∣ ≤ min

{
1

σi
, H − h+ 1

}
, (81a)

∣∣VarP ′(V π,σii,j+1)− VarP̃ (V π,σii,j+1)
∣∣ ≤ min

{
1

σi
, H − h+ 1

}
. (81b)

Armed with above lemma, we observe that
∣∣∣∣VarPπj (V̂ π,σii,j+1)− Var

Pπ,V̂i,j
(V̂ π,σii,j+1)

∣∣∣∣
(i)
=

∣∣∣∣Ππ
j

(
VarP 0

j
(V̂ π,σii,j+1)− Var

Pπ,V̂i,j

(V̂ π,σii,j+1)

)∣∣∣∣
(ii)

≤
∥∥∥∥VarP 0

j
(V̂ π,σii,j+1)− Var

Pπ,V̂i,j

(V̂ π,σii,j+1)

∥∥∥∥
∞

1

≤ min

{
1

σi
, H − h+ 1

}
1, (82)
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where (i) and (ii) follows from the matrix notations Ππ
j (cf (52)) and Pπj , P

π,V̂
i,j (cf (54)), and the last

inequality holds by applying Lemma 6 with P ′ = P 0
j,s,a, P̃ = Pπ,V̂i,j,s,a for all (s,a) ∈ S ×A.

Plugging back (82) to (78), it can be verified that

B2 = 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√√√√H

H∑

j=h

〈
djh,

∣∣∣∣VarPπj (V̂ π,σii,j+1)− Var
Pπ,V̂i,j

(V̂ π,σii,j+1)

∣∣∣∣
〉

≤ 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
djh,min

{
1

σi
, H − h+ 1

}
1

〉

≤ 2

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
. (83)

Consequently, combining (80) and (83), (78) can be bounded by

V π,σii,h (s)− V̂ π,σii,h (s) ≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 6

√√√√H2 min {1/σi, H} log
(

18S
∏n
i=1 AinHN

δ

)

N

+ 2

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N

≤ 9

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
, (84)

where the last inequality holds by taking N ≥ 4H2 log(
18S

∏n
i=1 AinHN

δ ).

Step 4: controlling the second term in (75). To do so, similar to (77), we define

whh = es and wjh = e>s

(
j−1∏

k=h

Pπ,Vi,k

)
∀j = h+ 1, · · · , H. (85)

With the above notations in mind, following the routine of (78) gives: for any s ∈ S,

V̂ π,σii,h (s)− V π,σii,h (s)

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

H∑

j=h

〈
wjh,

√
VarPπj (V̂ π,σii,j+1)

〉

(i)

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

H∑

j=h

〈
wjh,

(√∣∣VarPπj (V̂ π,σii,j+1 − V π,σii,j+1)
∣∣+
√∣∣VarPπj (V π,σii,j+1)− VarPπ,Vi,j

(V π,σii,j+1)
∣∣+
√
VarPπ,Vi,j

(V π,σii,j+1)
)〉

≤
H2 log

(
18S

∏n
i=1 AinHN

δ

)

N
+ 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
wjh,VarPπ,Vi,j

(V π,σii,j+1)
〉

︸ ︷︷ ︸
=:B3

+ 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
wjh,

∣∣∣VarPπj (V π,σii,j+1)− VarPπ,Vi,j
(V π,σii,j+1)

∣∣∣
〉

︸ ︷︷ ︸
=:B4
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+ 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
wjh,

∣∣∣VarPπj (V̂ π,σii,j+1 − V π,σii,j+1)
∣∣∣
〉

︸ ︷︷ ︸
=:B5

, (86)

where (i) holds by the triangle inequality and the elementary inequality
√

VarP (V + V ′) ≤
√
VarP (V ) +√

VarP (V ′) for any transition kernel P ∈ RS and vectors V, V ′ ∈ RS , and the last inequality follows from
applying the Cauchy-Schwarz inequality to those terms.

We can control the three main terms in (86) separately as below:

• Controlling B3. First, we introduce the following lemma for
∑H
j=h

〈
wjh,VarPπ,Vi,j

(V π,σii,j+1)
〉
.

Lemma 7. Consider any δ ∈ (0, 1). For any joint policy π, with probability at least 1− δ,

∀(h, i) ∈ [H]× [n] :

H∑

j=h

〈
wjh,VarPπ,V̂i,j

(V π,σii,j+1)

〉
≤ 3H

(
max
s∈S

V π,σii,h (s)−min
s∈S

V π,σii,h (s)

)
. (87)

Proof. See Appendix B.3.6.

Then applying Lemma 7 yields

B3 = 2

√√√√H log
(

18S
∏n
i=1 AinHN

δ

)

N

√√√√
H∑

j=h

〈
wjh,VarPπ,Vi,j

(V π,σii,j+1)
〉

≤ 2

√√√√H log
(

18S
∏n
i=1 AinHN

δ

)

N

√
3H

(
max
s∈S

V̂ π,σii,h (s)−min
s∈S

V̂ π,σii,h (s)

)

≤ 4

√√√√H2 min {1/σi, H} log
(

18S
∏n
i=1 AinHN

δ

)

N
, (88)

where the last inequality follows from Lemma 3.

• Controlling B4 and B5 . First, it is easily verified that B4 can be controlled as the same as that for
B2 (see (83)) by applying Lemma (81b), namely

B4 ≤ 2

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
. (89)

Then the remainder of the proof shall focus on B5. Recalling the definition in (86), one has

B5 = 2

√
H log(

18S
∏n
i=1 AinHN

δ )

N

√√√√
H∑

j=h

〈
wjh,

∣∣∣VarPπj (V̂ π,σii,j+1 − V π,σii,j+1)
∣∣∣
〉

≤ 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N

√
max
h≤j≤H

∥∥∥VarPπj (V̂ π,σii,j+1 − V π,σii,j+1)
∥∥∥
∞

≤ 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
max
h≤j≤H

∥∥∥V̂ π,σii,j+1 − V π,σii,j+1

∥∥∥
∞
. (90)
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Summing up (88), (89), and (90) and inserting back to (86), we conclude

V̂ π,σii,h (s)− V π,σii,h (s)

≤ log(
18S

∏n
i=1 AinHN

δ )H2

N
+ 4

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N

+ 2

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
+ 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
max
h≤j≤H

∥∥∥V̂ π,σii,j+1 − V π,σii,j+1

∥∥∥
∞

≤ 7

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1

+ 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
max
h≤j≤H

∥∥∥V̂ π,σii,j+1 − V π,σii,j+1

∥∥∥
∞

1, (91)

as long as N ≥ H2 log
( 18S

∏n
i=1 AinHN

δ

)
.

Step 5: summing up the results. Inserting (84) and (91) back into (75), we observe that
∣∣∣V̂ π,σii,h − V π,σii,h

∣∣∣ ≤ max
{
V π,σii,h − V̂ π,σii,h , V̂ π,σii,h − V π,σii,h

}

≤ max
{

9

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1,

7

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1 + 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
max
h≤j≤H

∥∥∥V̂ π,σii,j+1 − V π,σii,j+1

∥∥∥
∞

1
}
,

(92)

which indicates

max
h∈[H]

∥∥∥V̂ π,σii,h − V π,σii,h

∥∥∥
∞

≤ 9

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1 + 2

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
max
h∈[H]

∥∥∥V̂ π,σii,h+1 − V
π,σi
i,h+1

∥∥∥
∞

(i)

≤ 9

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1 +

1

2
max
h∈[H]

∥∥∥V̂ π,σii,h − V π,σii,h

∥∥∥
∞

≤ 18

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
, (93)

where (i) holds by taking N ≥ 16H2 log(
18S

∏n
i=1 AinHN

δ ) and invoking the basic fact that V̂ π,σii,H+1 = V π,σii,H+1 =
0.

Finally, we complete the proof by showing that the performance gap in (68) is bounded by

V
?,π̂−i
i,1 − V π̂i,1 ≤

(
V
?,π̂−i
i,1 − V̂ π̃

?
i×π̂−i

i,1

)
+
(
V̂ π̂i,1 − V π̂i,1

)

≤
∥∥∥V ?,π̂−ii,1 − V̂ π̃

?
i×π̂−i

i,1

∥∥∥
∞

1 +
∥∥∥V̂ π̂i,1 − V π̂i,1

∥∥∥
∞

1

≤ max
h∈[H]

∥∥∥V ?,π̂−ii,h − V̂ π̃
?
i×π̂−i

i,h

∥∥∥
∞

1 + max
h∈[H]

∥∥∥V̂ π̂i,h − V π̂i,h
∥∥∥
∞

1

≤ 36

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1, (94)
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where the last inequality holds by applying (93) to two different cases when π = π̃?i × π̂−i or π = π̂,
respectively.

As a result, to achieve maxs∈S,i∈[n]

{
V
?,π̂−i,σi
i,1 (s)− V π̂,σii,1 (s)

}
≤ ε with probability at least 1 − δ, we

require the total number of samples

Nall = HS
∏

i∈[n]

AiN ≥
C1SH

3
∏

1≤i≤nAi log
(

18S
∏n
i=1 AinHN

δ

)

ε2
min

{
H,

1

min1≤i≤n σi

}

≥
C0SH

3
∏

1≤i≤nAi log
(

18S
∏n
i=1 AinHN

δ

)

ε2
min

{
H,

1

min1≤i≤n σi

}

+ 16H3S
∏

i∈[n]

Ai log(
18S

∏n
i=1AinHN

δ
), (95)

providing C1 > C0 are larger enough universal constant, and ε ≤
√

min
{
H, 1

min1≤i≤n σi

}
.

B.2 Proof of learning robust CE
This section is analogous to the proof for learning robust NE/CCE in Appendix B.1.

The goal is to prove that the policy π̂ output from Algorithm 1 is an ε-robust CE when executing
subroutine Compute− CE(·) for line 8, i.e.,

gapCE(π̂) = max
s∈S,1≤i≤n

{
max
fi∈Fi

V fi�π̂,σii,1 (s)− V π̂,σii,1 (s)

}
≤ ε. (96)

So we define the following best perturbation policy of the i-th player as

π?i = {π?i,h}1≤h≤H =
(
argmaxfi∈FiV

fi�π̂,σi
i,1

)
� π̂ (97)

which leads to

V
π?i ,σi
i,1 = max

fi∈Fi
V fi�π̂,σii,1 . (98)

With above notations in mind, for any 1 ≤ i ≤ n, the term of interest can be decomposed as

max
fi∈Fi

V fi�π̂,σii,1 − V π̂,σii,1 =
(
V
π?i ,σi
i,1 − V̂ π

?
i ,σi

i,1

)
+
(
V̂
π?i ,σi
i,1 − V̂ π̂,σii,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)

(i)

≤
(
V
π?i ,σi
i,1 − V̂ π

?
i ,σi

i,1

)
+

(
V̂
π?i ,σi
i,1 − max

fi∈Fi
V̂ fi�π̂,σii,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)

≤
(
V
π?i ,σi
i,1 − V̂ π

?
i ,σi

i,1

)
+
(
V̂ π̂,σii,1 − V π̂,σii,1

)
(99)

where (i) holds by V̂ π̂,σii,1 ≥ maxfi∈Fi V
fi�π̂,σi
i,1 when the subroutine in line 8 is Compute − CE(·) implied by

Lemma 2, and the last inequality follows from V̂
π?i ,σi
i,1 = V̂

fi�π̂,σi
i,1 ≤ maxfi∈Fi V̂

fi�π̂,σi
i,1 for some f i ∈ Fi.

Observing that (99) is similar to (68), it can be verified that following the same pipeline routine and the
same facts developed from Step 2 to Step 5 in Appendix B.1, we can achieve similar results as below:

∀i ∈ [n] : max
fi∈Fi

V fi�π̂,σii,1 − V π̂,σii,1 ≤ 36

√
H2 min {1/σi, H} log(

18S
∏n
i=1 AinHN

δ )

N
1, (100)

which yields (95) and complete the proof. We omit the details here for conciseness.
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B.3 Proof of the auxiliary lemmas
B.3.1 Proof of Lemma 2

We will prove each line of (63) separately with an induction argument. Note that Blanchet et al. (2023)
provides the proof of the first line of (63) for robust NE. For completeness, we offer the whole proof for all
of the three robust solution concepts (including robust-NE).

Proof for robust NE. First, we focus on the first line of (63) and provide the following induction
argument:

• Base case when h = H. Note that V̂ π,σii,H+1 = 0 for all i ∈ [n] are satisfied by definition. As a result, the
robust Q-function for any joint policy π and the estimate from Algorithm 1 satisfy

∀(i, s, a) ∈ [n]× S ×A : Q̂π,σii,H (s,a) = ri,H(s,a) and Q̂i,H(s,a) = ri,H(s,a) (101)

which directly leads to

V̂ π,σii,H = V̂i,H (102)

and the output πH obeying

∀s ∈ S : π̂H(· | s)← Compute− Nash (r1,H(s,a), r2,H(s,a), · · · , rn,H(s,a)) . (103)

Consequently, invoking line 8 of Algorithm 1 gives that for all s ∈ S,

V̂i,H(s) = Ea∼π̂H(s)

[
Q̂i,H(s,a)

]
(i)
= Ea∼π̂H(s)

[
Q̂π̂,σii,H (s,a)

]
(ii)
= Ea∼π̂H(s)[ri,H(s,a)] (104)

(iii)
= max

π̃i,H(s)∈∆(Ai)
Ea∼π̃i,H(s)×π̂−i,H(s)[ri,H(s,a)] (105)

(iv)
= max

π̃i,H(s)∈∆(Ai)
Ea∼π̃i,H(s)×π̂−i,H(s)

[
Q̂
π̃i×π̂−i,σi
i,H (s,a)

]

= max
π̃i:S×[H]→∈∆(Ai)

V̂
π̃i×π̂−i,σi
i,H (s) = V̂

?,π̂−i,σi
i,H , (106)

where (i) and (ii) hold by (101), (iii) arises from the definition of robust-NE (see (103)) associated with
{ri,H}i∈[n], (iv) holds by applying (101) for policy π = π̃i × π̂−i, and the penultimate equality follows
from the fact that only the policy of the time step H will influence V̂ π,σii,H (s) due to Markov property.
Thus we complete the proof for the base case.

• Induction. To continue, suppose the first line in (63) holds for step h + 1, we shall proof that it also
holds for time step h. To proceed, applying the robust Bellman equation in (61) for the TV uncertainty
set Uσi(·), we observe that

∀(s, a) ∈ S ×A : Q̂π̂,σii,h (s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a)
PV̂ π̂,σii,h+1. (107)

In addition, line 5 of Algorithm 1 gives that for all (s, a) ∈ S ×A,

Q̂i,h(s,a) = ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a)
PV̂i,h+1

= ri,h(s,a) + inf
P∈Uσi (P̂ 0

h,s,a)
PV̂ π̂,σii,h+1 = Q̂π̂,σii,h (s,a), (108)

where the penultimate equality holds by the induction assumption and the final equality follows from
(107). It indicates

∀s ∈ S : V̂i,h(s) = Ea∼π̂h(s)

[
Q̂i,h(s,a)

]
= Ea∼π̂h(s)

[
Q̂π̂,σii,h (s,a)

]
= V̂ π̂,σii,h (s) (109)
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and that the output policy obeys

∀s ∈ S : π̂h(· | s)← Compute− Nash
(
Q̂π̂,σi1,h (s, ·), Q̂π̂,σi2,h (s, ·), Q̂π̂,σin,h (s, ·)

)
. (110)

Then the term of interest satisfies that for any s ∈ S,

V̂
?,π̂−i,σi
i,h (s) = max

π̃i:S×[H]→∆(Ai)
Ea∼π̃i,h(s)×π̂−i,h(s)

[
Q̂
π̃i×π̂−i,σi
i,h (s,a)

]

= max
π̃i:S×[H]→∆(Ai)

Ea∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + inf

P∈Uσi (P̂ 0
h,s,a)

PV̂
π̃i×π̂−i,σi
i,h+1

]

(i)
= max

π̃i,h∈∆(Ai)
Ea∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + max

π̃i:S×[H]→∆(Ai)
inf

P∈Uσi (P̂ 0
h,s,a)

PV̂
π̃i×π̂−i,σi
i,h+1

]

(ii)
= max

π̃i,h(s)∈∆(Ai)
Ea∼π̃i,h(s)×π̂−i,h(s)

[
ri,h(s,a) + inf

P∈Uσi (P̂ 0
h,s,a)

PV̂ π̂,σii,h+1

]

= max
π̃i,h(s)∈∆(Ai)

Ea∼π̃i,h(s)×π̂−i,h(s)

[
Q̂π̂,σii,h (s,a)

]
, (111)

where (i) holds by ri,h(s, a) is independent from all other time steps h′ 6= h, (ii) is due to
the exchangability of maxπ̃i:S×[H]→∆(Ai) and infP∈Uσi (P̂ 0

h,s,a), along with the induction assumption

V̂ π̂,σii,h+1 = V̂
?,π̂−i,σi
i,h+1 = maxπ̃i:S×[H]→∆(Ai) V̂

π̃i×π̂−i,σi
i,h+1 , and the last equality can be verified by (107). To

continue, applying (110) with the definition of robust NE, one has

V̂
?,π̂−i,σi
i,h (s) = max

π̃i,h(s)∈∆(Ai)
Ea∼π̃i,h(s)×π̂−i,h(s)

[
Q̂π̂,σii,h (s,a)

]

= Ea∈π̂h(s)

[
Q̂π̂,σii,h (s,a)

]
= Ea∈π̂h(s)

[
Q̂i,h(s,a)

]
= V̂i,h(s), (112)

where the penultimate equality follows from (108). Finally, it is easily observed that

∀s ∈ S : V̂i,h(s) = Ea∈π̂h(s)

[
Q̂i,h(s,a)

]
= Ea∈π̂h(s)

[
Q̂π̂,σii,h (s,a)

]
= V̂ π̂,σii,h (s). (113)

Combined this fact with (115) shows that V̂i,h = V̂ π̂,σii,h = V̂
?,π̂−i,σi
i,h , which complete the induction

argument.

Proof for robust CCE. The proof is analogous to the above argument for robust NE. According to the
different subroutine Compute − CCE and the corresponding output policy π̂, the proof only differs in two
steps. First, for the base case, following the same routine in (106) but replacing the robust NE property by
the one of robust CCE, one has

V̂i,H(s) = Ea∼π̂H(s)[Q̂i,H(s,a)] = Ea∼π̂H(s)[ri,H(s,a)]

≥ max
π̃i,H(s)∈∆(Ai)

Ea∼π̃i,H(s)×π̂−i,H(s)[ri,H(s,a)]

= max
π̃i,H(s)∈∆(Ai)

Ea∼π̃i,H(s)×π̂−i,H(s)

[
Q̂
π̃i×π̂−i,σi
i,H (s,a)

]

= max
π̃i:S×[H]→∈∆(Ai)

V̂
π̃i×π̂−i,σi
i,H (s) = V̂

?,π̂−i,σi
i,H . (114)

Secondly, following (115) in induction step, we can achieve

V̂
?,π̂−i,σi
i,h ≤ V̂i,h (115)

and V̂i,h = V̂ π̂,σii,h ≥ V̂ ?,π̂−i,σii,h , which complete the proof.
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Proof for robust CE. The proof is similar to the one of robust NE as well. According to the different
subroutine Compute− CE and the corresponding output policy π̂, the parallel claims to (106) and (115) are
shown below, which we omit the process for brevity:

V̂i,H(s) = Ea∼π̂H(s)[Q̂i,H(s,a)] = Ea∼π̂H(s)[ri,H(s,a)]

≥ max
fi,H,s:Ai→Ai

Ea∼fi,H,s�π̂H(s)[ri,H(s,a)] = max
fi∈Fi

V̂ fi�π̂,σii,H , (116)

and

max
fi∈Fi

V̂ fi�π̂,σii,h ≤ V̂ π̂,σii,h = V̂i,h. (117)

Thus we complete the proof.

B.3.2 Proof of Lemma 3

To begin with, we observe that

min
s∈S

V π,σii,h (s) = min
s∈S

Ea∼πh(s)[Q
π,σi
i,h (s,a)] = min

s∈S
Ea∼πh(s)[ri,h(s,a) + inf

P∈Uσi (Ph,s,a)
PV π,σii,h+1]

≥ 0 + min
s∈S

V π,σii,h+1(s), (118)

where the second equality holds by the robust Bellman equation (cf. (13)). Similarly, one has

max
s∈S

V π,σii,h (s) = max
s∈S

Ea∼πh(s)[Q
π,σi
i,h (s,a)] = max

s∈S
Ea∼πh(s)[ri,h(s,a) + inf

P∈Uσi (Ph,s,a)
PV π,σii,h+1]

≤ 1 + max
(s,a)∈S×A

inf
P∈Uσi (Ph,s,a)

PV π,σii,h+1. (119)

Armed with above results, we are ready to prove Lemma 3. Towards this, we introduce some additional
notations for convenience. Fixing any joint policy π, note that for any (i, h) ∈ [n]× [H], there exist at least
one state s?i,h that satisfies V π,σii,h (s?i,h) = mins∈S V

π,σi
i,h (s).

Then, it is observed that for any (s,a) ∈ S × A and accessible uncertainty set σi > 0, we can construct
an auxiliary vector P ′h,s,a ∈ RS by strictly reducing the values of some elements of Ph,s,a so that

0 ≤ P ′h,s,a ≤ Ph,s,a and
∑

s′∈S
Ph,s,a(s′)− P ′h,s,a(s′) =

∥∥P ′h,s,a − Ph,s,a
∥∥

1
= σi. (120)

Recalling es?i,h denote a S-dimensional standard basis supported on s?i,h, the above fact directly indicates
that

1

2

∥∥∥P ′h,s,a + σi
[
es?i,h

]> − Ph,s,a
∥∥∥

1
≤ 1

2

∥∥P ′h,s,a − Ph,s,a
∥∥

1
+

1

2

∥∥∥σi
[
es?i,h

]>∥∥∥
1
≤ σi, (121)

where the first inequality holds by that TV distance enjoys the triangle inequality.
The above results in (121) imply that P ′h,s,a +σi

[
es?i,h

]> is a distribution vector and P ′h,s,a +σi
[
es?i,h

]> ∈
Uσi(Ph,s,a), which leads to

inf
P∈Uσi (Ph,s,a)

PV π,σii,h+1 ≤
(
P ′h,s,a + σi

[
es?i,h

]>)
V π,σii,h+1 ≤

∥∥P ′h,s,a
∥∥

1

∥∥V π,σii,h+1

∥∥
∞ + σiV

π,σi
i,h+1(s?i,h+1)

≤ (1− σi) max
s∈S

V π,σii,h+1(s) + σi min
s∈S

V π,σii,h+1(s), (122)

where the last inequality can be verified by (see (120))
∥∥P ′h,s,a

∥∥
1

=
∑

s′

P ′h,s,a(s′) = −
∑

s′

(
Ph,s,a(s′)− P ′h,s,a(s′)

)
+
∑

s′

Ph,s,a(s′) = 1− σi. (123)
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Inserting (122) back to (119) yields

max
s∈S

V π,σii,h (s) ≤ 1 + max
(s,a)∈S×A

inf
P∈Uσi (Ph,s,a)

PV π,σii,h+1

≤ 1 + (1− σi) max
s∈S

V π,σii,h+1(s) + σi min
s∈S

V π,σii,h+1(s). (124)

Combined above fact with (118) shows that

max
s∈S

V π,σii,h (s)−min
s∈S

V π,σii,h (s) ≤ 1 + (1− σi) max
s∈S

V π,σii,h+1(s) + σi min
s∈S

V π,σii,h+1(s)−min
s∈S

V π,σii,h+1(s)

≤ 1 + (1− σi)
(

max
s∈S

V π,σii,h+1(s)−min
s∈S

V π,σii,h+1(s)

)

≤ 1 + (1− σi)
[
1 + (1− σi)

(
max
s∈S

V πi,h+2(s)−min
s∈S

V πi,h+2(s)

)]

≤ · · · ≤ 1− (1− σi)H−h
σi

≤ 1

σi
. (125)

Combining above result with the basic fact maxs∈S V
π,σi
i,h (s)−mins∈S V

π,σi
i,h (s) ≤ H−h+ 1, we complete

the proof.

B.3.3 Proof of Lemma 4

The proof is adapted from the routine for proving Shi et al. (2023, Lemma 9).

Step 1: a point-wise bound. Consider any fixed (independent from P̂ 0) value vector V , combined with
the definitions in (53), the (s,a)-th row of the term of interest can be written out as

∣∣∣PVi,h,s,aV − P̂Vi,h,s,aV
∣∣∣ =

∣∣∣∣∣ inf
P∈Uσi (P 0

h,s,a)
PV − inf

P∈Uσi (P̂ 0
h,s,a)

PV
∣∣∣∣∣

(i)
=
∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
P 0
h,s,a [V ]α − σi

(
α−min

s′
[V ]α (s′)

)}

− max
α∈[mins V (s),maxs V (s)]

{
P̂ 0
h,s,a [V ]α − σi

(
α−min

s′
[V ]α (s′)

)} ∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣

≤ max
α∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ , (126)

where (i) holds by applying Lemma 1, and the last inequality can be verified by the fact that the maximum
operator is 1-Lipschitz.

To continue, recalling the definition of variance in (55) and using the Bernstein’s inequality, one has for
a fixed α ∈ [0, H] and (s,a) ∈ S ×A, with probability at least 1− δ,

∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ ≤

√
2 log(2

δ )

N

√
VarP 0

h,s,a
([V ]α) +

2H log( 2
δ )

3N

≤

√
2 log(2

δ )

N

√
VarP 0

h,s,a
(V ) +

2H log( 2
δ )

3N
, (127)

where the first inequality holds by the fact that ‖V ‖∞ ≤ H, and the last inequality can be easily verified by
noticing that VarP 0

h,s,a
([V ]α) ≤ VarP 0

h,s,a
(V ) for all α ∈ [0,maxs V (s)].
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Step 2: the union bound. Then to obtain the union bound, we first notice that the function∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ is 1-Lipschitz w.r.t. α for any V obeying 0 ≤ V (s) ≤ H. Therefore, we can

construct an ε1-net Nε1 for α over [0, H] with the size up to |Nε1 | ≤ 3H
ε1

(Vershynin, 2018). So applying
the uniform concentration argument combined with (127) yields that for all (α, s,a) ∈ Nε1 × S × A, with
probability at least 1− δ,

∣∣∣
(
P 0
h,s,a − P̂ 0

h,s,a

)
[V ]α

∣∣∣ ≤

√√√√2 log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)

N

√
VarP 0

h,s,a
(V ) +

2H log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)

3N
. (128)

Inserting the above fact back to (126), we arrive at: for all (s,a) ∈ S ×A,
∣∣∣PVi,h,s,aV − P̂Vi,h,s,aV

∣∣∣ ≤ max
α∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣

(i)

≤ sup
α∈Nε1

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣+ ε1

(ii)

≤

√√√√2 log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)

N

√
VarP 0

h,s,a
(V ) +

2 log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)
H

3N
+ ε1 (129)

(iii)

≤

√√√√2 log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)

N

√
VarP 0

h,s,a
(V ) +

log
(

2S
∏n
i=1 Ai|Nε1 |
δ

)
H

N

(iv)

≤ 2

√√√√ log
(

18S
∏n
i=1 AiN

δ

)

N

√
VarP 0

h,s,a
(V ) +

log
(

18S
∏n
i=1 AiN

δ

)
H

N
(130)

≤ 2

√√√√ log
(

18S
∏n
i=1 AiN

δ

)

N
‖V ‖∞ +

log
(

18S
∏n
i=1 AiN

δ

)
H

N

≤ 3

√√√√H2 log
(

18S
∏n
i=1 AiN

δ

)

N
(131)

where (i) arises from the fact that the solution α? = arg maxα∈[0,H]

∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ falls into the

ε1-ball centered around some point inside Nε1 and
∣∣∣P 0
h,s,a [V ]α − P̂ 0

h,s,a [V ]α

∣∣∣ is 1-Lipschitz w.r.t. α, (ii)

holds by (128), (iii) follows from taking ε1 =
log(

2S
∏n
i=1 Ai|Nε1 |

δ )H

3N , (iv) is verified by |Nε1 | ≤ 3H
ε1
≤ 9N , and

the last inequality is due to the fact ‖V ‖∞ ≤ H and letting N ≥ log(
18S

∏n
i=1 AiN

δ ).
Invoking the matrix form (see (53) and (54)) and applying the above result with V = V̂ π,σii,h+1 for a union

bound over all (h, i, s,a) ∈ [H]× [n]× S ×A, we complete the proof: with probability at least 1− δ,

∀(h, i) ∈ [H]× [n] : aπi,h =

∣∣∣∣P
π,V̂
i,h V̂

π,σi
i,h+1 − P̂

π,V̂

i,h V̂
π,σi
i,h+1

∣∣∣∣

=
∣∣∣Ππ

hP
π,V̂
i,h V̂ π,σii,h+1 −Ππ

hP̂
π,V̂
i,h V̂ π,σii,h+1

∣∣∣
(i)

≤ Ππ
h

∣∣∣Pπ,V̂i,h V̂ π,σii,h+1 − P̂
π,V̂
i,h V̂ π,σii,h+1

∣∣∣ (132)

≤ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N
Ππ
h

√
VarP 0

h
(V̂ πi,h+1) +

log(
18S

∏n
i=1 AinHN

δ )H

N
1

(ii)

≤ 2

√
log(

18S
∏n
i=1 AinHN

δ )

N

√
VarPπh (V̂ πi,h+1) +

log(
18S

∏n
i=1 AinHN

δ )H

N
1
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≤ 3

√
H2 log(

18S
∏n
i=1 AinHN

δ )

N
1, (133)

where (i) and (ii) hold by the Jensen’s inequality, Var(·) is defined in (56), and P 0
h , P

π
h are defined in (54).

B.3.4 Proof of Lemma 5

In this section, we want to take the accessible range of the robust value function V̂ π,σii,j+1 into consideration

when controlling
∑H
j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉
. Towards this, we introduce some auxiliary values and reward

functions as below. For any time step h ∈ [H] and the i-th agent:

• V̂ min
h := mins∈S V̂

π,σi
i,h (s): V̂ min

h denote the minimum value of all the entries in vector V̂ π,σii,h .

• V̂ ′h := V̂ π,σii,h − V̂ min
h 1: truncated value function.

• r̂min
i,h = rπi,h +

(
V̂ min
h+1 − V̂ min

h

)
1: truncated reward function.

With above notations, we introduce the following fact of V ′h:

V̂ ′h = V̂ π,σii,h − V̂ min
h 1

(i)
= rπi,h + P̂

π,V̂

i,h V̂
π,σi
i,h+1 − V̂ min

h 1

= rπi,h + Pπ,V̂i,h V̂
π,σi
i,h+1 +

(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1 − V̂ min

h 1

= rπi,h +
(
V̂ min
h+1 − V̂ min

h

)
1 + Pπ,V̂i,h V̂

′
h+1 +

(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1

= r̂min
i,h + Pπ,V̂i,h V̂

′
h+1 +

(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1, (134)

where (i) holds by the robust Bellman’s consistency equation in (62).
With the above fact in hand, we can verify that

Var
Pπ,V̂i,h

(V̂ π,σii,h+1)
(i)
= Var

Pπ,V̂i,h
(V̂ ′h+1) = Pπ,V̂i,h

(
V̂ ′h+1 ◦ V̂ ′h+1

)
−
(
Pπ,V̂i,h V̂

′
h+1

)
◦
(
Pπ,V̂i,h V̂

′
h+1

)

(ii)
= Pπ,V̂i,h

(
V̂ ′h+1 ◦ V̂ ′h+1

)
−
(
V̂ ′h − r̂min

i,h −
(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1

)◦2

= Pπ,V̂i,h

(
V̂ ′h+1 ◦ V̂ ′h+1

)
− V̂ ′h ◦ V̂ ′h + 2V̂ ′h ◦

(
r̂min
i,h +

(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1

)

−
(
r̂min
i,h +

(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1

)◦2

(iii)

≤ Pπ,V̂i,h

(
V̂ ′h+1 ◦ V̂ ′h+1

)
− V̂ ′h ◦ V̂ ′h + 2

∥∥V̂ ′h
∥∥
∞

(
1 +

∣∣∣
(
P̂
π,V̂

i,h − Pπ,V̂i,h
)
V̂ π,σii,h+1

∣∣∣
)

(135)

≤ Pπ,V̂i,h
(
V̂ ′h+1 ◦ V̂ ′h+1

)
− V̂ ′h ◦ V̂ ′h + 2

∥∥V̂ ′h
∥∥
∞1 + 6‖V ′h‖∞

√√√√H2 log
(

18S
∏n
i=1 AinHN

δ

)

N
1

(136)

holds with probability at least 1−δ, where (i) follows from the fact that Var
Pπ,V̂i,h

(V −b1) = Var
Pπ,V̂i,h

(V ) for any

value vector V ∈ RS and scalar b, (ii) holds by (134), (iii) arises from r̂min
i,h ≤ rπi,h ≤ 1 since V min

h+1 − V min
h ≤ 0

by definition, and the last inequality holds by (133).
Finally, combining (136) and the definition of djh in (77), the term of interest can be controlled as

H∑

j=h

〈
djh,VarPπ,V̂i,j

(V̂ π,σii,j+1)

〉
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=

H∑

j=h

(djh)>


P

π,V̂
i,j

(
V̂ ′j+1 ◦ V̂ ′j+1

)
− V̂ ′j ◦ V̂ ′j + 2‖V̂ ′j ‖∞1 + 6‖V̂ ′j ‖∞

√√√√H2 log
(

18S
∏n
i=1 AinHN

δ

)

N
1




(i)

≤
H∑

j=h

[
(djh)>

(
Pπ,V̂i,j

(
V̂ ′j+1 ◦ V̂ ′j+1

)
− V̂ ′j ◦ V̂ ′j

)]
+ 2H‖V̂ ′h‖∞ + 6H2‖V̂ ′h‖∞

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

=

H∑

j=h

[
(dj+1
h )>

(
V̂ ′j+1 ◦ V̂ ′j+1

)
− (djh)>

(
V̂ ′j ◦ V̂ ′j

)]
+ 2H‖V̂ ′h‖∞ + 6H2‖V̂ ′h‖∞

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

≤
∥∥dH+1

h

∥∥
1

∥∥∥V̂ ′H+1 ◦ V̂ ′H+1

∥∥∥
∞

+ 2H‖V̂ ′h‖∞ + 6H2‖V̂ ′h‖∞

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

≤ 3H‖V̂ ′h‖∞ + 6H2‖V̂ ′h‖∞

√√√√ log
(

18S
∏n
i=1 AinHN

δ

)

N

= 3H‖V̂ ′h‖∞


1 + 2H

√
log(

18S
∏n
i=1 AinHN

δ )

N


 , (137)

where (i) holds by the fact ‖V̂ ′h‖∞ ≥ ‖V̂ ′h+1‖∞ ≥ · · · ≥ ‖V̂ ′H‖∞ and basic calculus.

B.3.5 Proof of Lemma 6

We start with the proof about the empirical MGMGrob. To begin with, for any policy π and the i-th agent,
we define

∀h ∈ [H] : V span
i,h := V̂ π,σii,h − min

s′∈S
V̂ π,σii,h (s′)1, (138)

which leads to
∥∥∥V span

i,h

∥∥∥
∞
≤ min

{
1

σi
, H − h+ 1

}
. (139)

which holds by applying Lemma 3.
Armed with above notation and facts, considering any transition kernel P ′ ∈ RS and any P̃ ∈ RS obeying

P̃ ∈ Uσi(P ′), we have for all (i, h) ∈ [n]× [H]

∣∣VarP ′(V̂ π,σii,h )− VarP̃ (V̂ π,σii,h )
∣∣ =

∣∣VarP ′(V span
i,h )− VarP̃ (V span

i,h )
∣∣

≤
∥∥P̃ − P ′

∥∥
1

∥∥V span
i,h

∥∥
∞

≤ σi
(

min

{
1

σi
, H − h+ 1

})2

≤ min

{
1

σi
, H − h+ 1

}
. (140)

Similar facts can be verified for standard MGMG analogously.

B.3.6 Proof of Lemma 7

Analogous to Appendix B.3.4, we introduce some auxiliary values and reward functions to control

H∑

j=h

〈
wjh,VarPπ,Vi,j

(V π,σii,j+1)
〉

as below: for any time step h and the i-th agent
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• V min
h := mins∈S V

π,σi
i,h (s): V min

h denote the minimum value of all the entries in vector V π,σii,h .

• V ′h := V π,σii,h − V min
h 1: truncated value function.

• rmin
i,h = rπi,h +

(
V min
h+1 − V min

h

)
1: truncated reward function.

Then applying the robust Bellman’s consistency equation in (59) gives

V ′h = V π,σii,h − V min
h 1 = rπi,h + Pπ,Vi,h V

π,σi
i,h+1 − V min

h 1

= rπi,h +
(
V min
h+1 − V min

h

)
1 + Pπ,Vi,h V

′
h+1 = rmin

i,h + Pπ,Vi,h V
′
h+1. (141)

The above fact leads to

VarPπ,Vi,h
(V π,σii,h+1)

(i)
= VarPπ,Vi,h

(V ′h+1) = Pπ,Vi,h
(
V ′h+1 ◦ V ′h+1

)
−
(
Pπ,Vi,h V

′
h+1

)
◦
(
Pπ,Vi,h V

′
h+1

)

(ii)
= Pπ,Vi,h

(
V ′h+1 ◦ V ′h+1

)
−
(
V ′h − rmin

i,h

)◦2

= Pπ,Vi,h
(
V ′h+1 ◦ V ′h+1

)
− V ′h ◦ V ′h + 2V ′h ◦ rmin

i,h − rmin
i,h ◦ rmin

i,h

≤ Pπ,Vi,h
(
V ′h+1 ◦ V ′h+1

)
− V ′h ◦ V ′h + 2‖V ′h‖∞1 (142)

where (i) follows from the fact that VarPπ,Vi,h
(V − b1) = Var

Pπ,V̂i,h
(V ) for any value vector V ∈ RS and scalar

b, (ii) holds by (141), and the last inequality arises from rmin
i,h ≤ rπi,h ≤ 1 since V min

h+1 −V min
h ≤ 0 by definition.

Consequently, combining (142) and the definition of wjh in (85), we arrive at

H∑

j=h

〈
wjh,VarPπ,Vi,j

(
V π,σii,j+1

) 〉

=

H∑

j=h

(wjh)>
(
Pπ,Vi,j

(
V ′j+1 ◦ V ′j+1

)
− V ′j ◦ V ′j + 2‖V ′h‖∞1

)

(i)

≤
H∑

j=h

[
(wjh)>

(
Pπ,Vi,j

(
V ′j+1 ◦ V ′j+1

)
− V ′j ◦ V ′j

)]
+ 2H‖V ′h‖∞

=

H∑

j=h

[
(wj+1

h )>
(
V ′j+1 ◦ V ′j+1

)
− (wjh)>

(
V ′j ◦ V ′j

)]
+ 2H‖V ′h‖∞

≤ ‖wH+1
h ‖1

∥∥V ′H+1 ◦ V ′H+1

∥∥
∞ + 2H‖V ′h‖∞

≤ 3H‖V ′h‖∞, (143)

where (i) and the last inequality hold by the fact ‖V ′h‖∞ ≥ ‖V ′h+1‖∞ ≥ · · · ≥ ‖V ′H‖∞ and basic calculus.

C Proof of Theorem 2
In this section, the proof will focus on a special and simpler class of RMGs: distributionally robust Markov
decision processes (RMDPs) — single-agent RMGs.

Before proceeding, to keep self-contained, we first briefly introduce the definition of a RMDP in finite-
horizon episodic setting. Recall that a multi-agent general-sum robust Markov games (RMG) with TV
uncertainty set can be represented asMG =

{
S, {Ai}1≤i≤n, {Uσi(P 0)}1≤i≤n, r,H

}
. Resorting to the same

notations for RMGs, a finite-horizon episodic distributionally robust MDP (RMDP) can be represented as
Mrob =

(
S,A1,Uσ1(P 0), {r1,h}1≤h≤H , H

)
, i.e., let n = 1. Then we can show an essential fact between RMGs

and RMDPs that allow us to turn to RMDPs for proving Theorem 2. Without loss of generality, we consider
the class of RMGs with n players that obey |A1| ≥ max{|A2|, · · · , |Am|}. Moreover, let |A2| = |A3| = · · · =
|Am| = 1 for simplicity, which leaves those agents’ (i = 2, 3, · · · , n) choices of actions having no randomness
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or effects on the transitions or rewards for any agents. Consequently, it is clear that finding a robust
NE/CE/CCE of such RMGs degrades to finding the optimal policy of the first agent over a corresponding
RMDPMrob =

{
S,A1,Uσ1(P 0), {r1,h}1≤h≤H , H

}
.

Therefore, in this section, we turn to construct the lower bound for finding the optimal policy over RMDPs
instead, which directly imply a lower bound for finding equilibriums (robust NE/CE/CCE) of RMGs.

Before continuing, we make note of the following useful property about the KL divergence in Tsybakov
(2009, Lemma 2.7) which is useful in this section.

Lemma 8. For any p, q ∈ (0, 1), it holds that

KL(p ‖ q) ≤ (p− q)2

q(1− q) . (144)

C.1 Constructing hard robust MDP instances
The hard instances developed here are different from standard MDP since we need to consider that the
transition kernel can be perturbed in robust MDPs. This is the first lower bound for robust MDPs in
episodic setting.

Step 1: constructing hard robust MDP instances. To begin with, we first introduce an auxiliary
collection Θ ⊆ {0, 1}H , consisting of H-dimensional vectors. In addition, resorting to the Gilbert-Varshamov
lemma (Gilbert, 1952), we notice that there exists a set Θ ⊆ {0, 1}H such that:

for any θ, θ̃ ∈ Θ obeying θ 6= θ̃ : ‖θ − θ̃‖1 ≥
H

8
and |Θ| ≥ eH/8. (145)

Without loss of generality, we denote the first component of Θ as θbase and denote Θ? as Θ \ {θbase}.
With this in mind, we construct a set of RMDPs as below:

M(W,Θ) :=
{
Mθ

w =
(
S,A,Uσ(Pw,θ), {rh}Hh=1, H

)
| w ∈ W = {0, 1, · · · , SA− 1}, θ = [θh]1≤h≤H ∈ Θ?

}
,

(146)
where

S = {0, 1, . . . , S − 1}, and A = {0, 1, · · · , A− 1},

and σ will be introduced momentarily.
In words, the collection of M(W,Θ) consists of |W| = SA subsets, with each includes |Θ?| different

RMDPs associated with some w ∈ W. The state space of each RMDPMθ
w ∈ M(W,Θ) is denoted as SM,

includes two classes of states X = {xi | i ∈ W} and Y = {yi | i ∈ W}. Each state in X and Y only have two
possible actions AM = {0, 1}. So we have totally 2|W| = 2SA states and there is in total |SM||AM| = 4SA
state-action pairs.

We shall define the nominal transition kernels for M(W,Θ), where any state xi ∈ X only transits to
the corresponding yi ∈ Y or itself. For convenience, for any s = xi ∈ X , we denote the corresponding state
yi ∈ Y as sx→y.

Armed with above notations, we define a basic nominal transition kernel associated with θbase as below:
for all (h, s, a) ∈ [H]× SM ×AM,

P ?h (s′ | s, a) =





(p+ ∆)1(s′ = sx→y) + (1− p−∆)1(s′ = s) if s ∈ X , a = θbaseh

p1(s′ = sx→y) + (1− p)1(s′ = s) if s ∈ X , a = 1− θbaseh

1(s′ = s) if s ∈ Y.
(147)

In addition, for any RMDP Mθ
w ∈ M(W,Θ), the transition kernel Pw,θ = {Pw,θh }Hh=1 is specified as

follows: for any (s, a, s′, h) ∈ SM ×AM × SM × [H],

Pw,θh (s′ | s, a) =





p1(s′ = yw) + (1− p)1(s′ = s) if s = xw, a = θh
q1(s′ = yw) + (1− q)1(s′ = s) if s = xw, a = 1− θh
P ?h (s′ | s, a) otherwise

(148)
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Here, p and q are set according to

0 ≤ p ≤ p+ ∆ ≤ 1 and 0 ≤ q = p−∆ (149)

for some p and ∆ > 0 that will be introduced momentarily. In words, the transition kernel of each Mθ
w ∈

M(W,Θ) only differs slightly from the basic nominal transition kernel P ?h when s = xw, which makes all
the components withinM(W,Θ) closed to each other.

To continue, the reward function is defined as

∀(h, s, a) ∈ [H]× SM × {0, 1} : rh(s, a) =

{
1 if s ∈ Y
0 otherwise. (150)

Uncertainty set of the transition kernels. Denote the transition kernel vector as

∀(h, s, a) ∈ [H]× SM × {0, 1} : Pw,θh,s,a := Pw,θh (· | s, a) ∈ ∆(S). (151)

Recalling the uncertainty set defined in (8), we know Uσ(Pw,θ) represents:

Uσ(Pw,θ) := ⊗ Uσ(Pw,θh,s,a), Uσ(Pw,θh,s,a) :=
{
P̃w,θh,s,a ∈ ∆(S) :

1

2

∥∥P̃w,θh,s,a − P
w,θ
h,s,a

∥∥
1
≤ σ

}
, (152)

where ⊗ represents the Cartesian product over (h, s, a) ∈ [H]× SM ×AM.
For such TV uncertainty set, without loss of generality, let the uncertainty level to be σ ∈ (0, 1− c0] for

some 0 < c0 < 1. Then taking c2 ≤ 1
4 amd c1 := c0

2 ≤ 1
4 , p and ∆ are set as

p =

{
c2
H , if σ ≤ c2

2H(
1 + c1

H

)
σ otherwise

and ∆ ≤
{

c2
2H , if σ ≤ c2

2H
c1
H σ otherwise

(153)

Combined with H ≥ 2, it is easily verified that 0 ≤ p+ ∆ ≤ 1 as follows:

when σ >
c2
2H

:
(

1 +
c1
H

)
σ +

c1
H
σ ≤ 1− c0 +

2c1
H
σ ≤ 1− c0(H − 1)

H
< 1,

when σ ≤ c2
2H

:
3c2
2H
≤ 1. (154)

Then we introduce some useful notations and facts throughout this section. First, for any RMDPMθ
w ∈

M(W,Θ) and any (h, s, a, s′) ∈ [H] × SM × AM × SM, we denote the minimum probability of transiting
from (s, a) to s′ determined by any perturbed transition kernel Ph,s,a ∈ Uσ(Pw,θh,s,a) as

Pw,θh (s′ | s, a) := inf
Ph,s,a∈Uσ(Pw,θh,s,a)

Ph(s′ | s, a) = max{Ph(s′ | s, a)− σ, 0}, (155)

where the last equation can be easily verified by the definition of Uσ(·) in (152) and distributing the proba-
bility on s′ to other states.

Especially, for convenience, we denote the transition from each s ∈ X to the corresponding state sx→y ∈ Y
of anyMθ

w as below, which plays an important role in the analysis: for all h ∈ [H],

for xw : p
h

:= Pw,θh (yw |xw, θh) = p− σ, q
h

:= Pw,θh (yw |xw, 1− θh) = q − σ,
for s ∈ X \ {xw} : p′

h
:= Pw,θh (sx→y | s, θbaseh ) = p+ ∆− σ, q′

h
:= Pw,θh (sx→y | s, 1− θbaseh ) = p− σ,

(156)

which follows from the following fact that is clear from (153)

p+ ∆ ≥ p ≥ q = p−∆ ≥ max
{ c2

2H
,σ
}
. (157)

Then it is obvious that

p
1

= p
2

= · · · p
H
, q

1
= q

2
= · · · q

H
, p′

1
= p′

2
= · · · p′

H
, q′

1
= q′

2
= · · · q′

H
, (158)

which motivates us to abbreviate them consistently as p := p
1
, q := q

1
, p′ := p′

1
, and q′ := q′

1
later.
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Robust value functions and optimal policies. Now we are ready to characterize the corresponding
robust value functions and identify the optimal policies for RMDP instances. With abuse of notations, for
any RMDP Mθ

w ∈ M(W,Θ), we denote π?,w,θ = {π?,w,θh }Hh=1 as the optimal policy. In addition, at each
step h, we let V π,σ,w,θh (resp. V ?,σ,w,θh ) represent the robust value function of any policy π (resp. π?,w,θ)
with uncertainty level σ. Armed with these notations, the following lemma shows some essential properties
concerning the robust value functions and optimal policies; the proof is postponed to Appendix C.3.1.

Lemma 9. Consider anyMθ
w ∈M(W,Θ) and any policy π. Defining

xπ,w,θh = pπh(θh |xw) + qπh(1− θh |xw), (159)

it holds that

∀h ∈ [H] : V π,σ,w,θh (xw) = xπ,w,θh V π,σ,w,θh+1 (yw) + (1− xπ,w,θh )V π,σ,w,θh+1 (xw), (160a)

∀(s, h) ∈ Y × [H] : V π,σ,w,θh (s) = 1 + (1− σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw). (160b)

In addition, for all h ∈ [H], the optimal policy and the optimal value function obey

π?,w,θh (θh |xw) = π?,w,θh (θh | yw) = 1,

π?,w,θh (θbaseh | s) = π?,w,θh (θbaseh | sx→y) = 1, ∀s ∈ X \ {xw} (161a)

and

V ?,σ,w,θh (xw) = pV π,σ,w,θh+1 (yw) + (1− p)V π,σ,w,θh+1 (xw). (162)

C.2 Establishing the lower bound
Recall our goal: for any policy estimator π̂ computed based on the dataset with N samples, we plan to
control the quantity

max
(w,θ)∈W×Θ?

max
s∈X∪Y

{
V ?,σ,w,θ1 (s)− V π̂,σ,w,θ1 (s)

}
≥ max

(w,θ)∈W×Θ?
max
s∈X

{
V ?,σ,w,θ1 (s)− V π̂,σ,w,θ1 (s)

}
. (163)

Step 1: converting the goal to estimate (w, θ). Towards this, we make the following essential claim
which shall be verified in Appendix C.3.2: letting

ε ≤
{
c2
H , if σ ≤ c2

2H

1 otherwise
(164)

and

∆ = c5

{
ε
H2 , if σ ≤ c2

2H
σε
H otherwise

(165)

which satisfies (153), it leads to that for any policy π obeying

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
≥ H

8
, (166)

one has

V ?,σ,w,θ1 (xw)− V π̂,σ,w,θ1 (xw) > ε. (167)

Now we are ready to convert the estimation of an optimal policy to estimate (w, θ). Towards this, we
denote Pw,θ as the probability distribution when the RMDP isMθ

w for any (w, θ) ∈ W × Θ?. In addition,
we represent the subset ofM(W,Θ) excluding the ones associated with some w ∈ W as below:

G−w :=W \ {w} ×Θ?. (168)

47



Then, for any (w, θ) ∈ W ×Θ?, suppose there exists a policy π̂ that achieves

Pw,θ
{
V ?,σ,w,θ1 (xw)− V π̂,σ,w,θ1 (xw) ≤ ε

}
≥ 3

4
, (169)

which in view of (167) indicates that we necessarily have

Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
<
H

8

}
≥ 3

4
. (170)

Consequently, taking θ̃ = arg minθ∈Θ

∑H
h=1

∥∥π̂h(· |xw) − π?,w,θh (· |xw)
∥∥

1
, we are motivated to construct

the following estimate of (w, θ):

(
ŵ, θ̂

)
{

= (w, θ̃) if θ̃ ∈ Θ?

∈ G−w if θ̃ = Θ \Θ? = θbase.
(171)

Then let us focus on the first kind of scenarios in (171) when θ̃ ∈ Θ? so that we have the hope to estimate
(w, θ) correctly. Namely, if

∑H
h=1

∥∥π̂h(· |xw) − π?,w,θh (· |xw)
∥∥

1
< H

8 holds for some θ ∈ Θ?, then for any
θ′ ∈ Θ? obeying θ′ 6= θ, one has

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
′

h (· |xw)
∥∥

1
≥

H∑

h=1

∥∥π?,w,θh (· |xw)− π?,w,θ
′

h (· |xw)
∥∥

1
−

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1

>
H

4
− H

8
=
H

8
, (172)

where the first inequality holds by the triangle inequality, and the last inequality follows from the assumption∑H
h=1

∥∥π̂h(· |xw)−π?,w,θh (· |xw)
∥∥

1
< H

8 and the separation property of θ ∈ Θ (see (145)). Similarly, It shows
that we have (ŵ, θ̂) = (w, θ) if

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
<
H

8
<

H∑

h=1

∥∥π̂h(· |xw)− π?,w,θ
′

h (· |xw)
∥∥

1
(173)

holds for all (w′, θ′) ∈ W × Θ that (w′, θ′) 6= (w, θ). It is clear that the above equation can be directly
achieved when

∑H
h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
< H

8 , which gives

Pw,θ
[
(ŵ, θ̂) = (w, θ)

]
≥ Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
<
H

8

}
≥ 3

4
. (174)

Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding,
we discuss the data generation choices of the dataset D. Recall that each RMDP inside the set M(W,Θ)
under testing has two classes of states X and Y, with each has |W| = SA components. Noticing that
accordingly, M(W,Θ) consists of |W| subset, with each {Mθ

w}θ∈Θ? constructed symmetrically around one
pair of state (xw, yw) ∈ X × Y, respectively. Therefore, at each time step h, it is clear that the dataset are
supposed to be generated uniformly by the transition kernels on each pair of states (xw, yw) ∈ X × Y to
maximize the information gain. Namely, the dataset D has in total N

|W|H = N
SAH samples for the two states

(xw, yw) ∈ X × Y at each time step h ∈ [H].
Now we turn to the hypothesis testing problem over (w, θ) ∈ W ×Θ?. We shall develop the information

theoretical lower bound for the probability of error. In particular, we consider the minimax probability of
error defined as follows:

pe := inf
(ŵ,θ̂)

max
(w,θ)∈W×Θ?

{
Pw,θ

(
(ŵ, θ̂) 6= (w, θ)

)}
, (175)

where the infimum is taken over all possible tests (ŵ, θ̂) constructed from the dataset.
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To continue, armed with the dataset D with N samples generated independently, we denote µw,θ

(resp. µw,θh (s, a)) as the distribution vector (resp. distribution) of each sample tuple (sh, ah, s
′
h) at time

step h under the nominal transition kernel Pw,θ associated with Mθ
w. With this in mind, combined with

Fano’s inequality from Tsybakov (2009, Theorem 2.2) and the additivity of the KL divergence (cf. Tsybakov
(2009, Page 85)), we obtain

pe ≥ 1−N
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ)6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)
+ log 2

log |W||Θ?|
(i)

≥ 1− 8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ) 6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)
− log 2

H

(ii)

≥ 1

2
− 8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ)6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)
(176)

where (i) and (ii) holds by |W||Θ?| ≥ 2(eH/8 − 1) ≥ eH/8 as long as H ≥ 16 log 2.
To continue, applying the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) with the dataset

D generated independently yields:

KL
(
µw,θ |µw,θ

)
=

H∑

h=1

E
(s,a)∼µw,θh (s,a)

[
KL
(
Pw,θh (· | s, a) ‖ P w̃,θ̃h (· | s, a)

)]

(i)
=

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}
µw,θh (s, a)

[
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)]

≤ 1

SAH

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}

[
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)]
, (177)

where (i) follows from the fact Pw,θh (· | , s, a) and P w̃,θ̃h (· | , s, a) only differs from each other on state xw, xw̃ (see
the definitions in (147)), and the last inequality holds by noticing µw,θh (s, a) ≤∑a∈{0,1} µ

w,θ
h (s, a) = 1

SAH .
Consequently, now we turn to focus on terms in (177) in different cases of the uncertainty level σ.

• When 0 < σ ≤ c2
2H . When w = w̃, it is clear that

∑

s∈{xw,xw̃},a∈{0,1}
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)
= 0 (178)

as long as θh = θ̃h. Then if θh 6= θ̃h, without loss of generality, we suppose θh = 0 and θ̃h = 1, which
indicates

Pw,θh (0 |xw, 0) = 1− p and Pw,θ̃h (0 |xw, 0) = 1− q. (179)

Applying Lemma 8 gives

KL
(
Pw,θh (0 |xw, 0) ‖ Pw,θ̃h (0 |xw, 0)

)
≤ (p− q)2

q(1− q)
(i)
=

∆2

q(1− q)
(ii)
=

(c5)2ε2

H4q(1− q) ≤
4(c5)2ε2

c2H3
, (180)

where (i) and (ii) follows from the definitions in (149) or (165), and the last inequality arises from
q = p−∆ ≥ c2

2H (see (153)) and 1− q ≥ 1− p ≥ 1− c2
H ≥ 1

2 .

The same bound can be established for KL
(
Pw,θh (0 |xw, 1) ‖ Pw,θ̃h (0 |xw, 1)

)
. In addition, it is easily

verified that when w 6= w̃ and θh 6= θbaseh (resp. θ̃h 6= θbaseh ), the same bound can be developed for
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KL
(
Pw,θh (0 |xw, 0) ‖ P w̃,θ̃h (0 |xw, 0)

)
and KL

(
Pw,θh (0 |xw, 1) ‖ P w̃,θ̃h (0 |xw, 1)

)
(resp. KL

(
Pw,θh (0 |xw̃, 0) ‖

P w̃,θ̃h (0 |xw̃, 0)
)
and KL

(
Pw,θh (0 |xw̃, 1) ‖ P w̃,θ̃h (0 |xw̃, 1)

)
).

Summing up the results with the fact in (180), we arrive at

∑

s∈{xw,xw̃},a∈{0,1}
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)
≤ 16(c5)2ε2

c2H3
. (181)

• When c2
2H < σ ≤ 1 − c0. Following the same pipeline, it then boils down to control the main term as

below:

KL
(
Pw,θh (0 |xw, 0) ‖ Pw,θ̃h (0 |xw, 0)

)
≤ (p− q)2

q(1− q)
(i)
=

∆2

q(1− q)
(ii)
=

(c5)2σ2ε2

H2q(1− q) ≤
2(c5)2σε2

c0H2
, (182)

where (i) and (ii) follows from the definitions in (149) or (165). Here, the last inequality arises from

1− q ≥ 1− p = 1− (1 +
c1
H

)σ
(i)

≥ c0 −
c1
H

(ii)

≥ c0
2

p ≥ q = p−∆
(iii)

≥ σ, (183)

where (ii) holds by the definition of c1 = c0
2 , and (iii) follows from (157). Consequently, we arrive at

∑

s∈{xw,xw̃},a∈{0,1}
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)
≤ 8(c5)2σε2

c0H2
. (184)

Summing up (181) and (184), we achieve for any (w, θ), (w̃, θ̃) ∈ W × Θ? with (w, θ) 6= (w̃, θ̃) and any
time step h ∈ [H]

∑

s∈{xw,xw̃},a∈{0,1}
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)
≤ 16(c5)2ε2

c0c2H2
max{σ, 1/H}. (185)

Plugging (185) back to (177) and then (176) leads to the following fact:

pe ≥
1

2
− 8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ)6=(w̃,θ̃)
KL
(
µw,θ |µw,θ

)

≥ 1

2
− 8N

H
max

(w,θ),(w̃,θ̃)∈W×Θ?,(w,θ)6=(w̃,θ̃)

1

SAH

H∑

h=1

∑

s∈{xw,xw̃},a∈{0,1}

[
KL
(
Pw,θh (· | , s, a) ‖ P w̃,θ̃h (· | , s, a)

)]

≥ 1

2
− 128N(c5)2ε2

c0c2SAH3
max{σ, 1/H} ≥ 1

4
(186)

as long as the sample size N of the dataset is selected as

N ≤ c0c2SAH
3 min{1/σ,H}

512(c5)2ε2
. (187)

Step 3: summing up the results together. We suppose that there exists an estimator π̂ such that

max
(w,θ)∈W×Θ?

Pw,θ
[

max
s∈X∪Y

{
V ?,σ,w,θ1 (s)− V π̂,σ,w,θ1 (s)

}
≥ ε
]
<

1

4
, (188)
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then according to (163), we necessarily have

∀w ∈ W : max
θ∈Θ?

Pw,θ
[{
V ?,σ,w,θ1 (xw)− V π̂,σ,w,θ1 (xw)

}
≥ ε
]
<

1

4
. (189)

To meet (189) for any w ∈ W, we require

∀θ ∈ Θ? : Pw,θ
{
V ?,σ,w,θ1 (xw)− V π̂,σ,w,θ1 (xw) < ε

}
≥ 3

4
, (190)

which in view of (167) indicates that we necessarily have

∀θ ∈ Θ? : Pw,θ

{
H∑

h=1

∥∥π̂h(· |xw)− π?,w,θh (· |xw)
∥∥

1
<
H

8

}
≥ 3

4
. (191)

As a consequence, (174) indicates

∀θ ∈ Θ? : Pw,θ
[
(ŵ, θ̂) = (w, θ)

]
≥ 3

4
. (192)

Applying the fact in (192) to all w ∈ W leads to one necessarily has

∀(w, θ) ∈ W ×Θ? : Pw,θ
[
(ŵ, θ̂) = (w, θ)

]
≥ 3

4
(193)

to achieve (188).
However, this would contract with (186) as long as the sample size condition in (187) is satisfied. Thus, if

the sample size obeys the condition (187), we can’t achieve an estimate π̂ that satisfies (188), which complete
the proof.

C.3 Proof of the auxiliary facts
C.3.1 Proof of Lemma 9

As all RMDPs withinM(W,Θ) are constructed analogously over each w ∈ W and θ ∈ Θ?, in this section,
we shall focus on one specific RMDPMθ

w ∈ M(W,Θ), whose facts can be carried on for all other RMDPs
inM(W,Θ) directly.

Step 1: ordering the robust value function over different states. Before proceeding, we introduce
several facts and notations that are useful throughout this section. First, we observe that for anyMθ

w and
any policy π: at the final step H + 1,

∀s ∈ X ∪ Y : V π,σ,w,θH+1 (s) = 0. (194)

Then for the step H, we can easily verified that

∀s ∈ Y : V π,σ,w,θH (s) = Ea∼πH(· | s)

[
rH(s, a) + inf

P∈Uσ(Pw,θH,s,a)
PV π,σ,w,θH+1

]
= 1

∀s ∈ X : V π,σ,w,θH (s) = Ea∼πH(· | s)

[
rH(s, a) + inf

P∈Uσ(Pw,θH,s,a)
PV π,σ,w,θH+1

]
= 0, (195)

which holds by (194) and the definition of the reward function (see (150)). The above fact directly indicates
that

∀(s, s′) ∈ X \ {xw} × Y : min
s̃∈S

V π,σ,w,θH (s̃) = V π,σ,w,θH (xw) ≤ V π,σ,w,θH (s) < V π,σ,w,θH (s′),

∀(s, s′) ∈ Y × Y : V π,σ,w,θH (s) = V π,σ,w,θH (s′). (196)
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Then we introduce a claim which we will proof by induction in a moment as below:

∀(h, s, s′) ∈ [H]×X \ {xw} × Y : V π,σ,w,θh (xw) ≤ V π,σ,w,θh (s) < V π,σ,w,θh (s′)

∀(s, s′) ∈ Y × Y : V π,σ,w,θh (s) = V π,σ,w,θh (s′). (197)

Note that the base case when the time step is H + 1 is verified in (196). Assuming that the following fact
at time step h+ 1 holds

∀(s, s′) ∈ X \ {xw} × Y : min
s̃∈S

V π,σ,w,θh+1 (s̃) = V π,σ,w,θh+1 (xw) ≤ V π,σ,w,θh+1 (s) < V π,σ,w,θh+1 (s′),

∀(s, s′) ∈ Y × Y : V π,σ,w,θh+1 (s) = V π,σ,w,θh+1 (s′), (198)

the rest of the proof focuses on proving the same property for time step h. For RMDPMθ
w ∈M(W,Θ) and

any policy π, we characterize the robust value function of different states separately:

• For state s ∈ Y. We observe that for any s ∈ Y,

V π,σ,w,θh (s) = Ea∼πh(· | s)

[
rh(s, a) + inf

P∈Uσ(Pw,θh,s,a)
PV π,σ,w,θh+1

]

(i)
= 1 + Ea∼πh(· | s)

[
Pw,θh (s | s, a)V π,σ,w,θh+1 (s)

]
+ σV π,σ,w,θh+1 (xw)

= 1 + (1− σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw), (199)

where (i) holds by rh(s, a) = 1 for all s ∈ Y (see (150)), the fact that mins̃∈S V
π,σ,w,θ
h+1 (s̃) = V π,σ,w,θh+1 (xw)

induced by the induction assumption (cf. (198)) and the definition of Pw,θh (s | s, a) in (155), and the last
equality follows from Pw,θ(s | s, a) = 1 for all (s, a) ∈ Y ×AM. Resorting to the induction assumption
in (198), we have

∀(s, s′) ∈ Y × Y : V π,σ,w,θh (s) = V π,σ,w,θh (s′). (200)

• For state xw. First, the robust value function at state xw obeys

V π,σ,w,θh (xw)

= Ea∼πh(· | xw)

[
rh(xw, a) + inf

P∈Uσ(Pw,θh,xw,a
)
PV π,σ,w,θh+1

]

(i)
= 0 + πh(θh |xw) inf

P∈Uσ(Pw,θh,xw,θh
)
PV π,σ,w,θh+1 + πh(1− θh |xw) inf

P∈Uσ(Pw,θh,xw,1−θh
)
PV π,σ,w,θh+1

(ii)
= πh(θh |xw)

[
pV π,σ,w,θh+1 (yw) +

(
1− p

)
V π,σ,w,θh+1 (xw)

]

+ πh(1− θh |xw)
[
qV π,σ,w,θh+1 (yw) +

(
1− q

)
V π,σ,w,θh+1 (xw)

]

(iii)
= xπ,w,θh V π,σ,w,θh+1 (yw) + (1− xπ,w,θh )V π,σ,w,θh+1 (xw) (201)

≤ (1− σ)V π,σ,w,θh+1 (yw) + σV π,σ,w,θh+1 (xw). (202)

where (i) uses the definition of the robust value function and the reward function in (150), (ii) uses the
induction assumption in (198) so that the minimum is attained by picking the choice specified in (156)
to absorb probability mass to state xw, and (iii) holds by plugging in the definition (159) of xπ,w,θh

in (iii). Finally, the last inequality follows from the fact that function f(x) := xV π,σ,w,θh+1 (yw) + (1 −
x)V π,σ,w,θh+1 (xw) is monotonically increasing with x since V π,σ,w,θh+1 (yw) > V π,σ,w,θh+1 (xw) (see the induction
assumption (198)), and the fact xπ,w,θh ≤ 1− σ.
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• For state s ∈ X \ {xw}. Then we consider other states s ∈ X \ {xw}. Before proceeding, analogous to
(159), we define

xsbase = (p+ ∆)πh(θbaseh | s) + (q + ∆)πh(1− θbaseh | s). (203)

Recall that the nominal transition kernel at any state s ∈ X \ {xw} are the same {P ?h,s,a}h∈[H] for all
a ∈ AW associated with the basic θbase ∈ Θ (see the definitions of the transition kernels in (147) and
(148)). Consequently, for any s ∈ X \ {xw}, following the same argument pipeline of (202), we arrive
at

V π,σ,w,θh (s) = πh(θbaseh | s)
[
(p+ ∆)V π,σ,w,θh+1 (sx→y) + (1− p−∆)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw)

]

+ πh(1− θbaseh | s)
[
(q + ∆)V π,σ,w,θh+1 (sx→y) + (1− p)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw)

]

= xsbaseV
π,σ,w,θ
h+1 (sx→y) + (1− xsbase − σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw) (204)

(i)
= xsbaseV

π,σ,w,θ
h+1 (yw) + (1− xsbase − σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw) (205)

< (1− σ)V π,σ,w,θh+1 (sx→y) + σV π,σ,w,θh+1 (s), (206)

where (i) holds by V π,σ,w,θh+1 (s) = V π,σ,w,θh+1 (s′) for any two states s, s′ ∈ Y (see (202)), and the last
inequality holds by V π,σ,w,θh+1 (s) < V π,σ,w,θh+1 (sx→y) induced by the induction assumption in (198).

In addition, to compare the robust value function V π,σ,w,θh (xw) to that of other states s ∈ X \ {xw},
we recall the definitions in (159) and then introduce the following fact

xπ,w,θh = pπh(θh |xw) + qπh(1− θh |xw)

≤ p ≤ (p+ ∆)πh(θbaseh | s) + pπh(1− θbaseh | s)
= (p+ ∆)πh(θbaseh | s) + (q + ∆)πh(1− θbaseh | s) = xsbase, (207)

which comes from the fact p ≥ q and the facts in (156) and (157).

With this in mind, continuing from (201), we arrive at that for any s ∈ X :

V π,σ,w,θh (xw) = xπ,w,θh V π,σ,w,θh+1 (yw) + (1− xπ,w,θh )V π,σ,w,θh+1 (xw)

≤ xsbaseV π,σ,w,θh+1 (yw) + (1− xsbase)V π,σ,w,θh+1 (xw)

≤ xsbaseV π,σ,w,θh+1 (yw) + (1− xsbase − σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw)

= V π,σ,w,θh (s) (208)

where the last equality holds by (205).

Summing up (208), then (199), and (206), we verify the induction property at time step h as below

∀(s, s′) ∈ X \ {xw} × Y : V π,σ,w,θh (xw) ≤ V π,σ,w,θh (s) < V π,σ,w,θh (s′). (209)

Combined above results with (200), we confirm the claim in (197).

Step 2: deriving the optimal policy and optimal robust value function. We shall characterize the
optimal policy and corresponding optimal robust value function for different states separately:

• For states in X . Recall (201)

V π,σ,w,θh (xw) = xπ,w,θh V π,σ,w,θh+1 (yw) + (1− xπ,w,θh )V π,σ,w,θh+1 (xw) (210)

and the fact V π,σ,w,θh+1 (yw) > V π,σ,w,θh+1 (xw) in (197). We observe that (210) is monotonicity increasing
with respect to xπ,w,θh , and xπ,w,θh is also increasing in πh(θh |xw) (refer to the fact p ≥ q since p ≥ q;
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see (149) and (156)). Consequently, the optimal policy and optimal robust value function in state xw
thus obey

∀h ∈ [H] : π?,w,θh (θh |xw) = 1

V ?,σ,w,θh (xw) = pV ?,σ,w,θh+1 (yw) +
[
1− p

]
V ?,σ,w,θh+1 (xw). (211)

Similarly, for any state s ∈ X \ {xw}, recalling (205) yields

V π,σ,w,θh (s) = xsbaseV
π,σ,w,θ
h+1 (yw) + (1− xsbase − σ)V π,σ,w,θh+1 (s) + σV π,σ,w,θh+1 (xw), (212)

which indicates V π,σ,w,θh (s) achieves the maximum when xsbase = (p + ∆)πh(θbaseh | s) + (q + ∆)πh(1 −
θbaseh | s) attain the maximum. Therefore, the optimal policy in state s satisfies

π?,w,θh (θbaseh | s) = 1. (213)

• For states s ∈ Y. Recall the transitions in (147) and (148). Considering that the action does not
influence the state transition for all states s ∈ Y, without loss of generality, we choose the robust
optimal policy obeying

∀s ∈ Y : π?,w,θh (θh | s) = 1. (214)

C.3.2 Proof of claim (167)

Recalling (160a) and (162), we first consider a more general form

V ?,σ,w,θh (xw)− V π,σ,w,θh (xw)

= pV ?,σ,w,θh+1 (yw) + (1− p)V ?,σ,w,θh+1 (xw)−
(
xπ,w,θh V π,σ,w,θh+1 (yw) +

[
1− xπ,w,θh

]
V π,σ,w,θh+1 (xw)

)

=
(
p− xπ,w,θh

)
V ?,σ,w,θh+1 (yw) + xπ,w,θh

(
V ?,σ,w,θh+1 (yw)− V π,σ,w,θh+1 (yw)

)

+ (1− p)
(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)
−
(
p− xπ,w,θh

)
V π,σ,w,θh+1 (xw)

= xπ,w,θh

(
V ?,σ,w,θh+1 (yw)− V π,σ,w,θh+1 (yw)

)
+ (1− p)

(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)

+
(
p− xπ,w,θh

)(
V ?,σ,w,θh+1 (yw)− V ?,σ,w,θh+1 (xw)

)

≥ (1− p)
(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)
+
(
p− xπ,w,θh

)(
V ?,σ,w,θh+1 (yw)− V ?,σ,w,θh+1 (xw)

)

≥ (1− p)
(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)

+
1

2
(p− q)

∥∥π?,w,θh (· |xw)− πh(· |xw)
∥∥

1

(
V ?,σ,w,θh+1 (yw)− V ?,σ,w,θh+1 (xw)

)
(215)

where the last inequality holds by applying (156) and deriving as follows:

p− xπ,w,θh =
(
p− q

)(
1− πh(θh |xw)

)
= (p− q)

(
1− πh(θh |xw)

)

=
1

2
(p− q)

(
1− πh(θh |xw) + πh(1− θh |xw)

)
=

1

2
(p− q)

∥∥π?,w,θh (· |xw)− πh(· |xw)
∥∥

1
. (216)

To further control (215), applying Lemma 9 yields

V ?,σ,w,θh (yw)− V ?,σ,w,θh (xw)

= 1 + (1− σ)V ?,σ,w,θh+1 (yw) + σV ?,σ,w,θh+1 (xw)−
(
pV ?,σ,w,θh+1 (yw) + (1− p)V ?,σ,w,θh+1 (xw)

)

= 1 + (1− p− σ)
(
V ?,σ,w,θh+1 (yw)− V ?,σ,w,θh+1 (xw)

)
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= 1 + (1− p)
(
V ?,σ,w,θh+1 (yw)− V ?,σ,w,θh+1 (xw)

)

= · · · =
H−h∑

j=0

(1− p)j , (217)

where the penultimate equality holds by (156). Then, we consider two cases with respect to the uncertainty
level σ to control (217), respectively:

• When 0 < σ ≤ c2
2H . Recall p =

{
c2
H , if σ ≤ c2

2H

1 + c1
H σ otherwise

. In this case, applying (217), we have

V ?,σ,w,θh (yw)− V ?,σ,w,θh (xw)

=

H−h∑

j=0

(1− p)j ≥
H−h∑

j=0

(
1− c2

H

)j
=

1−
(
1− c2

H

)H−h+1

c2/H
≥ 2c2(H − h+ 1)

3
(218)

Here, the final inequality holds by observing

(
1− c2

H

)H−h+1

≤ exp

(
−c2(H − h+ 1)

H

)
≤ 1− 2c2(H − h+ 1)

3H
(219)

where the first inequality holds by noticing c2 < 0.5 and then 1−x ≤ exp(−x), and the last inequality
holds by exp(−x) ≤ 1− 2x

3 for any 0 ≤ x ≤ 1/2.

Plugging above fact in (218) back to (215), we arrive at

V ?,σ,w,θh (xw)− V π,σ,w,θh (xw)

≥ (1− p)
(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)

+
1

2
(p− q)

∥∥π?,w,θh (· |xw)− πh(· |xw)
∥∥

1

2c2(H − h+ 1)

3
. (220)

Then invoking the assumption

H∑

h=1

∥∥πh(· |xw)− π?,w,θh (· |xw)
∥∥

1
≥ H

8
(221)

in (166) and applying (220) recursively for h = 1, 2, · · · , H yields

V ?,σ,w,θ1 (xw)− V π,σ,w,θ1 (xw) ≥ c2
3

H∑

h=1

(1− p)h−1(p− q)(H − h+ 1)
∥∥π?,w,θh (· |xw)− πh(· |xw)

∥∥
1

(i)

≥ c2
3

H∑

h=1

(1− c2
H

)h−1(p− q)(H − h+ 1)
∥∥π?,w,θh (· |xw)− πh(· |xw)

∥∥
1

(ii)

≥ c2
6

H∑

h=1

(p− q)(H − h+ 1)
∥∥π?,w,θh (· |xw)− πh(· |xw)

∥∥
1

(iii)
=

c2∆

6

H∑

h=1

h
∥∥π?,w,θH−h+1(· |xw)− πH−h+1(· |xw)

∥∥
1

(iv)

≥ c2∆

6

bH/16c∑

h=1

2h ≥ c2∆

6
bH/16c (bH/16c+ 1) , (222)
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where (i) follows from 1− p ≥ 1− p = 1− c2
H , and (ii) holds by

∀h ∈ [H] : (1− c2
H

)h−1 ≥ (1− c2
H

)H ≥ 1

2
(223)

as long as c2 ≤ 1
2 . Here, (iii) arises from the definition of p, q in (149); (iv) can be verified by the fact

that for any series 0 ≤ x1, x2, · · · , xH ≤ xmax that obeys
∑H
h=1 xh ≥ y, one has

H∑

h=1

xhh ≥
bxmax/yc∑

h=1

xmaxh, (224)

and taking xh =
∥∥πH−h+1(· |xw)− π?,w,θH−h+1(· |xw)

∥∥
1
≤ 2 = xmax and y = H

8 .

Consequently, observed from (222), we have

V ?,σ,w,θ1 (xw)− V π,σ,w,θ1 (xw) ≥ c2∆

6
bH/16c (bH/16c+ 1) ≥ c3∆H2 > ε (225)

holds for some small enough constant c3 and letting ∆ = ε
c3H2 .

• When c2
2H < σ ≤ 1− c0. Similarly, recalling p =

{
c2
H , if σ ≤ c2

2H(
1 + c1

H

)
σ otherwise

and invoking (217) gives

V ?,σ,w,θh (yw)− V ?,σ,w,θh (xw)

=

H−h∑

j=0

(1− p)j =

H−h∑

j=0

(
1−

(
1 +

c1
H

)
σ
)j

≥ 1−
(
1− (1 + c1

H )σ
)H−h+1

(1 + c1
H )σ

≥ c2(H − h+ 1)

3σH
, (226)

where the final inequality holds by observing
(

1−
(

1 +
c1
H

)
σ
)H−h+1

≤ exp
(
−
(

1 +
c1
H

)
σ(H − h+ 1)

)

(i)

≤ exp
(
− c2

2H

(
1 +

c1
H

)
(H − h+ 1)

)
≤ 1−

(
1 +

c1
H

) c2(H − h+ 1)

3H
. (227)

Here, (i) holds by observing c2
2H < σ, and the last inequality holds by

(
1 + c1

H

)
≤ 2, c2 ≤ 0.5, and the

fact exp(−x) ≤ 1− 2x
3 for any 0 ≤ x ≤ 1/2.

Plugging above fact in (226) back to (215) gives

V ?,σ,w,θh (xw)− V π,σ,w,θh (xw)

≥ (1− p)
(
V ?,σ,w,θh+1 (xw)− V π,σ,w,θh+1 (xw)

)

+
1

2
(p− q)

∥∥π?,w,θh (· |xw)− πh(· |xw)
∥∥

1

c2(H − h+ 1)

3σH
. (228)

Following the same routine to achieve (222), applying (228) recursively for h = 1, 2, · · · , H gives

V ?,σ,w,θ1 (xw)− V π,σ,w,θ1 (xw) ≥
H∑

h=1

(1− p)h−1(p− q)c2(H − h+ 1)

6σH

∥∥π?,w,θh (· |xw)− πh(· |xw)
∥∥

1

(i)
=
c2(p− q)

6σH

H∑

h=1

(1− c1
H

)h−1(H − h+ 1)
∥∥π?,w,θh (· |xw)− πh(· |xw)

∥∥
1
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(ii)

≥ c2∆

12σH
bH/16c (bH/16c+ 1) (229)

where (i) follows from 1− p = 1− (p− σ) = 1− c1
H σ, and (ii) holds by letting c1 ≤ 1

2 and following the
same routine of (222).

Consequently, (229) yields

V ?,σ,w,θ1 (xw)− V π,σ,w,θ1 (xw) ≥ c2∆

12σH
bH/16c (bH/16c+ 1) ≥ c4∆H

σ
> ε (230)

holds for some small enough constant c4 and letting ∆ = σε
c4H

.
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