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High-dimensional Streaming Data

Each time snapshot a data vector x; € R™ is generated, with n large.

Total Number of Ratings per Movie

Numberof Ratings

Network coordinator
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Wireless health monitoring: Internet monitoring: Netflix Ratings:
transmission loss and limited measurements and incomplete (and skewed)
power-hungry sensors massive data ratings

e Need to learn and track structures of minimally observed data streams.

Jovanov, Emil, et al. "A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation.”
Journal of NeuroEngineering and rehabilitation 2.1 (2005): 6.
Netflix statistics source: http://www.hackedexistence.com/project-netflix.html
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Challenges in Modern Data Acquisition

Data generation at unprecedented rate: data samples are

e not observable due to privacy or security constraints;

e distributed at multiple locations;

e online generated on the fly and can only access once.

Limited processing power at sensor platforms:

e time-sensitive: impossible to obtain a complete snapshot of the system;
e storage-limited: cannot store the whole data set;

e power-hungry: minimize the number of observations.

@lprecedented Data Rate and VolumB / Limited Power and Storage \
PR = ey
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Covariance Sketching

Key Observation: the covariance structure can be recovered without measuring
the whole data stream.

=)
)
)

Approach: distributed data sketching and aggregation to recover the covariance
structure or principal components.

e access each data sample via linear or quadratic (energy) sketches;

e aggregate the sketches into linear observations of the covariance matrix.
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Quadratic Sketching for Covariance Estimation

Consider a data stream possible distributively observed at m sensors:

G R N - T —— €Ty
ficep, S oo = ©BE B BEE BRI || ...
i
Quadratic Sketching: For each sensor i =1,...,m;:

e randomly select a sketching vector a; € R™ with i.i.d. sub-Gaussian entries;

o Sketch an arbitrary substream indexed by {¢:}1 | with an energy measurement

2
‘(ai,a}@-) and aggregate the average energy measurement:

1T
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T
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Quadratic Sketching for Covariance Estimation

e For each sketch:

Yi,T = %é ‘(ai, :134) 2 %yi,T—l +% <a7;, weg)
—am) C—ar—1/ [}
il”i( ' 11) p— %i} i 0 —

T
Yi,r > a; 2a,;
yields a linear measurement of X!

e All sketches can be obtained in a fully distributed manner.

2
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Covariance Estimation with Rank-One Measurements

e Quadratic Measurement Model: ;

T T
Vi T = Q5 27a; = a; Xa; +1n;,

where 1; = al (27 - X)a; is the additive noise.

e More generally, we assume the following measurement model:

T . .
Zi=a; Xa;+n;, t=1,...,m;
or more concisely,
z=AX)+n.
e The measurements are quadratic in a; and linear in the rank-one matrix
a;al’;
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Sampling Model

We need some additional assumptions on the sampling model:

e sub-Gaussian i.i.d. sketching vectors: each a; is i.id. copies of a =
(a1, as,...,a,]" satisfying:

E[a;]=0, E[a?]=1, and py4:=Eaf>1.

e noise model: deterministically bounded #;-norm noise:

Inlli<e
where € is known a priori.

While we can solve for ¥ via least-squares estimation if m > n? (the size of
3}), we can greatly reduce the number of m by exploiting the low-dimensional
structure of ..
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Geometry of Covariance Structures

Many high-dimensional data lie in a low-dimensional subspace, resulting in a
low-rank covariance matrix:

e [Low-Rankness: the covariance matrix is low-rank, which occurs when a small
number of components accounts for most of the variability in the data.

e Stationary Low-Rankness: the covariance matrix is simultaneously Toeplitz
and low rank, which has many applications in array signal processing.

low-rank Toeplitz low-rank
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Low-Rank Covariance Estimation via Convex Relaxation

e \We would like to seek the covariance matrix satisfying the observations with
the minimal rank:

3 = argmin rank(X) st. |z-A(Z)|i <e.
>0

e However this is non-convex and NP-hard. Therefore, we replace it by the
trace minimization, which is the tightest convex relaxation with respect to
the rank function, over all matrices compatible with the measurements:

> =argmin Tr(2) st ||z-AZ)|i<e.
3:>0

e Additionally, if X2 is Toeplitz, we add the additional structural constraint:

3 = argmin Tr(X) st ||z-A(Z)|2<e and X is Toeplitz.
>0

Our theoretical results considered £9 noise for Toeplitz covariance matrix recovery.
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Near-Optimal Covariance Estimation

Theorem 1 (Chen, Chi and Goldsmith). Consider the sub-Gaussian sampling
model, then with probability exceeding 1—exp(—cim), the solution X satisfies

A DIEEDIN
HE—EHFS Clu H* + Cgi ,
o _m

-~

due to imperfect structure due to moise

where 23, 1s the best rank-r approximation of X, provided that m > conr ,
where cg, c1, C1 and Cy are universal constants.

—1

= information theoretic limit I

r 08

e Exact with ©(nr) measurements;

r 0.7

e Universal for all low-rank matrices;:

F 106

0.5

e Robust against approximate low-rankness
and bounded noise;

0.4
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e Results hold for i.i.d. bilinear measurements
az‘lzbz as We” 005 01 015 02 mo.?s(nfs) 035 04 045 05

0.1

0

Y. Chen, Y. Chi, and A. J. Goldsmith, “Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming,”
IEEE Trans. on Information Theory, vol. 61, no. 7, pp. 4034-4059, 2015.
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Phase Transition

Our covariance sketching scheme is

e universal
e works with sparse and Toeplitz low-rank covariance matrices as well;

e robust to noise and imperfect model assumptions

1 - 1
10 | —— theoretic samling limit]
08 ] 08
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0.1 0.1
02 0'75 o5 085 ° 005 01 015 02 025 03 035 04 045 05 0 0 5 10 15 20 2 30 3 40 45 50
m/(n"n) m/(n*n) m: number of measurements
(a) Low-rank; (b) Sparse; (c) Toeplitz low-rank

Figure 1: Phase transition
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Proof Ingredient: Mixed-Norm RIP

e Restricted Isometry Property: a powerful notion for compressed sensing
VX in some class: 1B(X)|,~|X|g-

— Unfortunately, it does NOT hold for quadratic models.

e We proposed a Mixed-norm Variant:  RIP-/,//;
VX in some class: IB(X)|; ~ | X|g-
— does NOT hold for A, but hold after A is debiased:

B;(X) = (2, a2¢a%;; - 012@'+10§i+1>

E. J. Candeés, “The restricted isometry property and its implications for compressed sensing”. Compte Rendus de I'Academie des
Sciences, Paris, Serie |, 346 589-592.
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Comparisons with Related Work

e low-rank/sparse matrix recovery with linear measurements:
y =A%)

— compressed sensing: A;(X) = Tr(M,;3)
— matrix completion: A;(3) = (2);,4,

o Sketching sparse matrices [Dasarathy et.al.|:
Y = A A"
— A e R™" with m < n, cannot estimate low-rank models;
— no universal guarantees over sparse models;
e Phaselift: recover € C" from {|(a;, z)|*}T;.

— our algorithm is the same form of Phaselift when rank is one.
— our algorithm extends the best performance guarantees of Phaselift to
O(n) sub-Gaussian measurements.
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Other Applications of Quadratic Sensing

e Energy measurements are often more reliable with high-frequency applications
for estimating power spectral density.
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e Quadratic measurements arise in practical applications such as phase retrieval
and phase space tomography.

lllumination slit Lens Object slit Detector
xray :
sample source N I
mask \ I
diffraction LED \ \ L I
pattern . - \ ) , |
— J
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f = Tomm ; Axial scanning

E. J. Candes, Y. C. Eldar, T. Strohmer and V. Voroninski, “Phase retrieval via matrix completion,” SIAM J. on Imaging Sciences.
L. Tian, J. Lee, S. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express.
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Graph Sketching

Consider an undirected graph with bounded degree d and number of nodes n
with adjacency matrix A.

e Define the ith sketching vector x; € {0,1}" as composed of i.i.d. Bernoulli
entries, then the sketch y; = a:iTA:L’i amounts to counting twice the number
of edges in random subgraphs.

e Example: « = [1,0,0,0,0,1,0,1]" whose support is Z = {1,6,8}, then
xlT Ax = 2.

e Our results implies the graph can be perfectly reconstructed from O(nd)

quadratic sketches.
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Covariance Tracking for DOA Estimation

The aggregation step in the sketching scheme can be easily implemented in an
online manner to allow tracking.

o Aggregation: The aggregates y; 7 can be modified with a discounting factor
A for tracking: 5
Yi, T = NYi,r-1 + (@i, x7)|

e Estimation: replace the trace minimization by a Projection onto Convex Sets
(POCS) procedure (n =40, m = 600).

Ground Truth
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Can we estimate the covariance from Bits?

Assumption: Let ¥ = E[z,27] = UU" be a rank-r matrix with U e Cn*".

One-Bit PCA: For each sensor 1 =1,...,m: ol In u uln
e randomly select two sketching vectors "B & BH "B ||
a;,b; € C* with i.i.d. Gaussian entries;

o Sketch an arbitrary substream indexed by {¢:}l, with two energy

2 2
, ‘(bi,wgﬁ , and transmit a binary bit indicating
the energy comparison outcome to the fusion center:

2)

1 T 2 1 T
Y. T = sign Haz,mgz) ——Z‘(bi,m£i>
15 !
e Estimation: The fusion center recovers the principal components U e R
by computing the top r eigenvectors of the surrogate matrix:

Zm( a ~bb;").

measurements ‘(ai, w£%>
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Bit Comparisons are Robust

e With finite samples, the numerical energy difference measures the sample
covariance Xip:

= Sl - 5o

The discrepancy z; 17— z; = (37 - X, aiafl — bibf{) = 0.

(E7,a,af - bb)").

e The ordinal energy difference measures the exact covariance X with high
probability as soon as T' is not too small:

yi,T = sign (<ZT, CLz'CLZH - bzb{{>) =sign ((E, aiaiH — bJ)?)) = Y;.

Theorem 2 (Chi 2014). Let ¢, ~N(0,X). Let 0<d <1, then with probability
at least 1 — o0 all bit measurements are exact, given that the number of

samples observed by each sensor satisfies T > cTr(Z)/HEHFlog( ) for some
sufficiently large constant c.

Y. Chi, “One-Bit Principal Subspace Estimation”, IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Atlanta, GA, Dec. 2014.
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One-Bit PCA: Why does it work?

Consider a rank-one example X = 80" with the eigenvector 8 ¢ C2:

e Each bit y; = sign(|{a;,0)|? - |(b;,0)]?) selects the halfspace towards the
direction with a smaller angle with either a; or b;.

e With enough bit measurements, we can trap the eigenvector @ accurately up
to a sign difference.

ai
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One-Bit PCA: Performance Guarantee

Conditioned on that the bit measurements are exact, the principal subspace of
J ., agrees with U with high probability given m is sufficiently large.

Theorem 3 (Chi 2014). Denote U € C™" as the principal subspace of ¥ and
U as the principal subspace of J,, = % >t Yi (aiazH — bibfl). Let 0 <4 <1,
then with probability at least 1 — 0, there exists an r x r orthogonal matrixz Q
such that

2
U -UQ|r < cl\/ﬂlog

for all rank-r matrices X, where c1 is an absolute constant depending on 7.

e The subspace estimate is accurate as soon as m = ©(nr2logn) which is
near-optimal as the subspace requires at least n measurements.

e Not an exact recovery guarantee.

Y. Chi, “Principal Subspace Estimation and Tracking From One-Bit Energy Measurements”, IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Atlanta, GA, Dec. 2014, submitted.
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How many bits do we need?

e \We generate the covariance matrix as X = XXT, where X € R™3 |s
composed of standard Gaussian entries. The sketching vectors a;'s and b;'s
are also generated with standard Gaussian entries.

e The estimate X is calculated via computing the top eigenvectors of J,,.

e The error metric is calculated as | P o« X |3/ X 3.

NMSE

0 1000 2000 3000 4000

Number of bit measurements
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Online DOA Estimation with Bit Measurements

e The covariance matrix X is a low-rank Toeplitz PSD matrix with n =40 and
r =3. The set of modes is F =[0.1,0.7,0.725] (notice the last two modes
are separated by the Rayleigh limit 1/n), and their variance is 02 = 1.

e The subspace is updated online as new bit measurements arrive sequentially;
and ESPRIT is applied to estimate 5 modes using the subspace estimate.

' ! !
""" R S S S
g : : 0.8
B e T -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S e Y
%i ................... ................ i
ol | | |
A SRR SRR RPN 4 [ 104
PR ;w:
‘A* 5’]‘ 0.2
1% R A e S :
i1y uf% ;
i M =
1 1

1000 2000 3000 4000

Number of bit measurements

1000 bits successfully distinguish two close modes separated by the Rayleigh limit.
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Recap: Comparing the Two Schemes

Covariance Sketching with Real Measurements:

e Near-Optimal Sample Complexity for a variety of covariance structures;

e Energy measurements are easier to obtain;

e Requires a noise estimate to performance the algorithm with finite sample
size and additive noise;

e The convex optimization might still be computationally expensive;
Covariance Sketching with One-bit Measurements:

e Communication overhead is minimized with bit measurements;
e Simple algorithm via computing the top eigenvectors;

e Robust measurement with respect to (possibly heterogeneous) noise.
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Summary and Future Directions

Summary:

e Covariance estimation is possible without observing and reconstructing the
whole data stream.

e The sensing and estimation procedure can be jointly designed to minimize
complexity by leveraging the low-dimensional structures of data.

e Many potential applications in network traffic monitoring, video surveillance,
and covariance estimation in privacy-aware and crowdsourcing environments.

Future Directions:

e Quality-Quantity-Computation Complexity Trade-offs for statistical inference.

Page 26



List of Related Publications

Y. Chen, Y. Chi and A. J. Goldsmith, “Universal and Robust Covariance Estimation via

Convex Programming,” in International Symposium on Information Theory (ISIT), Honolulu,
HI, Jun. 2014.

Y. Chen, Y. Chi and A. J. Goldsmith, “Estimation of Simultaneously Structured Covariance

Matrices from Quadratic Measurements,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Florence, Italy, May 2014.

Y. Chen, Y. Chi, and A. J. Goldsmith, “Exact and Stable Covariance Estimation from

Quadratic Sampling via Convex Programming,” IEEE Trans. on Information Theory, vol.
61, no. 7, pp. 4034-4059, 2015.

Y. Chi, “One-Bit Principal Subspace Estimation”, IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Atlanta, GA, Dec. 2014,

Y. Jiang and Y. Chi, “Covariance Tracking from Sketches of Rapid Data Streams”, in
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane,
Australia, April 2015.

Y. Chi, “Compressive Graph Clustering via Semidefinite Programming,” International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia,
April 2015.

Page 27



