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ABSTRACT

We address the problem of estimating a low-rank positive
semidefinite (PSD) matrix from a set of magnitude measure-
ments that are quadratic in the sensing vectors in the presence
of arbitrary outliers. We propose a parameter-free algorithm
that seeks the PSD matrix that minimizes the `1-norm of the
measurement residual. It is shown that the algorithm can ex-
actly recover a rank-r PSD matrix of size-n from O

(
nr2
)

measurements with high probability, even when a fraction of
the measurements is corrupted by arbitrary outliers. Further-
more, the recovery is also robust to bounded noise. When
an upper bound of the rank of the PSD matrix is known a
priori, we further propose a non-convex algorithm based on
subgradient descent that demonstrates superior empirical per-
formance.

Index Terms— matrix recovery, outlier-robust, low-rank,
positive semidefinite

1. INTRODUCTION

In many emerging applications of science and engineering,
we are interested in estimating a positive semidefinite (PSD)
matrix X0 ∈ Rn×n from a set of magnitude measurements
that are quadratic in the sensing vectors ai ∈ Rn:

zi = 〈aia
T
i ,X0〉 = aT

i X0ai, i = 1, . . . ,m. (1)

These measurements either arise due to physical limitations in
the capability of capturing phases, such as in phase retrieval
[1], where X0 is a lifted rank-one matrix from the signal of
interest; or arise by design, such as in covariance sketching or
power spectrum estimation [2], whereX0 corresponds to the
covariance matrix of the data, typically of low-rank due to the
intrinsic low dimensionality of the data.

Our goal is to recover a low-rank PSD matrix X0 from
(1) using as small number of measurements as possible in a
computationally efficient and robust manner. A popular con-
vex relaxation algorithm is based on trace minimization [2],
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which seeks the PSD matrix with the smallest trace norm that
satisfies the observation constraint. It is shown in [2] that this
algorithm exactly recovers all rank-r PSD matrices as soon
as the number of measurements exceeds the information-
theoretic limitO (nr) in the absence of noise, and the recover
is robust against bounded noise as well.

In this paper, we focus on robust recovery of the low-rank
PSD matrix when the measurements are further corrupted by
outliers, which are possibly adversarial with arbitrary ampli-
tudes. In practice, outliers are somewhat inevitable, which
may be caused by sensor failures, malicious attacks, or read-
ing errors. Fortunately, the number of outliers is usually much
smaller than the number of total measurements, so it is pos-
sible to leverage the sparsity of the outliers to still faithfully
recover the low-rank PSD matrix of interest.

We first propose a convex relaxation algorithm that seeks
the PSD matrix that minimizes the `1-norm of the measure-
ment residual. The algorithm is free of tuning parameters
and therefore is easy to implement. When the sensing vec-
tors are composed of i.i.d. Gaussian entries, we establish
that for a fixed rank-r PSD matrix, as long as the number of
measurements exceeds O(nr2), the algorithm can exactly re-
cover it with high probability, even when a fraction ofO(1/r)
measurements are arbitrarily corrupted. Furthermore, the re-
covery is also robust to bounded noise. In the special case
of phase retrieval, the proposed algorithm coincides with a
variant of the Phaselift algorithm studied in [3, 4], which has
been recently shown robust to outliers [5]. Our result gener-
alizes [5] to the general low-rank setting.

The above convex algorithm may still pose significant
computational burden when facing large-scale problems.
Motivated by [6, 7], we next develop a non-convex algo-
rithm when the rank of the PSD matrix, or an estimate of
it, is known a priori. Since any rank-r PSD matrix can be
uniquely decomposed as X0 = U0U

T
0 , where U0 ∈ Rn×r

up to orthonormal transformations, it is sufficient to recover
U0 ∈ Rn×r without constructing the PSD matrix explicitly.
The algorithm iteratively updates the estimate by descending
along the subgradient of the `1 norm of the measurement
residual using a properly selected step-size and initialization.
Numerical experiments are provided to validate its superior
empirical performance.



The rest of the paper is organized as below. Section 2 de-
tails the problem formulation and presents the performance
guarantee of the proposed convex relaxation algorithm. Sec-
tion 3 describes the proposed non-convex subgradient descent
algorithm. Numerical examples are provided in Section 4. Fi-
nally, we conclude in Section 5.

2. PSD-CONSTRAINED CONVEX RELAXATION

Let X0 ∈ Rn×n be a PSD matrix of rank-r, whose measure-
ments are given as

z = A (X0) + β +w, (2)

where z,β,w ∈ Rm. The linear mapping A: Rn×n → Rm

is defined asA (X0) =
{
aT
i X0ai

}m
i=1

, where ai ∈ Rn’s are
the sensing vectors that are composed of i.i.d. standard Gaus-
sian entries. The vector β denotes the outlier vector, which is
assumed sparse with the fraction of nonzero entries given as
s = ‖β‖0 /m. Moreover, the vector w denotes the additive
noise, which is assumed bounded as ‖w‖1 ≤ ε.

In this paper, we consider the following algorithm for re-
covery of X0, which seeks the PSD matrix that minimizes
the `1-norm of the measurement residual to motivate outlier
sparsity:

X̂ = argminX∈Rn×n‖z −A(X)‖1 subject to X � 0.
(3)

This algorithm coincides with the Phaselift algorithm studied
in [3–5]. The advantage of this formulation is that it does
not require any knowledge of the noise bound, the rank of
X0, or the sparsity level of the outliers, and is free of tuning
parameters.

2.1. Main Theorem

Encouragingly, we prove that the algorithm (3) admits exact
recovery of a rank-r PSD matrix as soon as the number of
measurements is large enough, even with a fraction of arbi-
trary outliers. Our main theorem is given as below.

Theorem 1. Suppose that ‖w‖1 ≤ ε. Assume the support of
β is selected uniformly at random with the fraction of outliers
given as s = ‖β‖0 /m, and the signs of β are generated from
a symmetric Bernoulli distribution as P {sgn (βi) = −1} =
P {sgn (βi) = 1} = 1/2 for each i ∈ supp(β). Then for
a fixed rank-r PSD matrix X0 ∈ Rn×n, there exist some
absolute constants C1 > 0 and 0 < s0 < 1 such that as long
as

m > C1nr
2, s ≤ s0

r
,

the solution to (3) satisfies∥∥∥X̂ −X0

∥∥∥
F
≤ C2

rε

m
,

with probability exceeding 1 − exp(−γm/r2) for some con-
stants C2 and γ.

The proof of Theorem 1 is based on the construction of
a dual certificate that certifies the optimality of (3) with high
probability. Due to space limitations, we refer to the tech-
nical report [8] for the complete proof. Theorem 1 has the
following consequences:
• Exact Recovery with Outliers: When ε = 0, Theo-

rem 1 suggests the recovery is exact, even when a fraction of
O(1/r) measurements is corrupted, as long as the number of
measurementsm exceedsO(nr2). Given there are at least nr
unknowns, our measurement complexity is near-optimal up
to a factor of r. However, our bound is slightly worse than
the guarantee in the outlier-free case [2], which requires only
O(nr) measurements.
• Stable Recovery with Bounded Noise: In the presence

of bounded noise, Theorem 1 suggests that the recovery per-
formance decreases gracefully with the increase of ε, where
the Frobenius norm of the reconstruction error is proportional
to the per-entry noise level of the measurements up to a factor
of r.
• Phase Retrieval: When r = 1, the problem degenerates

to the case of phase retrieval. Theorem 1 recovers existing
results in [5], where the sample complexity for recovery is on
the order of n, optimal up to a scaling factor.

Our theorem also suggests that recovery of PSD matrices
from quadratic sampling may be as effective by only exploit-
ing the PSD constraint, without the usual wisdom of trace
minimization [2], which is also empirically validated in Sec-
tion 4.1.

2.2. Comparisons to Related Work

We note that [9] also considers a regularization-free algorithm
for PSD matrix estimation that minimizes the `2 norm of the
residual, which unfortunately, is not robust to outliers as our
algorithm (3) that minimizes the `1 norm of the residual. An-
other standard approach is based on convex decomposition of
low-rank and sparse components [10–13], given as

min
X�0,β

Tr(X)+λ‖β‖1, subject to ‖z−A(X)−β‖1 ≤ ε,

where λ is a regularization parameter that requires to be tuned
properly. In contrast, the formulation (3) is parameter-free,
making it easy to implement.

3. A NON-CONVEX SUBGRADIENT DESCENT
ALGORITHM

When the rank of the PSD matrix X0 is known a priori as
r, it is possible to decompose X0 as X0 = U0U

T
0 where

U0 ∈ Rn×r. Instead of directly recovering X0, instead, we
may aim at recovering U0 up to orthogonal transforms, since
(U0Q)(U0Q)T = U0U

T
0 for any orthonormal matrix Q ∈

Rr×r. Since any rank-r PSD matrix X can be written X =



UUT for some U ∈ Rn×r, we can equivalently rewrite (3)
as

Û = argminU∈Rn×rf(U), (4)

where we denote

f(U) = ‖z −A(UUT )‖1 =
1

m

m∑
i=1

∣∣∣zi − ‖UTai‖22
∣∣∣ .

The algorithm (4) is no longer convex, since f(U) is quadratic
in U . Motivated by the recent non-convex approaches
[6, 7, 14] of solving quadratic systems, we propose a sub-
gradient descent algorithm to solve (4) effectively. Note that
a subgradient of f(U) with respect to U can be given as

∂f(U) = − 1

m

m∑
i=1

sgn(zi − ‖UTai‖22)aia
T
i U , (5)

where the sign function sgn(·) is defined as

sgn(x) =

 +1, x > 0
0, x = 0
−1, x < 0

.

Our subgradient descent algorithm proceeds as below.
Denote the estimate in the tth iteration as U (t). First, we ini-
tializeU (0) as the best rank-r approximation of the following
matrix:

U (0)(U (0))T = Pr

(
1

m

m∑
i=1

ziaia
T
i

)
, (6)

where Pr(Z) := minX:rank(X)=r ‖X − Z‖2F denotes the
projection of Z to the closest rank-r matrix in Frobenius
norm. Secondly, at the (t + 1)th iteration, t ≥ 0, we apply
subgradient descent to refine our estimate as

U (t+1) = U (t) − µt · ∂f(U (t)),

where the step size µt is adaptively set as µt = µf(U (t))
with µ being some constant. This is because the subgradient
only depends on the sign of the residuals, but not their am-
plitudes. The step size is selected to reflect the magnitude of
the current residual. The procedure is summarized in Alg. 1.
In the numerical simulations, the default value of µ is set as
0.1. The stopping rule in Alg. 1 is simply put as a maximum
number of iterations, while in practice, we can also examine
the difference of the residuals between consecutive iterations,
and stop when the difference is negligible.

The main advantage of Alg. 1 is its low memory and com-
putational complexity. Given that it is not necessary to con-
struct the full PSD matrix, the memory complexity is sim-
ply the size of U (t), which is O(nr)1. The computational
complexity per iteration is also low, which is on the order of
O(mnr), that is linear in all the parameters. We demonstrate
the excellent empirical performance of Alg. 1 in Section 4.2.

1We do not count the storage complexity of the sensing vectors here.

Algorithm 1: Non-convex subgradient descent for solv-
ing (4)

Parameters: Rank r, the number of iterations T ,
step-size µt.
Input: measurements z, and sensing vectors {ai}mi=1

Initialization: Initialize U (0) ∈ Rn×r via (6);
for t = 0 : T − 1 do

U (t+1) = U (t)+
µt

m

m∑
i=1

sgn(zi−‖(U (t))Tai‖22)aia
T
i U

(t),

end for
Output: Û = U (T ).

4. NUMERICAL EXAMPLES

In this section, we present numerical experiments to demon-
strate the performance of the convex algorithm (3) and the
non-convex algorithm in Alg. 1.

4.1. Performance of Convex Relaxation

We first consider the performance of (3). Let n = 40. We
randomly generate a low-rank PSD matrix of rank-r asX0 =
UUT , where U ∈ Rn×r is composed of i.i.d. standard
Gaussian variables. The sensing vectors are also composed
of i.i.d. standard Gaussian variables. Denote the solution of
(3) as X̂ . Each Monte Carlo simulation is called successful if
‖X̂ −X0‖F/‖X0‖F ≤ 10−3. For each cell, the success rate
is calculated by averaging over 10 Monte Carlo simulations.
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Fig. 1: Phase transitions for PSD matrix recovery with respect
to the number of measurements and the rank, (a) with trace
minimization; and (b) without trace minimization of noise-
free measurements, where n = 40.

Fig. 1 shows the success rate of exact recovery with re-
spect to the number of measurements and the rank, (a) with
the trace minimization as in [1, 3, 15]; and (b) without the
trace minimization as proposed in (3). It can be seen that
the performance of the two algorithms are almost equivalent,
confirming a similar numerical observation for the phase re-
trieval problem [16] also holds in the low-rank setting. This



also suggests there is possible room for improvements of our
theoretical guarantee, where the sample complexity depends
quadratically in r.

Fig. 2 further shows the success rate of the proposed al-
gorithm (a) with respect to the number of measurements and
the rank, when 5% of measurements are selected uniformly
at random and corrupted by arbitrary standard Gaussian vari-
ables; and (b) with respect to the percent of outliers and the
rank, for a fixed number of measurements m = 400.
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Fig. 2: Phase transitions of PSD matrix recovery with respect
to (a) the number of measurements and the rank, with 5% of
measurements corrupted by arbitrary standard Gaussian vari-
ables; (b) the percent of outliers and the rank, when the num-
ber of measurements is m = 400, where n = 40.

4.2. Performance of Non-Convex Subgradient Descent

We next consider the performance of the non-convex sugradi-
ent descent algorithm in Alg. 1 under the same setup of Fig. 1.
In Alg. 1, the number of iterations is set as T = 6 × 104

(T is set at a large value to guarantee convergence when ter-
minated) and µ = 0.1. Denote the solution to Alg. 1 as
Û , and each Monte Carlo simulation is deemed successful
if ‖ÛÛ

T
−X0‖F/‖X0‖F ≤ 10−6. For each cell, the suc-

cess rate is calculated by averaging over 50 Monte Carlo sim-
ulations. Fig. 3 (a) shows the success rate of Alg. 1 with
respect to the number of measurements and the rank, when
n = 100. Indeed, empirically the algorithm succeeds as soon
as the number of measurements is on the order of nr. We also
compare against the Wirtinger Flow (WF) algorithm in [6,14]
that minimizes the squared `2-norm of the residual, where the
update rule is given as

U (t+1) = U (t) +
µWF
t

m

m∑
i=1

(zi − ‖(U (t))Tai‖22)aia
T
i U

(t),

where µWF
t is set as 0.1 using the same initialization (6).

Fig. 3 (b) depicts the success rate of the WF algorithm un-
der the same condition of Fig. 3 (a). Both algorithms achieve
comparable performance with noise-free observations.

However, the proposed Alg. 1 allows perfect recovery
even in the presence of outliers, while the WF algorithm fails.
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Fig. 3: Phase transitions of PSD matrix recovery with respect
to the number of measurements and the rank by (a) Alg. 1
with `1-norm objective, and (b) the WF algorithm with `2-
norm objective, when n = 100.

Fig. 4 (a) shows the success rate of Alg. 1 with respect to
the percent of outliers and the rank, under the same setup of
Fig. 2 (b), where the performance is similar to the convex
counterpart in (3). In contrast, the WF algorithm performs
poorly even with a single outlier, as shown in its success rate
plot in Fig. 4 (b).
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Fig. 4: Phase transitions of PSD matrix recovery with respect
to the number of measurements and rank by (a) Alg. 1, and
(b) the WF algorithm, when n = 40 and m = 400.

5. CONCLUSION

In this paper, we address the problem of estimating a low-
rank PSD matrix from quadratic magnitude measurements
that are possibly corrupted by arbitrary outliers and bounded
noise. This problem has many applications in covariance
sketching, phase space tomography, and noncoherent detec-
tion in communications. It is shown that withO(nr2) random
Gaussian sensing vectors, a PSD matrix of rank-r can be ro-
bustly recovered by the PSD matrix minimizing the `1-norm
of the measurement residual with high probability, even when
a fraction of the measurements are adversarially corrupted.
This convex formulation eliminates the need for trace mini-
mization and tuning of parameters. Moreover, a non-convex
subgradient descent algorithm is proposed with excellent em-
pirical performance with the additional information of the
rank of the PSD matrix.
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