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Abstract—This paper considers the problem of recovering
the covariance matrix of a stream of high-dimensional data
instances from a minimal number of stored measurements. We
develop a quadratic random sampling method based on rank-
one measurements of the covariance matrix, which serves as an
efficient covariance sketching scheme for processing data streams.
This also allows modeling of phaseless measurements that arise
in high-frequency wireless communication and signal processing
applications.

We propose to recover the covariance matrix from the above
quadratic measurements via convex relaxation with respect to
the presumed parsimonious covariance structure. We show that
in the absence of noise, exact and universal recovery of low-rank
or Toeplitz low-rank covariance matrices can be achieved as soon
as the number of stored measurements exceeds the fundamental
sampling limit. The convex programs are also robust to noise
and imperfect structural assumptions. Our analysis is established
upon a novel notion called the mixed-norm restricted isometry
property (RIP-`2/`1), as well as the conventional RIP-`2/`2 for
near-isotropic and bounded measurements. Our results improve
upon best-known phase retrieval performance guarantees with
a significantly simpler approach. Numerical results are provided
to demonstrate the practical applicability of our technique.

Index Terms—covariance estimation, sketching, quadratic
measurements, convex programming, phaseless measurements

I. INTRODUCTION

Accurate estimation of second-order statistics of data
streams and random processes is of ever-growing importance
to various applications that exhibit high dimensionality. Co-
variance estimation is the cornerstone of modern statistical
analysis and information processing, as the covariance matrix
constitutes the sufficient statistic to many signal process-
ing tasks, and is particularly crucial for extracting reduced-
dimension representation of the data of interest.

In resource-constrained environments, there might be lim-
ited memory and computation power available at the data
acquisition devices to take a complete snapshot of the system
or to store the entire data for problems of high dimensionality.
Therefore it is highly desirable to estimate the covariance
matrix of the data with minimal storage and low computational
complexity. This is in general not possible unless appro-
priate structural assumptions are incorporated. Fortunately,
a broad class of high-dimensional objects indeed possesses
low-dimensional structures, and the intrinsic dimension of
the covariance matrix can be far smaller than its ambient
dimension. For different types of data, the covariance matrix
may exhibit different structures; two of the most widely
considered structures, studied in this paper, are listed below.
• Low Rank: The covariance matrix is low-rank, which

occurs when a small number of components accounts for

most of the variability in the data [1]. Low-rank covari-
ance matrices arise in applications such as traffic data
monitoring, collaborative filtering, and metric learning.

• Toeplitz and Low Rank: The covariance matrix is simul-
taneously low-rank and Toeplitz, which arises when each
instance is drawn from a stationary process. Recovery
of Toeplitz low-rank covariance matrices, often related
to spectral estimation, is crucial in many fields including
wireless communications (e.g. detecting spectral holes in
cognitive radio networks) and array signal processing [2].

In this paper, we wish to recover an unknown covariance
matrix Σ ∈ Rn×n with the above covariance structures from
the following rank-one measurements:

yi = a>i Σai + ηi, i = 1, . . . ,m, (1)

where y := {yi}mi=1 denotes the measurements, ai ∈ Rn

represents the sensing vector, η := {ηi}mi=1 denotes the
noise term, and m is the number of rank-one measurements.
The measurements aT

i Σai’s are quadratic in data instances
and are therefore referred to as quadratic measurements. In
practice, the number of measurements is constrained by the
limited available storage, which is often far smaller than the
ambient dimension of the covariance matrix. This sampling
scheme brings various advantages compared with other types
of measurements, as detailed in the rest of the paper.

A. Motivation

The quadratic measurement scheme finds applications in
many practical scenarios. Due to space limitations, we restrict
our discussion to the following two scenarios.

1) Covariance Sketching for Data Streams: A high-
dimensional data stream model represents real-time data that
arrives sequentially, where each data instance is itself high-
dimensional. In many resource-constrained applications, the
available memory and processing power at the data acquisition
devices are severely limited compared with the volume of the
data [3]. Therefore it is desirable to extract the covariance
matrix from inputs on the fly without storing the whole stream.
Interestingly, quadratic sampling can be leveraged as an effec-
tive data stream processing method to extract the covariance
from real-time data with low memory and computational cost.

Specifically, consider an input data stream {xt}∞t=1 that
arrives sequentially, where each xt ∈ Rn itself is a high-
dimensional instance generated at time t. The goal is to
estimate its covariance matrix Σ = E[xtx

>
t ] from as small



a memory as possible1. We propose to pool the data stream
{xt}∞t=1 into a small set of measurements in an easy-to-update
fashion with a collection of sketching vectors {ai}mi=1. Our
covariance sketching method is outlined below:

(i) At each time t, we randomly choose a sketch vector
indexed by `t ∈ {1, . . . ,m}, and obtain a single linear
sketch a>`txt.

(ii) All sketches employing the same sketching vector ai

are squared, aggregated and normalized, which converge
rapidly to a measurement2

yi = E[(a>i xt)
2] + ηi = a>i Σai + ηi, (2)

where η := {ηi}mi=1 denotes the inaccuracy term.
(iii) Recover Σ from m stored measurements y := {yi}mi=1.

This covariance sketching method has low sensing and mem-
ory complexity. The computational cost for sketching each
instance is linear with respect to the data dimension n.
Each measurement yi is aggregated from a different set of
instances, allowing the sketching scheme to be performed
over multiple machines in a distributed manner. The required
memory complexity of this scheme, denoted by m, approaches
the fundamental sampling limit for near-optimal covariance
estimation at the sensing stage, as will be shown in this paper.

2) Spectral Estimation from Energy Measurements: A large
class of wireless communication tasks in stochastic environ-
ments rely on reliable estimation of the spectral character-
istics of random processes [4]. When communication takes
place in the high-frequency regime, energy measurement are
often more reliable than phase measurements. One potential
application in multi-antenna communication problems involves
estimating the covariance of signals across all receive anten-
nas, where only the power measurements of certain linear
combination of receive signals are obtainable.

Specifically, for a random process {xt}, if we employ a
random sampling vector ai and observe the average energy
measurements of a>i xt over N instances {xt}1≤t≤N , the
energy measurement can be expressed as

yi =
1

N

N∑
t=1

|a>i xt|2 = a>i ΣNai, i = 1, . . . ,m (3)

where ΣN := 1
N

∑N
t=1 xtx

>
t denotes the sample covariance

matrix. This leads to the quadratic-form observations.

B. Contributions
We develop tractable algorithms to recover the covariance

matrix from quadratic measurements (1). The estimation al-
gorithms are based on convex relaxation with respect to the
presumed low-dimensional structures. For a broad class of sub-
Gaussian sensing vectors, we derive theoretical performance
guarantees that allow exact and universal recovery, i.e. once the
sensing vectors are selected, all covariance matrices satisfying
the presumed structure (i.e. low-rank or Toeplitz low-rank) can
be recovered exactly in the absence of noise. We also establish
that the algorithms enable recovery of the covariance matrix

1The scenario we consider is quite general. The only assumption we impose
is that the covariance of a random substream of {xt}∞t=1 converges to the
same covariance as Σ.

2Note that we might only obtain measurements for empirical covariance
matrices instead of Σ, but this inaccuracy can be absorbed into the term η.

with high accuracy even in the presence of imperfect structural
assumptions; additionally, if the measurements are corrupted
by bounded noise, the estimate deviates from the ground truth
by at most a constant multiple of the noise level. Finally, the
algorithms succeed as soon as the number of measurements
exceeds the theoretic sampling limits, implying a minimal
storage complexity at the sensing stage.

The analysis for general low-rank matrices is established
upon a novel mixed-norm restricted isometry property, termed
RIP-`2/`1. This key metric allows us to significantly simplify
the proof, and bypass the need to construct dual certificates
[5], [6], which is often the most complicated step in existing
approaches to certify optimality of a convex program.

On the other hand, we show that a truncated combination
of quadratic measurements satisfies the conventional restricted
isometry property (RIP-`2/`2) when restricted to Toeplitz low-
rank matrices. We also establish RIP-`2/`2 for bounded and
near-isotropic operators, enabling universal and stable low-
rank matrix recovery for a broad class of operators including
Fourier-type measurements. This strengthens existing results
[7] and might be of independent interest.

C. Related Work

In most existing work, the covariance matrix is estimated
from a collection of full data samples, and performance guar-
antees have been derived on how many samples are sufficient
to approximate the ground truth. These schemes are no longer
useful when acquisition of full data samples is infeasible
due to power consumption or other constraints. For example,
in real-time monitoring environments using battery-powered
sensors, the battery life is typically extended by taking only
a few samples for each object of interest. In contrast, this
paper is motivated by the success of compressed sensing
(e.g. [8]), which asserts that compression can be achieved at
the same time as sensing without compromising the relevant
information of the signal. Our covariance sketching scheme
can be regarded as covariance estimation from compressed
data, which is a memory-efficient scheme in preserving the
covariance information.

When the covariance matrix is assumed to be sparse, recent
work [9] proposed to estimate a covariance matrix from
measurements of the form Y = AΣA>, where A ∈ Rd×n

denotes the sketching matrix generated from an expander
graph with d� n. Nevertheless, this scheme cannot be applied
to low-rank covariance matrix recovery due to the non-empty
null space of A.

Our method is motivated by recent developments in phase
retrieval [5], [6] (in particular PhaseLift), which is equivalent
to recovering rank-one covariance matrices from quadratic
samples. When specializing our result to this case, we recover
and improve upon the best-known theoretical guarantee for a
much larger class of sub-Gaussian measurements with a much
simpler proof. Our recovery algorithm is also related to matrix
recovery from random sampling [10], [11], but quadratic sam-
ples do not satisfy the presumed condition (RIP-`2/`2) therein,
as pointed out by Candes et. al. [5]. Finally, after submitting
our paper, we become aware of an independent work that also
studies low-rank matrix recovery under rank-one quadratic
measurements [12], via an interesting analytical framework.



In comparison, our results accommodate a larger class of
covariance structure including Toeplitz low-rank matrices.

D. Notation
Before proceeding, we provide a brief summary of the

notation used throughout this paper. We use ‖X‖, ‖X‖F, and
‖X‖∗ to denote, respectively, the spectral norm, the Frobenius
norm, and the nuclear norm ofX . The Euclidean inner product
between X and Y is defined as 〈X,Y 〉 = Tr(XTY ).
Besides, we denote by T the orthogonal projection operator
onto Toeplitz matrices, and by T ⊥ its orthogonal complement.

II. CONVEX RELAXATION AND MAIN RESULTS

In this paper, we restrict our attention to the following ran-
dom sampling model, where the sensing vectors are composed
of i.i.d. sub-Gaussian entries. In particular, we assume ai’s
(1 ≤ i ≤ m) are i.i.d. copies of z = [z1, · · · , zn]

T , where
each zi is i.i.d. satisfying

E[zi] = 0, E[z2i ] = 1, and µ4 := Ez4i > 1. (4)

We assume that the noise η, which is possibly adversarial, is
bounded in either `1 norm or `2 norm as specified in the theo-
retical guarantees in Theorem 1 and Theorem 2. For notational
simplicity, let Ai := aia

T
i represent the equivalent rank-one

sensing matrix. We also define the operator A(M) : Rn×n 7→
Rm that maps a matrix M ∈ Rn×n to {〈M ,Ai〉}mi=1, which
allows us to express (1) by y = A(Σ) + η.

A. Recovery of Low-Rank Covariance Matrices
Suppose that Σ is low-rank such that its rank is much

smaller than the ambient dimension n. A natural heuristic is to
perform rank minimization to encourage the low-rank structure

Σ̂ = argminM rank(M) s.t. M � 0, (5)
‖y −A(M)‖1 ≤ ε1,

where ε1 is an upper bound on3 ‖η‖1, and M � 0 denotes the
positive semidefinite (PSD) constraint. Since rank minimiza-
tion is NP-hard, we propose instead to minimize the trace
norm:

Σ̂ = argminM Tr(M) s.t. M � 0, (6)
‖y −A(M)‖1 ≤ ε1.

The trace norm forms a convex surrogate for the rank func-
tion, as motivated by PhaseLift [5]. Encouragingly, the trace
minimization (6) returns faithful estimates even when Σ is
approximately low rank and/or when the samples are noisy.

Theorem 1. Consider the sub-Gaussian sampling model in
(4), then with probability exceeding 1 − exp(−c1m), the
solution Σ̂ to (6) satisfies

‖Σ̂−Σ‖F ≤ C1 ‖Σ−Σr‖∗ /
√
r + C2ε1/m, (7)

for all covariance matrices Σ ∈ Rn×n, provided that m >
c0nr. Here, Σr := arg minM :rank(M)=r ‖Σ−M‖F, and c0,
c1, C1, C2 are universal constants.

3Note that ε1 is allowed to scale with the memory complexity m, and can
be easily modified to accommodate stochastic noise, as discussed in [13]. In
many applications, ε1

m
is bounded with high probability, which is sufficient

for our results to be meaningful.

The main implications of Theorem 1 and its associated
performance bound (7) are as follows.

1) Exact Recovery from Noiseless Measurements. Con-
sider the case where rank (Σ) = r. In the absence of noise,
one can see from (7) that the trace minimization (6) (with
ε = 0) allows perfect covariance recovery with exponentially
high probability, provided that m = Ω(nr). Since PSD rank-r
matrices have nr− r(r−1)

2 degrees of freedom, our algorithm
allows order-optimal memory complexity.

2) Near-Optimal Universal Recovery. Our trace minimiza-
tion (6) enables universal recovery, in the sense that once the
sensing vectors are chosen, all low-rank covariance matrices
can be perfectly recovered from noiseless measurements. This
universality feature arises as soon as the memory complexity
exceeds the theoretic limit. When specialized to the rank-
one case, this recovers the best known guarantee for Phase
Retrieval [6], and extends the optimality results to a large class
of sub-Gaussian measurements beyond the Gaussian model.

3) Robust Recovery for Approximately Low-Rank Ma-
trices. If Σ is approximately low-rank, then from (7) the
recovery inaccuracy from noiseless samples is at most ‖Σ̂ −
Σ‖F ≤ O (‖Σ−Σr‖∗ /

√
r). This asserts that the trace

minimization returns an almost accurate estimate in a manner
that requires no prior knowledge of the ground truth (other
than the power law decay that is natural for a broad class of
data).

4) Stable Recovery from Noisy Samples. When Σ is
exactly of rank r and the noise is bounded ‖η‖1 ≤ ε1,
Theorem 1 asserts that the reconstruction inaccuracy of (6)
can be bounded above by ‖Σ̂−Σ‖F ≤ C2ε1/m. This reveals
that the trace minimization recovers an unknown object with
an error at most a constant multiple of the noise level, which
makes it practically appealing.

B. Recovery of Toeplitz Low-Rank Covariance Matrices
Suppose that Σ is low-rank and represents the covariance

matrix of n-dimensional stationary data instances. Similar to
recovery in the general low-rank model, we propose to perform
trace-norm minimization. Since xi is drawn from a stationary
process, we further impose a Toeplitz constraint to enforce
stationarity conditions, which yields the following estimate

Σ̂ = arg min
M

Tr(M) s.t. M is Toeplitz, M � 0,

‖y −A(M)‖2 ≤ ε2, (8)

where ε2 is an upper bound of ‖η‖2.
Encouragingly, the semidefinite relaxation (8) is exact under

noise-free measurements and provides stable recovery from
noisy measurements, as asserted in the following theorem.

Theorem 2. Consider the sub-Gaussian sampling model in
(4), and assume that4 µ4 ≤ 3 and ‖η‖2 ≤ ε2. Then with
probability exceeding 1− 1/n2,

‖Σ̂−Σ‖F ≤ Cε2/
√
m (9)

for all Toeplitz covariance matrices Σ of rank at most r,
provided that m > cr log10 n. Here, c and C are constants.

4We are only able to prove the theorem when µ4 ≤ 3, which roughly
requires that the tails of the distributions are no heavier than for the Gaussian
measure (e.g. µ4 = 3 for Gaussian and µ4 = 1 for Bernoulli distribution).



Once we obtain accurate recovery of Σ, the spectrum can
be identified by conventional harmonic retrieval methods, e.g.
ESPRIT. Some implications of Theorem 2 are as follows:

1) Exact Recovery without Noise. By Theorem 2, exact
recovery of stationary covariance matrices occurs as soon as
the number of measurements is on the theoretic sampling
limit Ω (r) up to some poly-logarithmic factor. Note that this
sampling theoretic limit is n times smaller than that for general
low-rank matrices, and is about n/r times lower than the
degrees of freedom for general Toeplitz matrices.

2) Stable and Universal Recovery from Noisy Measure-
ments. The proposed algorithm (8) returns faithful estimates
in the presence of noise, as revealed by Theorem 2. This
feature is universal: if A is randomly sampled, then with high
probability, the error bounds (9) hold simultaneously for all
Toeplitz low-rank matrices.

III. APPROXIMATE ISOMETRY

Prevailing wisdom asserts that stable recovery from minimal
measurements is possible if the sampling mechanism preserves
the signal strength when acting on matrices of interest [10].
This property is often demonstrated in terms of the restricted
isometry property (RIP), which arises if the sampling output
preserves the input strength under certain metrics. The most
commonly used one is RIP-`2/`2, for which the signal strength
before and after sampling are both measured in terms of the `2
norm (see definition in [10], [11]). However, RIP-`2/`2 does
not hold under the quadratic operator A for either low-rank
matrices or Toeplitz low-rank matrices. This motivates us to
investigate other RIP metrics and/or construct new operators.

A. Mixed-Norm RIP (RIP-`2/`1) for Low-rank Matrices

It has been argued in [5] that RIP-`2/`2 cannot be guaran-
teed from O(nr) samples even for rank-one matrices. Con-
sequently, prior analysis of PhaseLift [5], [6] operates upon
RIP-`1/`1, for which the strength for both the input and output
are measured in terms of the `1 norms. Nevertheless, RIP-
`1/`1 no longer holds for general low-rank matrices beyond
matrices of constant rank. Moreover, the proof based on RIP-
`1/`1 typically relies on a delicate dual construction [5], [6],
which is often mathematically complicated.

The key and novel ingredient in our analysis for low-rank
structure is a mixed-norm approximate isometry termed RIP-
`2/`1, which measures the input and output in terms of the
Frobenius norm and the `1 norm, respectively.

Definition 1 (RIP-`2/`1 for low-rank matrices). For the set
of rank-r matrices, we define the RIP-`2/`1 constants δlbr and
δubr with respect to an operator B as the smallest numbers
such that for all X of rank at most r:(

1− δlbr
)
‖X‖F ≤

1

m
‖B (X)‖1 ≤

(
1 + δubr

)
‖X‖F .

Unfortunately, the original sampling operator A does not
satisfy RIP-`2/`1. This occurs primarily because each Ai has
non-zero mean, which biases the output samples. In order to
get rid of this undesired effect, we introduce a “debiased” set
of auxiliary measurement matrices as follows

Bi := A2i−1 −A2i. (10)

Let B (X) represent the linear transformation that maps X to
{〈Bi,X〉}mi=1, then B satisfies RIP-`2/`1 as stated below.

Lemma 1. Consider the sub-Gaussian sampling model in (4).
There exist universal constants c1, c2, c3, c4 > 0 such that with
probability exceeding 1 − exp (−c3m), B satisfies RIP-`2/`1
for all matrices X of rank at most r, and obeys

1− δlbr ≥ c1, 1 + δubr ≤ c2, (11)

provided that m > c4nr.

The RIP-`2/`1 of B in turn leads to the establishment of
Theorem 1. Interested readers are referred to [13] for proof.

B. Constructing RIP-`2/`2 Operators for Toeplitz Low-Rank
Matrices

While quadratic measurements in general do not exhibit
RIP-`2/`2 with respect to general low-rank matrices, a trun-
cated combination of them can indeed satisfy RIP-`2/`2 when
restricted to Toeplitz low-rank matrices. Before proceeding
to the Toeplitz case, we characterize RIP-`2/`2 of near-
isotropic and bounded operators for general low-rank manifold
as follows.

Theorem 3. Suppose that for all 1 ≤ i ≤ m,

‖Bi‖ ≤ K, and ‖EB∗i Bi − I‖ ≤
c5
n

(12)

hold for some quantity K ≤ n2. If m > c0rK
2 log7 n, then

with probability at least 1− 1/n2, B satisfies RIP-`2/`2 with
respect to all matrices of rank at most r.

In fact, the bound on ‖Bi‖ can be as small as Θ (
√
n), and

we say a measurement matrix Bi is well-bounded if K =
O (
√
npoly log (n)), which subsumes the Fourier-type basis as

discussed in [7]. Theorem 3 asserts that simultaneously well-
bounded and near-isotropic operators satisfy RIP-`2/`2 when
m = Ω (nrpoly log (n)), which in turn ensures universal and
stable recovery. This strengthens the prior work in [7] which
does not yield universal recovery.

Unfortunately, A is neither isotropic nor well-bounded. In
order to apply Theorem 3, we construct an auxiliary set of
measurement matrices B̃i through the following procedure.

(i) Generate M matrices independently such that

B̂i :=

{√
nT (αA3i + βA3i−1 + γA3i−2) , w.p. 1

n ,√
n

n−1T
⊥ (Gi) , else,

where Gi is an i.i.d. standard Gaussian matrix, and
α, β, γ are specified in [13].

(ii) Define a truncated version B̃i of B̂i as follows

B̃i := B̂i1{‖B̂i‖≤c10 log3/2 n}, 1 ≤ i ≤M. (13)

One can demonstrate that the B̃i’s are nearly-isotropic and
well-bounded, and hence by Theorem 3 the associated operator
B̃ enables exact and stable recovery for all rank-r matrices
when M exceeds nrpoly log(n). This in turn establishes
Theorem 2 through an equivalence argument; details can be
found in [13].
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Figure 1. Phase transition plots for low-rank covariance matrix recovery
from quadratic measurements when n = 50.

IV. NUMERICAL EXAMPLES

To demonstrate the practicality of convex relaxation under
quadratic measurements, we now consider several numerical
examples by solving the programs via SDPT3. Numerically,
we declare Σ to be accurately recovered if the solution Σ̂
satisfies ‖Σ̂ −Σ‖F/‖Σ‖F ≤ ε0 = 10−3. Note that ε0 can be
selected to be much smaller than 10−3 without affecting the
phase transition diagram.

For the recovery of low-rank matrices using (6), we conduct
the following series of Monte Carlo trials. Specifically, we
choose n = 50, and for each (m, r) pair, we repeat the
following experiments 20 times. We generate Σ, an n×n PSD
matrix via Σ = LL>, where L is a randomly generated n×r
matrix with i.i.d. Gaussian entries. The sensing vectors are
generated as i.i.d. Gaussian vectors, and we obtain noiseless
quadratic measurements y. Figure 1 illustrates the empirical
probability of success recovery, which is reflected through the
color of each cell. It turns out that the practical phase transition
curve is very close to the theoretic limit, which confirms the
optimality of our algorithm.

For the recovery of Toeplitz low-rank matrices using (8),
we perform a series of experiments for Toeplitz low-rank
matrices when n = 50. By Caratheodory’s theorem, each
PSD Toeplitz matrix can be uniquely decomposed into a
linear combination of line spectra. In the real-valued situation,
the underlying spectral spikes occur in conjugate pairs (i.e.
(f1,−f1) , (f2,−f2) , · · · ). We independently generate r/2
frequency pairs within the unit disk uniformly at random, and
the amplitudes are generated as i.i.d. χ2(1) random variables.
Figure 2 illustrates the phase transition diagram for varied
choices of (m, r). The empirical success rate is calculated by
averaging over 50 trials. While there are r degrees of freedom,
our algorithm exhibits a near-linear phase transition boundary,
which justifies our theoretical prediction.

V. CONCLUSIONS AND FUTURE WORK

We have proposed and analyzed a technique to obtain
estimation from quadratic measurements. This sampling model
acts as an effective method for processing real-time data
under constraints on memory and computational complex-
ity, arising for example in high-frequency signal processing
tasks using energy measurements. Covariance recovery from
quadratic measurements can be achieved via efficient convex

m: number of measurements

r:
 r
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Figure 2. Phase transition plots for Toeplitz low-rank covariance matrix
recovery where frequency locations are randomly generated and n = 50.

programming as soon as the number of measurements exceeds
the fundamental sampling theoretic limit of the parsimonious
covariance structures. Our results highlight the stability of
the convex program in the presence of noise and imperfect
structural assumptions. It remains to see whether the proposed
sensing scheme can be used to recover other types of low-
dimensional covariance structures, such as a sparse inverse
covariance matrix. It will also be interesting to explore general
types of sampling models that satisfy RIP-`2/`1 such as
structured random measurements.
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