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Abstract

Developments in hardware and massive sensors or transducers have quickly shifted
many disciplines and applications from a scarcity of data to a deluge of data, present-
ing new challenges in signal processing of high-dimensional and large-scale datasets.
One key insight is that the signals of interest often possess certain geometry, such that
the information hidden in the signals usually exhibits a much lower dimension than
that of the signals themselves. New hardware and sensor developments also offer new
degrees of freedom in signal acquisition through design of pilot or probing sequences
that are tuned to the underlying geometry of systems, which is defined by the choice
of sensing sequences that optimizes the objective function of the system.

The first half of this thesis presents algorithms take advantage of geometry in the
form of sparsity and low rank representations to minimize complexity and increase sys-
tem capability. Performance is evaluated both in theory and in experiments. Chapter
2 discusses compressive sensing and sparse signal processing using Orthogonal Match-
ing Pursuit, with applications to asynchronous multi-user detection in random access
channels and diagnostic grade wireless ECG transmission and monitoring. Chapter 3
analyzes the sensitivity of compressive sensing to basis mismatch when the sparsity
basis of the signal realized by the physics is differed from the one assumed in compres-
sive sensing, and examines its implications for spectrum analysis and beamforming.
Chapter 4 presents the Parallel Estimation and Tracking via Recursive Least Squares
(PETRELS) algorithm for online estimation and tracking of a low-dimensional linear
subspace from highly incomplete streaming data.

The second half of this thesis presents deterministic sensing sequences for active
sensing and wireless communications. Chapter 5 presents coordination schemes of
the transmission of a pair of Golay complementary waveforms to suppress the range
sidelobes in a desired Doppler interval using the Prouhet-Thue-Morse sequence and
its generalizations. Chapter 6 presents a family of minimum mean squared error
(MMSE) optimal training sequences for channel state estimation in multi-user Mul-
tiple Input Multiple Output (MIMO)-Orthogonal Frequency Division Multiplexing
(OFDM) systems.
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Chapter 1

Introduction

1.1 The Geometry of Signals

The world of signal processing used to be limited by the complexity of algorithms
but now it is limited by the volume of data to be processed. The developments
in hardware and massive sensors or transducers have quickly shifted many scientific
disciplines and engineering applications from a scarcity of data, where the amount of
data to handle is below the capabilities of processing, communications and storage,
to a deluge of data in recent years, posing new challenges for signal processing in
understanding and extracting information from them.

One key insight that may be able to save the day is that the information hidden
in the signals of interest usually exhibits a much lower dimension than that of the
signals themselves. To put differently, it is possible to capture the high-dimensional
signals by a small number of parameters. This defines the geometry of signals. One
such geometry is sparsity, where the representation of the N -dimensional signal x in
a basis or an over-complete dictionary has no more than k � N nonzero coefficients.
In fact, the success of conventional compression schemes such as JPEG2000 is built
on the premise that images are sparse or near sparse in the wavelet domain. Another
geometry is low rank, where a series of N -dimensional signals xi, i = 1, 2, · · · approx-
imately spans a low-dimensional subspace, such as mutual distance measurements
collected across time from a wireless sensor localization network. Consumer datasets
from large-scale social networks also exhibit certain low rank structures. One ex-
ample is movies ratings where sparsity derives from consensus in public opinion and
the premise that a small number of factors have a disproportionate influence over
personal preferences.

The geometry of signals can be harnessed to design a new framework for sensing
and processing, called Compressive Sensing, and has shown its promise in Analog-to-
Digital (A/D) conversion, magnetic resonance imaging (MRI), optical systems, etc.
In stead of measuring the signal in full dimension, only a few compressive (sometimes
random) linear measurements are taken and stored without compromising the inher-
ited information in the signal. This simple sensing architecture performs compression
at the same time, therefore bypassing the risk of running out of storage and com-
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munication bandwidths, but requires more advanced signal processing methods that
explicitly take the geometry of signals into account to recover the information.

However, sometimes the underlying geometry of signals assumed by the proposed
algorithms is mismatched to the actual geometry determined by nature or the physi-
cal world. The Green’s function that specifies the point spread function of a source is
parameterized by continuous variables, but is sometimes modeled by a discrete grid.
It is of great importance to understand when this mismatch would cause catastrophic
error and when it would not, and to proceed with caution when this mismatch is
inevitable. Moreover, in applications such as network monitoring and video stream-
ing, the geometry of time-varying and dynamic signals may be changing slowly over
time, and it is important to infer and track the changes in a timely fashion from a
compressive number of streaming measurements.

The first half of the thesis from Chapter 2 to Chapter 4 presents algorithms that
exploits sparsity and low rank in signal representations, and evaluates their perfor-
mances both in theory and through numerical experiments. Chapter 2 discusses sparse
signal processing and develops performance guarantees for signal reconstruction and
model selection from compressive measurements using Orthogonal Matching Pursuit,
with applications to asynchronous multi-user detection in random access channels and
diagnostic grade wireless ECG transmission and monitoring. Chapter 3 analyzes the
sensitivity of compressive sensing to basis mismatch when the sparsity basis of the
signal proposed by the physics is differed from the one assumed in CS, and examined
its implications for spectrum analysis and beamforming [1, 2, 3]. Chapter 4 presents
the Parallel Estimation and Tracking via REcursive Least-Squares(PETRELS) algo-
rithm for online estimation and tracking of a low-dimensional linear subspace from
highly incomplete observations in streaming data [4, 5].

1.2 The Geometry of Systems

The task of signal processing is often centered around solving an optimization problem
with an objective function f(s), which depends on the sensing sequence s used to
probe the physical world. The sensing sequence s should be chosen so that the
objective f(s) is optimized. The objective function defines the geometry of systems.
In radar, the transmitted waveform should be selected such that its ambiguity function
approximates a perfect thumbtack shape. In communications, the training sequence
should be designed such that the channel state information is estimated with fidelity.

New hardware and sensor developments offer new degrees of freedom in signal
acquisition, which enable new ways of designing sensing sequences that better match
the geometry of systems. In active sensing, the Moyal’s identity states that the
volume under the ambiguity function of a single waveform is constant, implying it is
impossible to obtain an ideal thumbtack shape from transmitting a single waveform.
New generations of radar transmitters allow for transmission of different waveforms
across time, frequency, space and polarization of the electromagnetic waves. While
it is still impossible to create a perfect thumbtack shape for the whole delay-Doppler
plane, it is actually possible to push the volume under the ambiguity function outside
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of the delay-Doppler region of interest, by smartly coordinating the transmission of
a family with only two waveforms.

In wireless communications, Multiple-Input Multiple-Output (MIMO) systems
and Orthogonal Frequency Division Multiplexing (OFDM) support transmission of
data symbols across multiple antennas and multiple carriers. Higher dimensionality
makes it possible to introduce orthogonal space time codes and the algebraic struc-
tures of Fourier matrices into the design of optimal training sequences for channel
estimation. The new designs match the geometric properties required by certain
channel estimation methods, such as linear least-squares estimation methods.

The second half of the thesis from Chapter 5 to Chapter 6 presents deterministic
sequences that are tailored to the geometry of systems in active sensing and wireless
communications. Chapter 5 describes coordinated transmission of a pair of Golay
complementary waveforms to suppress the range sidelobes in a desired Doppler in-
terval in the radar ambiguity function. This involves Prouhet-Thue-Morse sequences
and their generalization [6, 7]. Chapter 6 presents a family of minimum mean squared
error (MMSE) optimal training sequences for multi-user MIMO-OFDM systems [8, 9].
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Chapter 2

Sparse Signal Processing from
Compressive Measurements

2.1 Introduction to Compressive Sensing

Sparse signal processing is a fundamental task in many applications involving high-
dimensional data, such as image processing, gene analysis, and networks, where the
signal of interests β ∈ Cp can be represented as a sparse or compressible vector. If β
is sparse, the cardinality of its support Tβ = {k : βk 6= 0} is assumed to be small. If β
is compressible, then its entries obey a power law as |β|(k) ≤ Crk

−r, where |β|(k) is the
kth largest entry of absolute values of β, r > 1 and Cr is a constant depending only
on r. Let βk be the best k-term approximation of β, i.e. βk = argminβ∈Σk

‖β−β′‖1

where Σk = {β′ ∈ Cp : |Tβ′| ≤ k}. Then βk is obtained by keeping the k-largest
entries of β and padding with zeros elsewhere. A compressible signal β can be well
approximated by βk, since

‖β − βk‖1 =

p∑
t=k+1

|β|(t) ≤
p∑

t=k+1

Crt
−r ≤

∫ ∞
x=k

Crx
−rdx =

Cr
r − 1

k−r+1.

Much of the recent advances in Compressive Sensing (CS) [10, 11] have been
centered around reconstructing a sparse signal β ∈ Cp in the presence of noise η
from a number of linear measurements y ∈ Cn that is much smaller than the signal
dimension p. The signal model is

y = Xβ + η, (2.1)

where X ∈ Cn×p is the measurement matrix.
There are commonly two goals when inverting (2.1) in different applications. The

first one is support recovery, or model selection, where one is interested in estimating
Tβ; one example is detecting the set of active users in multiaccess communication. The
other is signal reconstruction, where one is interested in estimating the coefficients of
β; one example is image denoising.
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In both cases, we seek the sparsest solution to β given the observation y. We
wish to solve

β∗ = arg min
β
‖β‖0 s.t. ‖y −Xβ‖2 ≤ ε (2.2)

where the noise ‖η‖2 ≤ ε is assumed bounded in the `2 norm. This is in general an
NP-hard problem. However, if the measurement matrixX satisfies certain properties,
(2.2) can be solved exactly or near exactly with high probability using computationally
feasible methods. There are two main classes of algorithms in this regard, one is
convex optimization based algorithms such as Basis Pursuit (BP) [12], the other is
greedy pursuit based algorithms such as Orthogonal Matching Pursuit (OMP) [13].

In Basis Pursuit, the solution to (2.2) is obtained using linear programming by
solving the following `1 minimization problem:

β∗ = arg min
β
‖β‖1 s.t. ‖y −Xβ‖2 ≤ ε. (2.3)

If X satisfies the so-called Restricted Isometry Property (RIP) [11], [14], such that
for any 2k-sparse vector υ,

(1− δ2k)‖υ‖2
2 ≤ ‖Xυ‖2

2 ≤ (1 + δ2k)‖υ‖2
2 (2.4)

with δ2k <
√

2− 1, the solution β∗ to (3.5) approximates β as [15], [14]

‖β − β∗‖2 ≤ C0k
−1/2‖β − βk‖1 + C1ε. (2.5)

The constants C0 and C1 are given by

C0 =
2(1 + α0)

1− α0

and C1 =
2α1

1− α0

. (2.6)

where

α0 =

√
2δ2k

1− δ2k

and α1 =
2
√

1 + δ2k

1− δ2k

. (2.7)

It is shown in [11] that a random matrix drawn from suitable distributions (e.g.
Gaussian or sub-Gaussian) will satisfy the RIP of order k with constant δk with
high probability provided that n & O(k log(p/k)/δ2

k). Therefore n & O(k log(p/k))
measurements are required to reconstruct all k-sparse vectors using BP from a random
measurement matrix with high probability.

The representative of the second class of algorithms is OMP, formulated as Algo-
rithm 1 and Algorithm 2 below. The two variants differ in the way they terminate
the iterations; Algorithm 1 performs a fixed number of iterations, and Algorithm 2
iterates until the stopping rule is hit. It is shown in [16] for a fixed sparse vector
β, that a random matrix X drawn from suitable distributions can recover β with
high probability with n & O(k log p) measurements from the noiseless measurement
y = Xβ. Unfortunately, it does not provide a practical way to design or validate
the properties required of a measurement matrix, and it does not guarantee a fixed
measurement matrix can be used to recover all sparse vectors. The RIP can also be
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used to characterize the performance of OMP. In [17], if the RIP of X of order k+ 1
is satisfied with δk+1 < 1/(3

√
k), then OMP will recover all k-sparse signal, again

from noiseless measurements y = Xβ. Then n & O(k2 log(p/k)) measurements are
required to reconstruct all k-sparse vectors from OMP using a random measurement
matrix with high probability. However, it is not computationally feasible to determine
whether a matrix X satisfies RIP, limiting the practical value of this criterion.

Algorithm 1 OMP with a fixed number of iterations

1: Input: an n× p matrix X, a vector y ∈ Cn, and a sparsity level k
2: Output: an estimate Ŝ of the true model S
3: Initialization: Ŝ0 := empty set, residual r0 = y
4: for t := 1 : k do
5: f := XHrt−1

6: i := arg maxj |fj|
7: Ŝt := Ŝt−1 ∪ {j}
8: rt := y −XŜt(XH

Ŝt
XŜt)

−1XH
Ŝt
y

9: end for
10: Ŝ := Ŝk

Algorithm 2 OMP with a stopping rule

1: Input: an n× p matrix X, a vector y ∈ Cn, and a threshold δ
2: Output: an estimate Ŝ of the true model S
3: Initialization: Ŝ0 := empty set, residual r0 = y, set the iteration counter t = 1
4: while ‖XHrt−1‖∞ > δ do
5: f := XHrt−1

6: i := arg maxj |fj|
7: Ŝt := Ŝt−1 ∪ {j}
8: rt := y −XŜt(XH

Ŝt
XŜt)

−1XH
Ŝt
y

9: t := t+ 1
10: end while
11: Ŝ := Ŝt−1

In contrast, if X is an n× p unit-norm measurement matrix, we define two coher-
ence properties of X = [x1, · · · ,xp] below that are easy to compute. The first one is
worst-case coherence:

µ = max
i 6=j
|〈xi,xj〉| = ‖XHX − I‖∞,

which captures the angles between different columns of X. The second one is average
coherence:

ν =
1

p− 1
max
i

∣∣∣∑
j:j 6=i

〈xi,xj〉
∣∣∣ =

1

p− 1
‖(XHX − I)1‖∞.
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which captures the average correlation between one column of X and the remaining
columns.

The performance of OMP can also be characterized using the worst coherence
of the measurement matrix X. It is shown in [13] by that if µ < 1

2k−1
, then OMP

will recover any k-sparse vector β from the noiseless measurement y = Xβ, and
this result is confirmed to be sharp in [18]. Furthermore it is proven in [19] that
provided the amplitudes of the nonzero entries of β are not too small, OMP will
recover the support of the signal from noisy observations. From the Welch bound
[20], µ & O(n−1/2), therefore in order to recover all k-sparse vectors, the number of
measurements required is n & O(k2).

2.2 Performance of Orthogonal Matching Pursuit

OMP is appealing and competitive in many practical applications due to its simplicity
and low computational cost [21]. However, compared with BP, the above performance
guarantees for OMP suffer from the so-called “square-root bottleneck”, in that the
number of measurements is quadratic in k, instead of linear in k as for BP. The goal of
this section is to present performance guarantees of OMP for both support recovery
and signal reconstruction that overcome the squared-root bottleneck. In particular,
in stead of finding a measurement matrix X via random draws that is able to recover
all k-sparse vectors, we aim to find a deterministic X that is able to recover any
k-sparse vectors with high probability from n & O(k log p) measurements, possibly
corrupted by noise.

We are interested in X that satisfies the Strong Coherence Property (SCP) if the
equation below holds:

µ ≤ 1

240 log p
, ν ≤ µ√

n
. (2.8)

Notice that the condition ν ≤ µ√
n

can be achieved with essentially no cost

via“wiggling” X, i.e. flipping the signs of the columns of X [22]. The “wiggling”
procedure doesn’t change µ and ‖X‖2. There are classes of deterministic matrices
whose worst-case coherence achieves the Welch bound, and satisfy the SCP, examples
including Gabor frames [23], Kerdock code sets [24], and Delsarte-Goethals code sets
[24].

We define the minimum-to-average ratio MAR and the tth-largest-to-average ratio
LAR(t) of a k-sparse vector β respectively as

MAR =
|β|2min

‖β‖2
2/k

, LAR(t) =
|β|2(t)
‖β‖2

2/k
, (2.9)

where |β|(t) and |β|min are the tth largest entry and the minimum entry of β in absolute
value. The signal-to-noise ratio SNR and minimum signal-to-noise ratio SNRmin are
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defined respectively as

SNRmin =
|β|2min

E‖η‖2
2/k

, SNR =
‖β‖2

2

E‖η‖2
2

. (2.10)

We have the following theorem for the OMP algorithm with a fixed number of
iterations in Algorithm 1.

Theorem 2.2.1. Suppose X satisfies the strong coherence property for any p ≥ 128,
η ∼ CN (0, σ2In). If the sparsity level of β satisfies

k ≤ min

{
p

c2
2‖X‖2

2 log p
,

1

c2
1µ

2 log p

}
(2.11)

for c1 = 50
√

2 and c2 = 104
√

2, and its nonzero entries satisfy

|β|(t+1) >
2σ
√

(1 + α) log p

1− c1µ
√

(k − t) log p
, (2.12)

or write differently, as

LAR(t+1) >
4(1 + α)

(1− c1µ
√

(k − t) log p)2
·
(
k log p

n SNR

)
, (2.13)

for 0 ≤ t ≤ k − 1 and α > 0, then the OMP algorithm in Algorithm 1 successfully
finds the support of β with probability at least 1− k(pαπ)−1 − 2p−2 log 2 − 4p−1.

Proof. See Appendix 7.1.2.

For the OMP algorithm with a stopping rule in Algorithm 2, we have the following
theorem.

Theorem 2.2.2. Suppose X satisfies the strong coherence property for any p ≥
128, η ∼ CN (0, σ2In). If the sparsity level of β satisfies (2.11) and its nonzero
entries satisfy (2.13) for α > 0, and choose δ = σ

√
(1 + α) log p, then the OMP

algorithm in Algorithm 2 successfully finds the support of β with probability at least
1− (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1 in k iterations.

Proof. See Appendix 7.1.3.

Since MAR ≤ LAR(t+1) for all 0 ≤ t ≤ k − 1, we have the following corollary of
Theorem 2.2.1 and Theorem 2.2.2.

Corollary 2.2.3. Suppose X satisfies the strong coherence property for any p ≥ 128,
η ∼ CN (0, σ2In). If the sparsity level of β satisfies (2.11), and it satisfies

MAR >
4(1 + α)

(1− c1µ
√
k log p)2

·
(
k log p

n SNR

)
, (2.14)
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for α > 0, then the support of β is successfully recovered by OMP with probability at
least 1− k(pαπ)−1 − 2p−2 log 2 − 4p−1 using Algorithm 1, and with probability at least
1 − (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1 by Algorithm 2 with δ = σ

√
(1 + α) log p in k

iterations.

Let θ = c1µ
√
k log p ∈ (0, 1), then (2.14) implies the sparsity level k satisfies

k <
(1− θ)2

4(1 + α)
· SNRmin

log p
. (2.15)

Combining with (2.11), we have

k < max
0<θ<1

min
{n(1− θ)2 SNRmin

4(1 + α) log p
,

θ2

c2
1µ

2 log p
,

p

c2
2‖X‖2

2 log p

}
, (2.16)

where the first term is determined by SNRmin, which is signal dependent; and the
second term and the third term are determined by the worst-case coherence and the
spectral norm of the measurement matrix X. If X is a tight frame, ‖X‖2

2 = p/n,
the third term becomes k < O(n/ log p). Now we write the worst-case coherence as
µ = c3n

−1/γ for some c3 > 0 and γ ≥ 2. From the Welch bound [20] µ is lower
bounded by µ & O(n−1/2), therefore the maximum sparsity level is determined by
the second term in (2.16), given k . O((n/ log p)2/γ). Note that the sparsity level k
doesn’t depend strongly on the profile of signal strength of β, i.e. MAR of the signal.

We have another corollary on partial recovery.

Corollary 2.2.4. Suppose X satisfies the strong coherence property for any p ≥ 128,
and η ∼ CN (0, σ2In). If the sparsity level of β satisfies (2.11), and its nonzero
entries satisfy (2.13) for 0 ≤ t ≤ k′ − 1 ≤ k − 1 and α > 0, then the OMP algorithm
in both Algorithm 1 and Algorithm 2 successfully selects k′ entries from the support
of β with probability at least 1− k′(pαπ)−1 − 2p−2 log 2 − 4p−1.

Proof. See Appendix 7.1.4.

It is worth noting that it is not necessarily the support of the k′-largest entries
that is recovered from the first k′ iterations. The next corollary provides the condition
on detecting the k′-largest entries from the first k′ iterations.

Corollary 2.2.5. Suppose X satisfies the SCP for any p ≥ 128, and η ∼
CN (0, σ2In). If the sparsity level of β satisfies (2.11), and its nonzero entries satisfy

|β|(t+1) >
|β|(t+2) + 2σ

√
(1 + α) log p

1− c1µ
√

(k − t) log p
, (2.17)

for 0 ≤ t ≤ k′−1 ≤ k−1 and α > 0, then the OMP algorithm in both Algorithm 1 and
Algorithm 2 successfully selects k′ largest entries from the support of β with probability
at least 1− k′(pαπ)−1 − 2p−2 log 2 − 4p−1.

Proof. See Appendix 7.1.5.
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Let Π be the support of β, the signal β can be written as β = PΠz, where PΠ is a
partial identity matrix with the k columns of In selected by Π, and z is the non-zero
part of β. Conditioned on the event that the support Π is successfully recovered, we
can reconstruct the amplitude of the signal β by first reconstructing the amplitude
on the detected support Π via least squares as

ẑ = X†Πy = X†Π(XΠz + η) = z + (XH
ΠXΠ)−1XT

Πη,

then fill in the zero entries to obtain β̂. Since

‖(XH
ΠXΠ)−1XH

Π η‖2
2 ≤ ‖(XH

ΠXΠ)−1‖2‖XH
Π η‖2

2

≤ 4k‖XH
Π η‖2

∞ ≤ 8kσ2 log p, (2.18)

therefore
‖β̂ − β‖2

2 = ‖ẑ − z‖2
2 ≤ 4(1 + α)kσ2 log p.

We have the following theorem.

Theorem 2.2.6. Suppose X satisfies the SCP for any p ≥ 128, and η ∼ N (0, σ2In).
If the sparsity level of β satisfies (2.11) and its nonzero entries satisfy (2.13) for
0 ≤ t ≤ k−1 and α > 0, then the `2 norm of the difference between the original signal
and the reconstructed signal via a least-squares estimation on the detected support from
the OMP algorithm satisfies

‖β̂ − β‖2
2 ≤ 4(1 + α)kσ2 log p

with probability at least 1 − k(pαπ)−1 − 2p−2 log 2 − 4p−1 using Algorithm 1, and with
probability at least 1− (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1 using Algorithm 2.

We now compare our bound with the performance guarantee of OMP for support
recovery provided in [19], which we have modified slightly for complex Gaussian noise.
In order to select exactly the correct support with probability at least 1−(k+1)(pαπ)−1

for the OMP Algorithm 2 with the stopping rule δ = σ
√

(1 + α) log p, the signal β
needs to satisfy

MAR >
4(1 + α)

(1− (2k − 1)µ)2
·
(
k log p

n SNR

)
, (2.19)

therefore the sparsity level of β satisfies

k < max
0<θ<1

min

{
(1− θ)2 SNRmin

4(1 + α) log p
,
1

2
+

θ

2µ

}
.

The first term is the same as that in (2.16), but the second term gives k ∼ O(µ−1),
therefore k . O(n1/γ). We achieved a much tighter bound (2.16) by sacrificing the
probability of success to 1− (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1.

We also compare with the performance guarantee of the Sorted One Step Thresh-
olding (SOST) algorithm analyzed in [23], which outputs the index set of the k-largest
entries in absolute values of f = XHy. By rephrasing Theorem 4 in [23], in order to
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select the correct support with probability at least 1 − 6p−1, the sparsity level of β
satisfies

k < max
0<θ<1

min
{(1− θ)2 SNRmin

16 log p
,

θ2

800µ2 log p
· 1

MAR
,

n

2 log p

}
. (2.20)

Compared with (2.16), the performance of the OMP algorithm is reduced because of
the third term, when X is not a tight frame. On the other hand, the SOST algorithm
performs poorly when the MAR is of the signal is much smaller than 1, as seen from
the second term in (2.20).

In the next two sections, we provide two applications of CS. The first one is
asynchronous multi-user detection in random access channels, presented in Section 2.3
[25], where users are distributed in a large space and our job is to find them. The
second one is diagnostic grade wireless ECG transmission and monitoring, presented
in Section 2.4 [26], where our job is to encode a signal in a large space so that it can
be found.

2.3 Demodulation of Mutually Interfering Signals

Demodulation of mutually interfering signals is central to multiaccess communica-
tions. It includes the special case of the Random Access Channel (RAC) that arises
in modeling control channels in wireless networks where Multi-User Detection (MUD)
is used to recover active users. It may be expanded to include demodulation of trans-
mitted symbols. The two biggest impediments are the asynchronous character of
random access and the lack of Channel State Information (CSI) at the Base Station
(BS). The signature waveforms are obtained by modulating a chip waveform by dig-
ital sequence of length L. Our goal is to maximize the number of users N that the
network can support, and the number of active users K that the BS can reliably
demodulate with or without requiring knowledge of the delays or CSI.

A baseline architecture for demodulation of a sparse superposition is a bank of
matched filters, each correlating the received signal with a shift of a signature wave-
form. The first drawback is the number of required filters which is N(τ + 1) where τ
is the maximum delay. A second drawback is that when the signature waveforms are
not orthogonal, the noise will be colored and amplified.

We consider an alternative architecture where the analog signal is sampled directly
at the chip rate. This approach does not amplify noise but it does require a high-rate
Analog-to-Digital (A/D) converter. We frame the challenge of demodulation as a
CS problem where the columns of the measurement matrix are randomly sampled
shifts of the digital sequences used to generate the signature waveforms. This is
the extension to asynchronous communication of the architecture for synchronous
MUD proposed in [27]. This model of asynchronous RAC appears in [28] where
compressive demodulation is accomplished through convex optimization; see also [29]
for a treatment of synchronous RAC. The drawback of [28] is that convex optimization
is difficult to realize to meet the need of real-time decoding. Compared with the result
in [27], where the required number of samples is on the order of K2 logN(τ + 1), we
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can process N users with a maximum discrete delay τ from a simple matching pursuit
algorithm using a number of samples on the order of K logN(τ + 1).

2.3.1 System Model

Consider a multiuser system with N users. We assume that users communicate using
spread spectrum waveform of the form

xn(t) =
√
Pn

L−1∑
l=0

an,lg(t− lTc), t ∈ [0, T ), n = 1, . . . , N, (2.21)

where g(t) is a unit-energy pulse
∫
|g(t)|2dt = 1, T is the symbol duration, Tc is

the chip duration, Pn denotes the transmit power of the nth user, and the spreading
sequence

ãn = [an,0 · · · an,L−1]T , n = 1, . . . , N (2.22)

is the L-length (real or complex-valued) codeword assigned to the nth user. The
signal at the receiver is given by

y(t) =
N∑
n=1

gn
√
Pnδ{n∈I}bnxn(t− τn) + w(t), (2.23)

where gn ∈ C and τn ∈ R+ are the channel fading coefficient and the delay associated
with the nth user, respectively. We assume binary phase-shift keying (BPSK) trans-
mission, where bn ∈ {−1, 1} is the transmitted symbol of the nth user, and w(t) is a
complex additive white Gaussian noise (AWGN) introduced by the receiver circuitry.
Denote by I the set of active users. The Dirac function δ{x} = 1 if x is true otherwise
it is equal to zero.

Define the individual discrete delays τ ′n , bτn/Tcc ∈ Z+, and the maximum dis-
crete delay τ , maxn τ

′
n ∈ Z+. While the values of τ ′n are unknown, τ is assumed to

be known by the transmitters and receivers.
We extend the vectors ãn periodically. That is, taking an as the last P = L−τ−1

symbols of ãn, we have ãn,l = an,P−τ−1+l for l = 1, . . . , τ + 1. As a result, any length
P sub-sequence of the vectors ãn will be a cyclic shift of an.

We assume the codewords are of a reasonable length relative to the delays such
that P > M . The receiver starts sampling from the τ + 1 sample, so that all active
users’ waveforms have arrived. Then the receiver takes M compressive measurements
which come from uniformly random subsampling of the received sequence or its DFT.
As a result, the output data vector can be written as

y = IΩARb+w ,HRb+w, (2.24)

where y ∈ CM×1, H = IΩA ∈ CM×N(τ+1), where M is the number of samples,
A ∈ CP×N(τ+1), and the noise is Gaussian distributed with zero mean and variance
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σ2IM×M . The subsampling matrix is IΩ, where Ω denotes indices of samples. The
columns of the matrix A have a block structure as A = [A1 · · · AN ], with each
block An ∈ RP×(τ+1) consisting of a circulant-shifted codeword as

An =
[
T0ãn T1ãn · · · Tτ ãn

]
, (2.25)

where the notation Tk denotes circulant shift the matrix by k. The vector b ∈ CN(τ+1)

contains the transmitted symbols; it is a concatenation of N vectors b′n, each of length
τ + 1, with only one non-zero entry at the location of τ ′n:

b′n,m = bnδ{m=τ ′n+1}.

The diagonal matrix R has entries containing the transmitted power, channel gain,
and the symbols:

Rmm = gn
√
Pnδ{m=(n−1)(τ+1)+τ ′n}, n = 1, . . . , N, m = 1, . . . , N(τ + 1).

We assume the support of active users I is a uniform random K-subset of {1, . . . , N}.

2.3.2 Demodulation and Codeword Construction

Demodulation is accomplished by a matching pursuit procedure (Algorithm 3) that
takes explicit account of the block structure of the measurement matrix A and corre-
sponding block sparsity of the received signal. The key feature is that after selecting
one column from a block the demodulator ignores the other columns in that block,
since they correspond to alternative shifts of the same signature waveform.

Algorithm 3 Matching Pursuit Detector for Asynchronous MUD

1: Input: matrices H and R, signal vector y, number of active users K
2: Output: active user set I, transmitted symbols bn, n ∈ I
3: Initialize: I0 := empty set, b̂0 := 0, v0 := y,
H0 = {1, . . . , N(τ + 1)}

4: for j = 0→ K − 1 do
5: Compute: f := HHvj
6: Find i = argmaxn∈Hj |fn|
7: Detect active users: Ij+1 = Ij ∪ {di/(τ + 1)e}
8: Update: Hj+1 = Hj\{bi/(τ + 1)c(τ + 1) + 1, · · · di/(τ + 1)e(τ + 1)}
9: Detect symbols: [b̂j+1]i = sgn(rifi), and [b̂j+1]n = [b̂j]n for n 6= i.

10: Update residual: vj+1 = vj −HRbj+1

11: end for
12: Î = IK , b̂ = b̂K

The performance guarantee of Algorithm 3 can be stated in terms of the coherence
properties ofH , which shows with a number of samples on the order of K logN(τ+1),
we can detect N users with a maximum discrete delay τ with high probability. The
readers are referred to [25] for details.
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Here we describe how to construct the signature sequences ãn from Gabor frames.
Define g ∈ CP be a seed vector with each entry |gi|2 = 1/M and let T (g) ∈ CP×P

be the circulant matrix generated from g as T (g) = [T0g · · · Tτg]. Its eigen-
decomposition can be written as

T (g) = Fdiag(FHg)FH , Fdiag(ĝ)FH ,

where F = 1√
P

[ω0,ω1, · · · ,ωP−1] is the DFT matrix with columns

ωm = [ej2π
m
P
·0, ej2π

m
P
·1, . . . , ej2π

m
P
·(P−1)]T .

We define corresponding diagonal matrices Wm = diag[ωm], for m = 0, 1, . . . , P − 1.
Then the Gabor frame generated from g is an P × P 2 block matrix of the form

Φ = [W0T (g), W1T (g), . . . , WP−1T (g)]. (2.26)

where each column has norm
√
P/M . If we apply the DFT to the Gabor frame

Φ, to obtain Φ̂ = FHΦ, then the order of time-shift and frequency modulation
is reversed; therefore Φ̂ is composed of circulant matrices with proper ordering of
columns. We index the P 2 columns using P × P by setting m = Pq + `. The
matrix Φ` is obtained by keeping all columns with r = ` (mod P ), so Φ` can be
written as Φ` =

√
P · diag(S`g)F , where S is the right-shift matrix by one, and

Φ̂` = FΦ` =
√
PT (W`ĝ) is a circulant matrix. We use [Φ1, · · · ,ΦP−1] as the matrix

A.
At the receiver, a partial DFT is applied to the received symbol, so IΩ = FΩ is a

partial DFT matrix, and the resulted matrix H = ΦΩ is a subsampled Gabor frame
defined in (2.26), with unit-norm columns. The Gabor frame is known to satisfy the
coherence property [23] and [25] shows that this is also true for the subsampled Gabor
frames.

The maximum discrete delay τ this Gabor frame construction can support is P−1,
where W`ĝ, ` = 1, · · · , P can be assigned as signature sequences (ãn’s) to a user, so
the maximum number of total user should satisfy N ≤ P . In general, if τ < P −1, we
can split Φ` into blocks to support multiple users, and send Td(τ+1)W`ĝ as signature
sequences for d = 0, · · · , dP/τe and ` = 1, · · · , P , so the maximum number of total
user satisfies N ≤ P bP/τc.

Remark: For simplicity we only consider a flat fading channel model so that
there is a single non-zero entry in each block of the matrix A, but we could easily
extend to multi-path fast-fading channel models, where there are multiple non-zero
entries in each block.

2.3.3 Numerical Examples

We now provide numerical experiments to validate the performance. Let the seed
vector for the Gabor frame be either an Alltop sequence (which meets the Welch
bound) with length P = 127, or a random uniform vector with length P = 128. The
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channel gain and transmitted power is assumed to be known, and with Rmm = 1 for
all m = 1, · · · , N(τ + 1).

The active users are selected first by uniformly choosing at random from 1 to
P , and then, for each active user, the delay is chosen uniformly at random with the
maximum chip delay as P . First, we fix the number of active users, namely K = 2 or
K = 5, and apply the Matching Pursuit Decoder described in Algorithm 3 for noise-
free case or noisy case where the AWGN noise is SNR = 20dB per measurement. The
partial DFT matrix is applied with randomly selected rows and the number of Monto
Carlo runs is 10, 000. Fig. 2.1 shows the MUD error rate with respect to the number
of measurements. We attribute superior performance of the Gabor frame determined
by the Alltop sequence to its optimal coherence, while for random Gabor frames
the coherence properties are only satisfied in expectation. A different perspective is
found in Fig. 2.2 which describes the phase transition for detection of K users using
M measurements.

Finally, we consider a maximum delay that is relatively small, for example τ = 16
when P = 128 for a random Gabor frame. We transmit the first sequence within the
block of the circulant matrix, resulting in a total number of P 2/τ = 1024 users, and
Fig. 2.3 shows the MUD error rate with respect to the number of random measure-
ments.

To sum up, we have provided a new architecture for compressive demodulation
of mutually interfering signals in this section. The advantage over standard MUD is
that, while only using a number of samples on the order of K logN(τ + 1), we can
process N users with a maximum discrete delay τ from a simple matching pursuit
algorithm, compared to N(τ + 1) samples for standard MUD. The architecture also
supports blind MUD by assigning multiple waveforms to a given user and transmitting
information by the choice of waveform.

2.4 Diagnostic Wireless ECG Monitoring

For remote monitoring of ECG, it is extremely important to maintain the clinical in-
tegrity of the signals. Continuous monitoring of ECG is widely used in many clinical
settings, including Intensive Care Units (ICUs), post-operative monitoring, emer-
gency care and in ambulatory settings such as Holter monitoring. As interpretation
of continuous ECG requires analysis of as many as 105 cardiac cycles per patient
per day, there has been a need for tools to perform automated labeling and classi-
fication of ECG. American National Standard Institute (ANSI) and Association for
the Advancement of Medical Instrumentation (AAMI) have established standards for
automated tools such as EC57 [30] that are recognized by the FDA in United States.
The tools for implementing these protocols, along with ECG databases and anno-
tations by experts for normal and abnormal ECG beats are available in the public
domain at [31], [32]. We refer to annotations by experts as ground truth.

Commercial ECG machines that provide automated labeling and classification
benchmark their classification performance against the ground truth. While EC57
does not specify minimum performance requirements for metrics such as Sensitivity
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Figure 2.1: Multi-user detection error rate with respect to the number of mea-
surements using a Gabor frame generated from (a) an Alltop sequence with length
P = 127, and (b) a random uniform vector with length P = 128 for different active
users and SNR, where the maximum chip delay is P . The Alltop Gabor frame has
better performance due to its optimal coherence properties.
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Figure 2.2: Multi-user detection error rate with respect to the number of active users
using an Alltop Gabor frame with P = 127 for fixed number of measurements.
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Figure 2.3: Multi-user detection error rate as a function of the number K of active
users for a fixed number of measurements M .
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(Se – percentage of true events detected) and Positive Predictivity (+P – percentage
of detected events that are true), it mandates that such performance metrics with
databases in [30] are disclosed. From a clinician’s perspective, a wireless continuous
ECG monitoring system should provide diagnostic utility similar to that of a wired
system in current standard of care, while enabling non-intrusive form factors for use
in free living conditions. This means that there should be no statistically significant
degradation in performance due to the wireless link. We observe that 2% or more
degradation in classification accuracy from a wired baseline performance is clinically
significant and about 1% Packet Loss Rate (PLR) can cause significant degradation
in performance.

Packet losses occur in wireless networks due to fading, interference, congestion,
system loading, etc. Popular choices for radios in Body Area Networks (BAN) such as
Bluetooth and Zigbee operate in the crowded 2.4GHz band, along with IEEE 802.11.
In [33], the authors investigated the interference of 802.11 traffic presented to ZigBee
nodes in BAN and found 33% − 56% packet loss rate, depending upon the network
setup. Another study [34] based on Zigbee reported packet losses as much as 50% in a
clinical trial involving remote ECG monitoring. Note that important events like QRS-
complex in ECG signals occur over a short period of time, thus packet losses can result
in significant loss of clinically relevant data. In this section, we evaluate the proposed
packet loss mitigation approach using compressive sensing with MIT-BIH and AHA
databases using a state-of-the-art commercial ECG arrhythmia classification software
and show that the performance does not degrade even at high packet loss rates [26].

2.4.1 CS Approaches at Sensor and Receiver

We first demonstrate the sparsity of ECG signals in the wavelet domain. Fig. 2.4
shows a sample of raw ECG signals in time domain and its wavelet transform using
Daubechies-4 (D4) as mother wavelet. It is straightforward to validate the sparsity of
ECG signals in the wavelet domain, from the fast decay of the ordered coefficients in
amplitude in red. More formally, denote the ECG signal in a frame by s ∈ RN , where
N is the length of a frame, and the wavelet transform by the matrix W ∈ RN×N ,
then s can be written as

s = Wx, (2.27)

where x is the sparse representation of s in the wavelet domain.
Sensor Signal Processing: We project the the ECG signal in the time domain

to a random space prior to transmission, by multiplying it with a sensing matrix
Hs ∈ RN×N whose entries are assumed to be i.i.d. Bernoulli entries from {0, 1}.
Hence the encoded ECG signal r ∈ RN can be written as

r = Hss. (2.28)

Notice there is no compression at the sensor side. The encoded ECG signal r is then
split into smaller packets and transmitted wirelessly.

In practice, each of the elements hij of the matrix Hs is generated from a Linear
Feedback Shift Register (LFSR) sequence and quantized into a one-bit value in {0, 1}.
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Figure 2.4: A sample of raw ECG signal in time domain and in the wavelet domain.

Thus, the matrix multiplication is implemented as additions only, corresponding to
the state of the quantized LFSR output. It is also important to keep in mind bit-
growth due to the CS encoding operation. Suppose that the incoming xi are b1 bits
each. If the kth row of the matrix Hs contains D ones, then the output rk will
require b2 = b1 + log2(D) bits if full resolution is to be maintained. To reduce the
memory required to store and the bandwidth required to transmit r, one approach
is to implement a sparse matrix where the number of ones per row is small. In this
work, the input x is 16 bits/sample and the memory budget for the output r is 20
bits/sample. Therefore, we construct a matrix with a maximum of 16 ones per row
to allow for 4 bits of expansion.

For a real-time implementation, we utilize a double randomization scheme where
each column ck of the matrix Hs is a one-bit quantized output of a log2N LFSR
sequence starting at a seed sk. It is well known that a b-bit LFSR sequence is cyclic
with periodicity 2b−1 and is unique for a given starting seed s. Thus, by selecting an
LFSR sequence with a maximum length of N − 1 and a quantization threshold, we
are able to control the density of ones per row. The quantization threshold is selected
based on the desired ones-density per row. In order to make the columns statistically
independent, the master LFSR sequence that provides the quantized {0, 1} values
also point to a starting seed sk for the kth column.

Receiver Signal Processing: Notice that the channel randomly drops packets, we
could represent the effect of packet loss via a random partial identity matrix Hc ∈
RL×N , which is obtained by removing rows of the identity matrix corresponding to
lost packets, and L is the number of received samples. Then the received ECG signal
y over a frame can be represented as

y = Hcr + n = HcHss+ n ,Hs+ n, (2.29)

where n denotes possible noise. Due to the randomness in Hc and Hs, the matrix
H = HcHs satisfies the RIP with high probability. On the receiver side, we im-
plemented a fast implementations of batch OMP algorithms [35]. Fig. 2.5 shows a
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six-second segment of ECG recording from the record 203 of MIT-BIH database. The
matrixHs is a 128×128 matrix and each ECG frame is transmitted in 8 packets. The
middle row shows the data in the random space, with missing segments correspond-
ing to packet losses. It can be seen from the reference (top row) and test (bottom
row) annotations that there are two locations where an atrial premature beat (A) was
mis-categorized as a normal sinus rhythm (N). All the remaining beats were correctly
classified in this segment.

Figure 2.5: ECG Reconstruction using the proposed packet loss mitigation framework.

2.4.2 Validation for Diagnostic Wireless ECG

As described earlier, ANSI/AAMI specification EC57 [30] provides a framework for
validating the performance of automated software tools that classify and label large
amounts of ECG waveform data resulting from continuous monitoring. In this section,
we apply current standard of care protocols in wired settings to wireless ECG monitor-
ing. The databases we consider are MIT-BIH Arrhythmia Database (48 records of 30
minutes each) and AHA database for ventricular arrhythmia detectors (80 records of
35 minutes each). Overall, these databases contain a wide variety of cardiac rhythms
comprising nearly 250, 000 normal and 22, 000 abnormal heart beats from multiple
subjects. All of the records in the databases come with ground truth of annotations
by cardiologists. Commercial ECG machines that provide automated labeling and
classification benchmark their performance against this ground truth. The metrics
for beat classification performance are Sensitivity (Se) and Positive Predictivity (+P),
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defined as follows [30]:

Se = TP = (TP + FN)

+P = TP = (TP + FP)

where,

• A correctly detected event is called a true positive (TP);

• An erroneously rejected (missed) event is called a false negative (FN);

• An erroneously detected non-event is called a false positive (FP);

• A correctly rejected non-event is called a true negative (TN).

We implemented arrhythmia analysis and beat classification using the Mortara
algorithm [36]. We re-sampled each record at 500 Hz and scaled to 2.5 V/LSB to
meet the specifications for ECG data as input to the Mortara arrhythmia analysis
library. The arrhythmia analysis library was compiled into an executable to read
the ECG records and output measurements including heart rate, ST values, QRS
amplitudes, etc. along with beat and event classification such as normal sinus rhythm,
pre-ventricular, ventricular fibrillation, asystole, bigeminy, pause, etc. The algorithm
processes from 1 to 8 leads and can detect QRS complexes as long as at least one
lead is valid. The output from Mortara is formatted such that it can be used directly
with EC57 tools for comparison with the ground truth annotations by cardiologists
provided in the databases. EC57 requires testing and disclosure of the algorithms
sensitivity and positive predictivity along with Root Mean Square (RMS) heart rate
error. The comparison may start after 5 minutes from the beginning of the record.
For a beat to be correctly classified, the algorithm must identify the beat with correct
classification within 150 ms of the actual event.

Figure 2.6: Experimental setup for ECG validation.

Fig. 2.6 depicts the experimental setup used to validate the packet loss mitigation
proposed in this study. The black path labeled “Reference Annotations” represents
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annotations of the ECG waveforms by cardiologists. The blue path labeled “Baseline
Annotations” represents the current gold standard in a wireline setting. Each cardiac
database was analyzed to provide a baseline performance measure to confirm that
introduction of CS did not affect the system performance and to confirm that the
system performance of the test bed used for this work provides results that match
those from prior EC57 compliance tests. The red path labeled “Test Annotations”
represents wireless case in this study. At the sensor, we used a sparse sensing matrix
Hs of size 128×128 as described in Section 2.4.1. Note that increasing the dimensions
of measurement matrices provides better reconstruction accuracy, at the expense
of increase in encoder complexity and additional latency. It is essential from low
power perspective that the application layer is optimized for a given radio in BAN.
We experimented with 32 packets per frame, corresponding to 4 ECG samples per
packet. A bursty channel-error model was used to drop packets at loss rates of 0.5%,
1%, 5%, 15%, 25% and 35%. The received data was reconstructed into the Nyquist
(time) domain and provided to the Mortara arrhythmia analysis algorithm to generate
annotations.

We evaluate the proposed packet loss mitigation approach with MIT-BIH and
AHA databases using a state-of-the-art commercial ECG arrhythmia classification
software and show that the performance does not degrade even at high packet loss
rates. Fig. 2.7 (a) and (b) present degradation in beat classification as a function of
packet loss rate for MIT-BIH and AHA databases, respectively. The solid lines rep-
resent the CS based packet loss mitigation approach (CS), the dashed lines represent
the case with no random projections at the sensor but with sparse reconstruction at
the receiver (NyCS) and the dotted lines represent the Nyquist domain data (NyQ),
respectively. The legends Q and V correspond to normal QRS sinus rhythms and ab-
normal VEB rhythms, respectively. The legends Se and +P correspond to sensitivity
and positive predictivity, respectively.

We observe that 2% or more degradation in classification accuracy from a wired
baseline performance is clinically significant. From Fig. 2.7, it can be seen that
performance degrades monotonically for both NyCS and NyQ, compared with CS.
This is particularly true for sensitivity and positive predictivity of abnormal rhythms
(V), compared with normal sinus rhythms (Q). The positive predictivity degradation
is also severe, suggesting more false positives as packet loss rate increases. Without
some method of packet loss mitigation, a 1% packet loss rate can cause clinically
significant degradation. While the high packet loss conditions studied here are corner
cases, we believe that typical loss rates of around 5% are typical for BAN modems in
the crowded 2.4 GHz band. As a reference, packet loss rates of 1− 3% are commonly
used to evaluate voice quality in 3G standards.
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(a) MIT-BIH database

(b) AHA database

Figure 2.7: The diagnostic degradation in (a) MIT-BIH database and (b) AHA
database.
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Chapter 3

Sensitivity of Compressive Sensing
to Basis Mismatch

3.1 Motivation

In a great number of fields of engineering and applied science the problem confronting
the designer is to invert an image, acquired from a sensor suite, for the underlying
field that produced the image. And typically the desired resolution for the underlying
field exceeds the temporal or spatial resolution of the image itself. Here we give image
its most general meaning to encompass a times series, a space series, a space-time
series, a 2-D image, and so on. Similarly, we give field its most general meaning to
encompass complex-exponential modes, radiating modes, coded modulations, multi-
path components, and the like. Certainly this interpretation includes the problem of
identifying field elements from electromagnetic and acoustic images, multipath com-
ponents in wireless communication, radiating sources in radar and sonar, and light
sources in optical imaging and spectrometry.

Broadly speaking there are two main (classical) principles for inverting the kinds
of images that are measured in speech, communication, radar, sonar, and optics. The
first principle is one of matched filtering, wherein a sequence of test images is matched
to the measured image. The test images are generated by scanning a prototype im-
age (e.g., a waveform or a steering vector) through frequency, wavenumber, doppler,
and/or delay. In time series analysis, this amounts to classical spectrum analysis to
identify the frequency modes, and the corresponding mode amplitudes or powers, of
the signal [37], [38]. In phased-array processing, it amounts to spectrum analysis
in frequency and wavenumber to identify the frequency-wavenumber coordinates of
source radiations impinging on the array [39]–[42]. In Space-Time Adaptive Process-
ing (STAP) for radar and sonar, it amounts to spectrum analysis in delay, frequency,
and wavenumber to reconstruct the radar/sonar field [43], [44]. The second principle
is one of parameter estimation in a separable linear model, wherein a sparse modal
representation for the field is posited and estimates of linear parameters (complex
amplitudes of modes) and nonlinear mode parameters (frequency, wavenumber, de-
lay, and/or doppler) are extracted, usually based on maximum likelihood, or some
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variation on linear prediction, using `2 minimization (see, e.g., [38], [45], [46]). There
is a comprehensive literature in electrical engineering, physics, and chemistry on the
performance and limitations of these two classical principles (see, e.g., [37]–[49]). One
important limitation is that any subsampling of the measured image has consequences
for resolution (or bias) and for variability (or variance).

The recent advent of compressive sensing theory has revolutionized our view of
imaging, as it demonstrates that subsampling has manageable consequences for image
inversion, provided that the image is sparse in an a priori known basis (see, e.g., [50]–
[61]). For imaging problems in spectrum analysis (estimating complex exponential
modes), and passive and active radar/sonar (estimating Doppler and angle of arrival),
this basis is usually taken to be a Fourier basis (actually a DFT basis) constructed for
resolution of 2π/N , withN a window length, array length, or pulse-to-pulse processing
length. Several articles (see, e.g., [62]–[68]) consider the use of compressed sensing
theory for discrete radar/sonar imaging, and sensor array processing, when the targets
are taken to be on a regular grid in delay, Doppler, and wavenumber, and study this
theory as a new high resolution imaging principle. But no matter how large the size
N of the grid is, the actual field will not place its sources on the center of the grid
points {2πn/N} in frequency or wavenumber, or on the center of the grid points in
delay-Doppler-wavenumber. This means the image is actually not sparse in the DFT
basis or the basis defined by the grid. In fact any target that lies between two cells
of a discretely-resolved range-doppler plane or frequency-wavenumber plane will spill
non-zero values into all cells, with the amplitude of the spillage following a Dirichlet
kernel, decaying as 1/f , where f is frequency or wavenumber. This spillage turns a
sparse representation into an incompressible one in the DFT basis. Grid misalignment
problems also arise in many other applications including channel estimation [69, 70].
These observations raise the following question: What is the sensitivity of CS for
image inversion to mismatch between the assumed basis for sparsity and the actual
basis in which the image is sparse? We aim to answer this question and examine its
consequences for problems in spectrum analysis, beamforming, modal analysis, and
radar/sonar imaging.

In order to frame our question more precisely, let us begin with two models for
a measured image s ∈ CN . In the mathematical model to be assumed in the CS
procedure, the image is composed as s = Ψ0x, where the basis Ψ0 ∈ CN×N is
known, and is typically a gridded imaging matrix (e.g., the N -point DFT matrix),
and x ∈ CN is a sparse or compressible vector of field parameters that compose the
image as a linear combination of columns of Ψ0. But, as a matter of fact, the image
s is composed by the physics as s = Ψ1θ, where the basis Ψ1 ∈ CN×N is determined
by a point spread function, a Green’s function, or an impulse response, and the field
parameter vector θ is sparse. Typically Ψ1 is determined by frequency, wavenumber,
delay, and/or doppler parameters that are unknown a priori. More importantly, these
parameters do not lie exactly on the gridding points of Ψ0, e.g., a DFT matrix or
an identity matrix. So Ψ0 6= Ψ1. We call this basis mismatch, and note that it is
present in all imaging problems, no matter how large N is, or equivalently no matter
how fine-grained the gridding procedure is.
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Each of the hypothesized models for the image s may be inverted for its field
parameters:

x = Ψ−1
0 s and θ = Ψ−1

1 s. (3.1)

These inversions determine the coordinate transformation

x = Ψθ and θ = Ψ−1x (3.2)

where Ψ = Ψ−1
0 Ψ1 ∈ CN×N .

If s is sparse in Ψ1, then the field parameters θ will be sparse in the identity
basis, denoted by I. The field parameters x = Ψθ in the model s = Ψ0x will be
sparse in the Ψ basis, but not in the identity basis. So the question is, “what is the
consequence of assuming that x is sparse in I, when in fact it is only sparse in an
unknown basis Ψ, which is determined by the mismatch between Ψ0 and Ψ1?”

We answer this question by deriving bounds on the `1-norm (and also the `2-
norm) of the error in approximating the presumably sparse parameter vector x from
its CS measurements. We start by analyzing the effect of basis mismatch on the best
k-term approximation error x − xk, which is central to arguing for the accuracy of
the basis pursuit solution. Here, we derive bounds for ‖x − xk‖1 in terms of the
mismatch level between Ψ and I and the image dimension N . More specifically, we
find a tight upper bound for ‖x − xk‖1 and show that this bound grows as (N −
k)β‖θ‖q, where β upper bounds the degree of mismatch between the rows of Ψ
and I, and q ≥ 1. We also establish a tight lower bound on the worst-case `1

error in the best k-term approximation x − xk and show that it grows as (N −
k)η‖θ‖q, with η representing the lower bound on the degree of mismatch between the
rows of Ψ and I. Subsequently, we derive bounds on the image inversion error in
estimating the parameter vector x and the image reconstruction error in estimating
the image s = Ψ0x using basis pursuit. All these bounds exhibit similar growth
behavior as those for the best k-term approximation error, but they are not tight. Our
analysis shows that, in the presence of basis mismatch, exact or near-exact (within
noise levels) recovery cannot be guaranteed from bounds that involve best k-term
approximation errors and suggests that the basis pursuit recovery may suffer large
errors. Our numerical examples demonstrate a considerable performance degradation
in recovering x from CS measurements, when the assumed basis for sparsity is a
DFT basis but the actual sparsity basis does not align with the DFT basis. The
inaccuracy in field reconstruction persists even when the number of CS measurements
is increased to the full image dimension. Comparisons show that classical image
inversion approaches, such as reduced rank linear prediction, can provide more reliable
reconstructions of the field than basis pursuit with a similar number of measurements
in the presence of basis mismatch.

We note that although we present our results in the context of basis pursuit, our
mathematical analysis is applicable to any sparse recovery principle that relies on
the accuracy of best k-term approximations for performance guarantees. These in-
clude greedy recovery algorithms, such as Regularized Orthogonal Matching Pursuit
(ROMP) [71] and Compressive Sampling Matching Pursuit (CoSaMP) [72]. The
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implication of our results is that, at least for high resolution spectrum analysis,
Direction-Of-Arrival estimation, or delay-Doppler imaging, and radar/sonar imag-
ing, where the problem is to identify a small number of modal parameters, extra care
may be needed to account for the effects of basis mismatch.

3.2 Problem Formulation

There are two steps in CS, namely compressed recording and inversion (or recovery)
for parameters (see, e.g., [50]–[53]). In recording, we make linear measurements of s
as in (3.1), with possible additive noise b, so the low-dimensional observation y is
assumed to be

y = Φs+ b = (ΦΨ0)x+ b , Ax+ b (3.3)

where Φ ∈ CM×N is the CS matrix (typically a matrix with i.i.d. Gaussian or
i.i.d Bernoulli entries), M is the number of measurements, and Ψ0 is the assumed
basis that sparsely composes s as s = Ψ0x. We define A = ΦΨ0 ∈ CM×N as the
measurement matrix. Without loss of generality, we need only deal with A and Ψ in
the following discussions.

If the measurement matrix A satisfies the Restricted Isometry Property (RIP)
with δA2k <

√
2 − 1 [11, 14], one can seek the sparsest solution using Basis Pursuit

(BP):
x∗ = arg min

x
‖x‖1 s.t. y = Ax. (3.4)

In the noisy case, the problem is modified as:

x∗ = arg min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ ε (3.5)

where ‖b‖2 ≤ ε is the bounded noise. The solution x∗ to (3.4) approximates x as

‖x− x∗‖1 ≤ C0‖x− xk‖1 and ‖x− x∗‖2 ≤ C0k
−1/2‖x− xk‖1, (3.6)

where xk is the best k-term approximation of x. For the noisy case (3.5), we have
[15, 14]

‖x− x∗‖2 ≤ C0k
−1/2‖x− xk‖1 + C1ε. (3.7)

The constants C0 and C1 are given in (2.6).
In the matched case where the hypothesized basis Ψ0 coincides with the actual

basis Ψ1, the mismatched basis Ψ = Ψ−1
0 Ψ1 reduces to I and x = θ is sparse in the

identity basis I. Then, for k-sparse θ the bound ‖x − xk‖1 is zero in (3.6) and the
solution x∗ is an exact recovery of x in the noise-free case.

However, in the mismatched case where Ψ0 6= Ψ1, x = Ψθ is actually sparse in
the Ψ basis, rather than the I basis. The question is, “what is the consequence of
minimizing ‖x‖1 under the constraint y = Ax, when in fact the correct problem is
to minimize ‖θ‖1 under the constraint y = AΨθ = ΦΨ1θ?”

Remark: ROMP [71] and CoSaMP [72] have similar universal performance bounds
as BP. For example, under the RIP of the measurement matrix, ROMP can approxi-
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mately recover any compressible signal from noisy observations. Given noisy observa-
tions y = Ax + b with ‖b‖2 ≤ ε, ROMP produces a 2k-sparse signal approximation
x∗ that satisfies the bound

‖x− x∗‖2 ≤ C
√

log 2k

(
1√
k
‖x− xk‖1 + ε

)
. (3.8)

where C = 160 [71]. Similarly, for a given precision parameter ζ, CoSaMP produces
a 2k-sparse signal approximation x∗ that satisfies

‖x− x∗‖2 ≤ C max

{
ζ,

1√
2k
‖x− xk‖1 + ε

}
. (3.9)

where C = 3.42 [72]. Therefore, our analysis of the best k-term approximation error
is also relevant to these algorithms.

3.3 Main Results

3.3.1 Degradation of the Best k-Term Approximation

Let us express the mismatched basis Ψ = Ψ−1
0 Ψ1 ∈ CN×N as Ψ = I + E, where

E is a perturbation matrix with respect to the identity basis and x = Ψθ. Let xk
and θk denote the best k-term approximations to x and θ respectively. We have the
following theorem.

Theorem 3.3.1 (Best k-term approximation error). Let Ψ = I + E and x = Ψθ.
Let 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If the rows eTm ∈ C1×N of E are bounded as
‖em‖p ≤ β for 1 ≤ m ≤ N , then

|‖x− xk‖1 − ‖θ − θk‖1| ≤ (N − k)β‖θ‖q. (3.10)

The bound is achieved when the entries of E satisfy

emn = ±β · ej(arg(θm)−arg(θn)) · (|θn|/‖θ‖q)q/p (3.11)

for n ∈ Tθ and 1 ≤ m ≤ N .

Proof. See Appendix 7.2.1.

When θ is k-sparse in I, i.e., θ = θk, then (3.10) reduces to

‖x− xk‖1 ≤ (N − k)β‖θ‖q, (3.12)

which shows that the upper bound on the `1 error ‖x−xk‖1 is linearly increasing in
N , β and ‖θ‖q, and linearly decreasing in k.

Remark: When p = ∞ and q = 1, the inequality (3.10) corresponds to the case
where the entries themselves of the perturbation matrix E are upper bounded, that
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is, when |emn| ≤ β for n ∈ Tθ. When p = q = 2, the inequality (3.10) corresponds to
the case where the row 2-norms of E are bounded as ‖em‖2 ≤ β.

Remark: Theorem 3.3.1 can be easily generalized to have `2 norms on the left-
hand-side of (3.10), i.e.,

|‖x− xk‖2 − ‖θ − θk‖2| ≤ (N − k)1/2β‖θ‖q. (3.13)

This follows by taking similar steps as in the proof of Theorem 3.3.1, but using the
Minkowski inequality instead of the triangle inequality.

Corollary 3.3.1 (Normalized `1 error). Let Ψ = I +E and x = Ψθ. Let 1 ≤ p, q ≤
∞ and 1/p + 1/q = 1. If the rows eTm ∈ C1×N of E are bounded as ‖em‖p ≤ β for
1 ≤ m ≤ N , then the `1 norm of x is bounded as

(1−Nβ)‖θ‖1 ≤ ‖x‖1 ≤ (1 +Nβ)‖θ‖1 (3.14)

and the normalized `1 error for approximating x by xk is bounded as

1

1 +Nβ

‖θ − θk‖1

‖θ‖1

− (N − k)β

1 +Nβ
≤ ‖x− xk‖1

‖x‖1

≤ 1

1−Nβ
‖θ − θk‖1

‖θ‖1

+
(N − k)β

1−Nβ
(3.15)

where the upper bound in (3.15) is valid if Nβ < 1.

Proof. The inequalities in (3.14) follow from Theorem 3.3.1 by setting k = 0 and
q = 1, and the bound follows by combining (3.10) and (3.14).

Remark: In Theorem 3.3.1, we have characterized the mismatch between the
assumed basis Ψ0 and the actual basis Ψ1 by considering bounds on the p-norm of the
rows of perturbation matrix E = Ψ−1

0 (Ψ1 −Ψ0) that captures the deviation of Ψ =
Ψ−1

0 Ψ1 from the identity matrix I. But we may think of the incoherence µ(Ψ0,Ψ1)
between Ψ0 and Ψ1 as another way of characterizing the degree of mismatch between
Ψ0 and Ψ1. And in fact µ(Ψ0,Ψ1) and the “max norm” of ‖E‖ are related, as we
now show. Let ψi(j) denote the jth column of the basis Ψi, i = 0, 1. The incoherence
between the bases Ψ0 and Ψ1 is defined as

µ(Ψ0,Ψ1) = max
i,j
|〈ψ0(i),ψ1(j)〉|. (3.16)

Let ‖M‖max = max
i,j
|Mi,j| denote the max-norm of a matrixM . Then, we can express

µ(Ψ0,Ψ1) as

µ(Ψ0,Ψ1) = ‖ΨH
0 Ψ1‖max = ‖ΨH

0 Ψ0Ψ
−1
0 Ψ1‖max ≤ ‖ΨH

0 Ψ0‖max‖Ψ‖max (3.17)

where Ψ = Ψ−1
0 Ψ1. When Ψ0 is unitary, we have µ(Ψ0,Ψ1) = ‖Ψ‖max. Substituting

Ψ = I +E and applying the triangle inequality gives

µ(Ψ0,Ψ1) ≤ ‖ΨH
0 Ψ0‖max(1 + ‖E‖max). (3.18)
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Theorem 3.3.1 establishes an upper bound for the `1 error ‖x−xk‖1 in the best k-
term approximation of x for the case where the degree of mismatch is upper bounded.
The following theorem considers the case where the level of mismatch between the
bases Ψ0 and Ψ1 is lower bounded and establishes a lower bound for the worst-case
`1 error ‖x− xk‖1.

Theorem 3.3.2 (Worst-case best k-term approximation error). Let Ψ = I +E and
x = Ψθ. Let 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If the rows of E are lower bounded
as ‖em‖p ≥ η, then

max
E:‖em‖p≥η

‖x− xk‖1 ≥ ‖θ − θk‖1 + (N − k)η‖θ‖q. (3.19)

Proof. See Appendix 7.2.2.

Theorem 3.3.1 shows that the `1 norm ‖x−xk‖1 of the best-k term approximation
error will be no worse than the upper bound deduced from (3.10) if the mismatch
level between Ψ0 and Ψ1 (measured by ‖em‖p) is upper bounded by β. In contrast,
Theorem 2 shows that if the mismatch level is lower bounded by η then there exists
a mismatch scenario where ‖x − xk‖1 is no better than the bound in (3.19). Both
bounds grow linearly with the grid size N and the mismatch levels. Fig. 3.1 illustrates
the interplay between Theorems 3.3.1 and 3.3.2 when θ is k-sparse, i.e., when ‖θ −
θk‖1 = 0. The outer ball has radius A(β)‖θ‖q, with A(β) = (N − k)β and q ≥ 1,
and corresponds to the upper bound in Theorem 3.3.1. The inner ball, with radius
A(η)‖θ‖q, corresponds to Theorem 2. The figure illustrates that there always exists
a mismatched basis Ψ = I +E, with mismatch level η ≤ ‖em‖p ≤ β, for which the
best k-term approximation xk lies between the two balls, away from zero, and thus
no guarantee can be provided for the performance of basis pursuit.

3.3.2 Confidence Bounds for Image Inversion

We now derive bounds for the `1 and `2 norms of the image inversion error x − x∗.
Here we invert the image s = Ψ0x for its field parameter vector x, using basis
pursuit, under the assumption that s has a sparse representation in Ψ0, when in
fact this representation is non-sparse or incompressible. These bounds can then be
used to find bounds on the `1 and `2 norms of the image reconstruction error s− s∗,
which speaks to how well the image s can be recomposed in the basis Ψ0 using the
mismatched basis pursuit approximation x∗.

Theorem 3.3.3 (Image inversion error). Let A be fixed and satisfy δA2k <
√

2− 1 at
the assumed sparsity level k. Let 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If the rows of E
satisfy ‖em‖p ≤ β, then the image inversion error ‖x− x∗‖1 is bounded as

‖x− x∗‖1 ≤ C0‖θ − θk‖1 + C0(N − k)β‖θ‖q. (3.20)

For noisy recovery (3.5), with ‖b‖2 ≤ ε, we have

‖x− x∗‖2 ≤ C0k
−1/2‖θ − θk‖1 + C0(N − k)k−1/2β‖θ‖q + C1ε, (3.21)
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Figure 3.1: Confidence `1 balls for xk when η ≤ ‖em‖p ≤ β and θ is k-sparse.

where C0 and C1 are given in (2.6).

Proof. This follows easily by combining Theorem 3.3.1 and the performance bounds
of basis pursuit.

Theorem 3.3.3 is a direct consequence of Theorem 3.3.1 and therefore the discus-
sion about the connection between the max-norm of the perturbation matrix E and
the incoherence measure µ(Ψ0,Ψ1) also applies here. It shows that the upper bound
on ‖x − x∗‖1 is linearly increasing in the image dimension N and in the mismatch
level β, and linearly decreasing in k. The upper bound on the `1 error in image
reconstruction has similar growth behavior since

‖s− s∗‖2 = ‖Ψ0x−Ψ0x
∗‖2 ≤ ‖Ψ0‖2‖x− x∗‖2. (3.22)

3.3.3 Fourier Imaging and DFT Grid Mismatch

A mismatch case of particular interest arises in Fourier imaging when a sparse signal
with arbitrary frequency components is taken to be sparse in a DFT basis. Our
objective in this section is to highlight the particularly problematic nature of basis
mismatch in this application.

Suppose the sparsity basis Ψ0 in the mathematical model s = Ψ0x, as-
sumed by the compressed sensing procedure, is the unitary N -point DFT ba-
sis. Then the `th column of Ψ0 is a Vandermonde vector of the form ψ0,` =

31



[1, ej2π`/N , · · · , ej2π`(N−1)/N ]T and the basis Ψ0 is

Ψ0 =
1√
N


1 1 · · · 1
1 ej2π/N · · · ej2π(N−1)/N

...
...

...

1 ej2π(N−1)/N · · · ej2π(N−1)2/N

 . (3.23)

Without loss of generality, let us assume that the `th columnψ1,` of the actual sparsity
basis Ψ1 is mismatched to the `th column of Ψ0 by ∆θ` in (normalized) frequency,
where 0 ≤ ∆θ` <

2π
N

. Then, Ψ1 is given by

Ψ1 =
1√
N


1 1 · · · 1

ej∆θ0 ej(
2π
N

+∆θ1) · · · ej(
2π(N−1)

N
+∆θN−1)

...
...

. . .
...

ej∆θ0(N−1) ej(
2π
N

+∆θ1)(N−1) · · · ej(
2π(N−1)

N
+∆θN−1)(N−1)

 . (3.24)

The mismatched basis Ψ = Ψ−1
0 Ψ1 then can be written as

Ψ =


L(∆θ0 − 0) L(∆θ1 − 2π(N−1)

N
) · · · L(∆θN−1 − 2π

N
)

L(∆θ0 − 2π
N

) L(∆θ1 − 0) · · · L(∆θN−1 − 2π·2
N

)
...

...
. . .

...

L(∆θ0 − 2π(N−1)
N

) L(∆θ1 − 2π(N−2)
N

) · · · L(∆θN−1 − 0)

 , I +E,

where L(θ) is the Dirichlet kernel given by

L(θ) =
1

N

N−1∑
n=0

ejnθ =
1

N
ej

θ(N−1)
2

sin(θN/2)

sin(θ/2)
. (3.25)

The (m, `)th element of the mismatched basis Ψ is a sample of the Dirichlet kernel
L(θ) at θ = ∆θ` − 2π

N
(m− `), where m = 0, 1, . . . , N − 1 and ` = 0, 1, . . . , N − 1.

The Dirichlet kernel L(θ), shown in Fig. 3.2 (ignoring the unimodular phasing
term) for N = 64, decays slowly as |L(θ)| ≤ (Nθ/2π)−1 for |θ| ≤ π, with L(0) = 1.
This decay behavior follows from the fact that | sin(θ/2)| ≥ 2|θ/2π| for |θ| ≤ π,
where the equality holds when |θ| = π. This means that (Nθ/2π)−1 is in fact the
envelope of |L(θ)|. Therefore, every mismatch between a physical frequency θ` and
the corresponding DFT frequency 2π`/N produces a column in the mismatched basis
Ψ for which the entries vanish slowly as each column is traversed. The consequence
of this is that the parameter vector x in the mathematical model s = Ψ0x, for which
the CS procedure is seeking a sparse solution, is in fact incompressible. This follows
from the coordinate transformation x = Ψθ between the true sparse parameter vector
θ and the presumed sparse vector x. The few nonzero elements of θ leak in to all
locations through Ψ and the slow decay of elements of Ψ makes x incompressible.
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In addition to frequency mismatch, the columns of Ψ1 may also be mismatched
to those of Ψ0 by damping factors λ` ≤ 0. In such a case, the basis Ψ1 is given by

Ψ1 =
1√
N


1 1 · · · 1

e[λ0+j∆θ0] e[λ1+j( 2π
N

+∆θ1)] · · · e[λN−1+j(
2π(N−1)

N
+∆θN−1)]

...
...

. . .
...

e[λ0+j∆θ0](N−1) e[λ1+j( 2π
N

+∆θ1)](N−1) · · · e[λN−1+j(
2π(N−1)

N
+∆θN−1)](N−1)

 ,
and the (m, `)th element of the mismatch basis Ψ is

ψm,` =
1

N

N−1∑
n=0

en[λ`+j(∆θ`−
2π(m−`)

N
)]. (3.26)

In general, the basis mismatch problem exists in almost all applications and is not
limited to Fourier imaging. However, we emphasize Fourier imaging in this chapter
as a ubiquitous imaging problem, where basis mismatch seems to have a particularly
destructive effect.

3.4 Numerical Examples

We now present three simple numerical examples to demonstrate the effect of basis
mismatch on the performance of CS. The first example considers single tone mismatch
to the DFT grid, the second considers both frequency and damping mismatch, and

33



the third example considers a synthetic mismatch where the bound established in
Theorem 3.3.1 is achieved.

3.4.1 Tone Reconstruction with Basis Pursuit

Here we assume that the image s is a single tone (a 1-sparse signal) with an unknown
frequency. The actual sparsity basis Ψ1 is a matrix, in which the `th column is
mismatched in frequency by 0 ≤ ∆θ < 2π

N
with respect to the `-th column of the

N -point DFT matrix, which the compressed sensing procedure takes as the sparsity
basis Ψ0. The rest of the columns of Ψ1 and Ψ0 are assumed to be identical. Damping
mismatch is not considered in this example.

Fig. 3.3 (a) shows the normalized `1 error ‖x−xk‖1/‖x‖1 for different frequency
mismatch levels ∆θ and different values of k, when the single tone is located off the
(` = 10)-th DFT frequency in the (N = 512)-point DFT grid. The plot shows that
the normalized best k-term approximation error is considerable even at moderate
mismatch levels, and speaks to the fact that, even for a slight mismatch with respect
to the DFT mode, the presumably sparse representation is in fact incompressible due
to the slow decay of the Dirichlet kernel.

Fig. 3.3 (b) compares the reconstructed tone to the actual tone for different mis-
match levels. In the left column, the blue plots show the actual tone and the red
plots show the closest tone on the DFT grid to the actual tone, for the corresponding
mismatch level. On the right hand side, the red plots show the reconstructed tone
s∗ = Ψ0x

∗, where Ψ0 is the DFT basis, and the blue plots again show the actual tone.
The number of compressed sensing measurements used for reconstruction is M = 64.
The frequency mismatch ∆θ/(2π/N) is 0.05 for the plots in the top row, 0.25 for the
plots in the middle row, and 0.5 for the plots in the bottom row. The inaccuracy in
reconstruction is noticeable for 25% (i.e., ∆θ = 0.252π

N
) and 50% frequency mismatch.

Fig. 3.4 (a) shows how the normalized image inversion error ‖x − x∗‖1/‖x‖1

varies with the number of measurements M in N = 512 dimensions for different
mismatch levels ∆θ = 0.005 · 2π/N , 0.05 · 2π/N and 0.1 · 2π/N . The measurement
matrix A is generated with random Gaussian entries satisfying RIP conditions, and
the experiment takes 50 runs and returns the average error. We observe that without
increasing the number of measurements beyond what is required in the mismatch-free
case the normalized error can be large, even for a small frequency mismatch ∆θ =
0.005 · 2π/N . This threshold is approximately 3k logN/k = 27 in this example. For
measurement dimensions smaller than 27 the normalized error is large, but it decreases
relatively fast as the number of measurements increases. However, after this threshold
the normalized error decays slowly and only when the number of measurements is
increased to N the error goes to zero. Fig. 3.4 (b) shows the normalized image
inversion error ‖x − x∗‖1/‖x‖1 versus the frequency mismatch level ∆θ/(2π/N) for
several (M,N) pairs, where M is the number of measurements and N is the grid
dimension.
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Figure 3.3: (a) ‖x − xk‖1/‖x‖1 versus ∆θ/(2π/N) for various k. (b) Left column:
the actual tone (blue) superimposed on the closest DFT tone; Right column: the
reconstructed tone (red) superimposed on the actual tone (blue). The frequency
mismatch ∆θ/(2π/N) is 0.05, 0.25 and 0.5 for the plots in the top, middle and
bottom row.
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Figure 3.4: (a) Normalized image inversion error ‖x− x∗‖1/‖x‖1 versus the number
of measurements M for different frequency mismatch levels ∆θ = 0.005 · 2π/N , 0.05 ·
2π/N and 0.1 · 2π/N , with N = 512. (b) ‖x − x∗‖1/‖x‖1 versus the frequency
mismatch level ∆θ/(2π/N) for different (M,N) pairs.
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3.4.2 Modal Analysis

We now give examples to demonstrate the effect of DFT grid mismatch on modal
analysis based on CS measurements and compare the results with those obtained
using classical image inversion principles, namely standard DFT imaging and linear
prediction (LP). The reader is referred to [38], [45], [46] for a description of linear
prediction. In all the experiments, the dimension of the image/signal is N = 64. The
number of measurements M used for inversion is the same for all methods and we
report results for M = N/4 = 16 to M = N/2 = 32 to M = N/1 = 64.

We first consider the case where the field we wish to invert for contains only
modes that are aligned with the DFT frequencies. This is to demonstrate that CS
and LP both provide perfect field recovery when there is no mismatch, as shown in
Fig. 3.5(a)-(c). In each subfigure (a) through (c) there are four panels. In the top-left
panel the true underlying modes are illustrated with stems whose locations on the
unit disc indicate the frequencies of the modes, and whose heights illustrate the mode
amplitudes. The phases of the modes are randomly chosen, and not indicated on
the figures. The frequencies at which modes are placed, and their amplitudes, are
(2π · 9/N, 1), (2π · 10/N, 1), (2π · 20/N, .5), and (2π · 45/N, .2). These frequencies
are perfectly aligned with the DFT frequencies. No noise is considered for now. We
observe that both CS and LP provide perfect recovery. The DFT processing however
has leakage according to the Dirichlet kernel unless the measurement dimension is
increased to the full dimension N = 64. This was of course expected.
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Figure 3.5: Comparison of DFT, CS, and LP inversions in the absence of basis mis-
match (a) M = N/4 = 16, (b) M = N/2 = 32, and (c) M = N/1 = 64.

But what is the connection between the circular plots in Fig. 3.5(a)-(c) and the
models Ψ0x and Ψ1θ? The top-left panel (actual modes) in each subplot is an
“illustration” of (Ψ1,θ), with the locations of the bars on the unit disc corresponding
to active modes from Ψ1 and the heights of the bars corresponding to the values
of nonzero entries in θ. The top-right panel (conventional FFT) illustrates (Ψ0, x̂),
where x̂ is the estimate of x obtained by DFT processing the measurement vector y.
The bottom-left (compressed sensing) illustrates (Ψ0,x

∗), where x∗ is the solution to
(3.4) (or to (3.5) in the noisy cases to follow). The bottom-right panel (LP) illustrates
(Ψ̂1, θ̂), where Ψ̂1 and θ̂ are, respectively, estimates of Ψ1 and θ obtained by LP (or
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reduced-rank LP). When there is no mismatch and noise, (Ψ0,x
∗) and (Ψ̂1, θ̂) match

(Ψ1,θ). However, they significantly differ when mismatch is introduced.
We now introduce basis mismatch either by moving some of the modes off the DFT

grid or by damping them. For frequency mismatch, the first two modes are moved to
(2π ·9.25/N, 1) and (2π ·9.75/N, 1). For damping mismatch the mode at (2π ·9/N, 1)
is drawn off the unit circle to radius 0.95, so that the mode is damped as (0.95)n. The
rest of the modes are the same as in the mismatch free case. Fig. 3.6 (a)-(f) shows the
inversion results for DFT, CS, and LP (order 8) for M = N/4 = 16 to M = N/2 = 32
to M = N/1 = 64. In all cases, DFT and CS result in erroneous inversion. The
inaccuracy in inversion persists even when the number of measurements is increased
to the full dimension. However, we observe that LP is always exact. These are all
noise free cases.

But can the mismatch effect be compensated for by replacing the observation con-
straint y = Ax in basis pursuit with a quadratic constraint ‖y−Ax‖2 ≤ ε? The plots
in Fig. 3.7 suggest that this is not the case. These plots show CS inversions for three
different values of ε. The matched vs. mismatched modes and mode amplitudes in
these plots are exactly the same as those in Fig. 3.6 and the number of measurements
is M = 16. These results are not an artifact of the quadratic constraint allowed or
the choice of rows in the compressed recording matrix, as we have experimented with
many values and reported typical plots. For large values of ε the inversion returns a
zero vector, as seen in the fourth subplot in Fig. 3.7(a),(b). The reason is that when
ε > ‖y‖2 the sparsest solution satisfying ‖y −Ax‖2 ≤ ε is x = 0.

Finally, we consider noisy observations for both mismatched and mismatch-free
cases. In the mismatch-free case, the frequencies at which modes are placed, and
their amplitudes, are (2π · 9/N, 1), (2π · 11/N, 1), (2π · 20/N, .5), and (2π · 45/N, .2).
For frequency mismatch, the first two modes are moved to (2π · 9.25/N, 1) and (2π ·
10.75/N, 1). For damping mismatch the mode at (2π · 9/N, 1) is drawn off the unit
circle to radius 0.95. The number of measurements is M = N/2 = 32. The LP order
is changed to 16, but rank reduction [45], [46] is applied to reduce the order back to
8 as is typical in noisy cases. The inversion results are shown in Fig. 3.8.

3.4.3 A Synthetic Worst-Case Example

Let Ψ0 = I be the sparsity basis assumed in the compressed sensing procedure and
let Ψ1 = I + β11T be the actual sparsity basis, where 1 = [1, 1, . . . , 1]T is an N -
dimensional vector of ones. Then, the mismatched basis is Ψ = Ψ−1

0 Ψ1 = I + β11T .
Assume that the true parameter vector θ is a sparse vector in which all nonzero entries
are equal to one and the positions of the nonzero entries are uniformly distributed.
The coordinate transformation x = Ψθ has a simple form in this example and is
given by

x = (I + β11T )θ = θ + kβ1. (3.27)

Thus, a nonzero entry of 1 in θ results in a 1 + kβ entry in x and a zero entry
in θ produces a kβ entry in x. This example amounts to the worst case mismatch
scenario in Theorem 3.3.1, with q = 1, where the upper bound is achieved. In this
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Figure 3.6: Comparison of DFT, CS, and LP inversions in the presence of basis mis-
match. Moving from the top to middle to bottom row, the number of measurements
changes from M = N/4 = 16 to M = N/2 = 32 to M = N/1 = 64.

39



−1

0

1

−1

0

1
0

0.5

1

Actual modes

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.1

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.5

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.8

−1

0

1

−1

0

1
0

0.5

1

Actual modes

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.5

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.8

−1

0

1

−1

0

1
0

0.5

1

CS with ε=0.1

(a) Frequency mismatch (b) Damping mismatch

Figure 3.7: CS performance as the quadratic constraint ‖y − Ax‖2 ≤ ε is relaxed
from ε = 0.1 to ε = 0.5 to ε = 0.8; (a) with frequency mismatch (b) with damping
mismatch.
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Figure 3.8: Comparison of DFT, CS, and LP inversions with noisy observations: (a)
no mismatch, (b) frequency mismatch, and (c) damping mismatch.
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case, ‖x‖1 = (1 +Nβ)‖θ‖q, and the normalized error bound can be written as

‖x− x∗‖1

‖x‖1

≤ C0

1 +Nβ

‖θ − θk‖1

‖θ‖1

+ C0
(N − k)β

1 +Nβ
. (3.28)

Fig. 3.9 (a),(b), respectively, show the `1 error ‖x − x∗‖1 and the normalized
`1 error ‖x − x∗‖1/‖x‖1 as a function of the mismatch parameter β for dimensions
N = 512, M = 64. We notice that the `1 error ‖x − x∗‖1 grows linearly with the
increase in the mismatched level β, which agrees with Theorem 3.3.3. We also observe
that even for moderate amounts of mismatch the normalized `1 error is considerable.
When the mismatch level β goes to infinity, the normalized error bound converges to
C0

(
N−k
N

)
. In Fig. 3.9 (b), the normalized error curve becomes flat when β is above

O(10−2).

3.5 Conclusions

The theory of CS suggests that compressed recording has manageable consequences
for image inversion, provided the image is sparse in an a priori known basis, e.g.,
a DFT basis or a basis associated with a range-Doppler-wavenumber grid. But no
physical field is sparse in the DFT basis or in any a priori known basis defined by
a regular grid in delay, doppler, frequency, and/or wavenumber, and there is always
mismatch between the mathematical model for sparsity and the physical model for
sparsity.

In this chapter, we have investigated the sensitivity of CS (specifically basis pur-
suit) to mismatch between the assumed basis for sparsity and the actual sparsity basis.
Our mathematical analysis and numerical examples indicate that the performance of
compressed sensing for approximating a sparse physical field may degrade consider-
ably in the presence of basis mismatch, even when the assumed basis corresponds to
a fine-grained discretization of the parameter space. Our analysis suggests that for
high resolution spectrum analysis, DOA estimation, or delay-doppler imaging, where
the problem is to identify a small number of modal parameters, extra care may be
needed to account for the effects of basis mismatch. As a final remark, the parameter
estimation problem in Fourier imaging and image inversion might be better handled
using more sophisticated sparse models such as a low-rank smooth manifold.
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Figure 3.9: (a) The recovery error ‖x−x∗‖1 from basis pursuit versus the mismatched
level β for N = 512, M = 64 and k = 10. (b) The normalized recovery error
‖x − x∗‖1/‖x‖1 from basis pursuit versus the mismatched level β for N = 512,
M = 64 and k = 10.
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Chapter 4

Low-rank Subspace Estimation
from Partial Streaming Data

4.1 Introduction

Many real world data sets exhibit an embedding of low-dimensional structure in
a high-dimensional manifold. Smooth manifolds are well approximated by tangent
planes, and trees of tangent planes [73]. When the embedding is assumed linear, the
underlying low-dimensional structure becomes a linear subspace. Subspace Identifi-
cation and Tracking (SIT) plays an important role in various signal processing tasks
such as online identification of network anomalies [74], moving target localization
[75], beamforming [76], and denoising [77]. Conventional SIT algorithms collect full
measurements of the data stream at each time, and subsequently update the subspace
estimate by utilizing the track record of the stream history in different ways [78, 79].

The theory of Compressed Sensing (CS) [11, 10] and Matrix Completion (MC)
[80, 81] have shown that it is possible to infer data structure from highly incomplete
observations. Compared with CS, which allows reconstruction of a single vector
from only a few attributes by assuming it is sparse in a pre-determined basis or
dictionary, MC allows reconstruction of a matrix from a few entries by assuming it is
low-rank. A popular method to perform MC is to minimize the nuclear norm of the
underlying matrix [80, 81] which requires no prior knowledge of rank, in parallel with
`1 minimization for sparse recovery in CS. Other approaches include greedy algorithms
such as OptSpace [82] which requires an estimate of rank for initialization. Identifying
the underlying low-rank structure in MC is equivalent to subspace identification in
a batch setting. When the number of observed entries is slightly larger than the
subspace rank, it has been shown that with high probability, it is possible to test
whether a highly incomplete vector of interest lies in a known subspace [83].

In high-dimensional problems, it might be expensive and even impossible to collect
data from all dimensions. For example in wireless sensor networks, collecting from all
sensors continuously will quickly drain the battery power. Ideally, we would prefer
to only collect data from a fixed budget of sensors each time to increase the overall
battery life, and still be able to identify the underlying structure. Another example is
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in online recommendation systems, where it is impossible to expect rating feedbacks
from all users on every product. Therefore it is of growing interest to identify and
track a low-dimensional subspace from highly incomplete information of a data stream
in an online fashion. In this setting, the estimate of the subspace is updated and
tracked across time when new observations become available with low computational
cost. The GROUSE algorithm [84] has been proposed for SIT from online partial
observations using rank-one updates of the estimated subspace on the Grassmannian
manifold. However, performance is limited by the existence of “barriers” in the search
path [85] which result in GROUSE being trapped at a local minima. We demonstrate
this behavior through numerical examples in Section 4.5 in the context of direction-
of-arrival estimation.

In this chapter we further study the problem of SIT given partial observations
from a data stream as in GROUSE. Our proposed algorithm is dubbed Parallel Es-
timation and Tracking by REcursive Least Squares (PETRELS). The underlying
low-dimensional subspace is identified by minimizing the geometrically discounted
sum of projection residuals on the observed entries per time index, via a recursive
procedure with discounting for each row of the subspace matrix in parallel. The
missing entries are then reconstructed via least-squares estimation if required. The
discounting factor balances the algorithm’s ability to capture long term behavior and
changes to that behavior to improve adaptivity. We also benefit from the fact that
our optimization of the estimated subspace is on all the possible low-rank subspaces,
not restricted to the Grassmannian manifold. We discuss the convergence properties
of PETRELS by revealing its connection with the well-known Projection Approx-
imation Subspace Tracking (PAST) algorithm [78] in the full observation scenario,
and analyze the convergence in a rank-one subspace update scenario. Finally, we
provide numerical examples to measure the impact of the discount factor, estimated
rank and number of observed entries. In the context of direction-of-arrival estimation
we demonstrate superior performance of PETRELS over GROUSE in terms of sepa-
rating close-located modes and tracking the changes in the scene. We also compare
PETRELS with state of the art batch matrix completion algorithms, showing it as a
competitive alternative when the subspace is fixed.

The rest of the chapter is organized as follows. Section 4.2 states the problem and
provides background in the context of matrix completion and conventional subspace
tracking. Section 4.3 describes the algorithm in detail. We discuss convergence issues
of PETRELS in Section 4.4. Section 4.5 shows numerical evaluation of PETRELS.

4.2 Problem Statement and Related Work

4.2.1 Problem Statement

We consider the following problem. At each time t, a vector xt ∈ RM is generated as:

xt = Utat + nt ∈ RM , (4.1)
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where the columns of Ut ∈ RM×rt span a low-dimensional subspace, the vector
at ∈ Rrt specifies the linear combination of columns and is Gaussian distributed
as at ∼ N (0, Irt), and nt is additive white Gaussian noise distributed as nt ∼
N (0, σ2IM). The rank of the underlying subspace rt is not assumed known ex-
actly and can be slowly changing over time. The entries in the vectors xt can be
considered as measurements from different sensors in a sensor network, or values of
different pixels from a video frame. In practice, the upper bound of the subspace
rank is considered known such that rt ≤ r for any t.

We assume only partial entries of the full vector xt are observed, as depicted in
Fig. 4.1, given by

yt = pt � xt = Ptxt ∈ RM , (4.2)

where � denotes point-wise multiplication, Pt = diag[pt], pt = [p1t, p2t, · · · , pMt]
T ∈

{0, 1}M with pmt = 1 if the mth entry is observed at time t. We denote Ωt = {m :
pmt = 1} as the set of observed entries at time t. In a random observation model, we
assume the measurements are taken uniformly at random.

Figure 4.1: Illustration of the measurement model: only a small number of entries in
each vector yt are observed, and the estimate of the low-rank matrix Ut is updated
online.

We are interested in an online estimate of a low-rank subspaceDn ∈ RM×r at each
time index n, which identifies and tracks the changes in the underlying subspace, from
streaming partial observations (yt,pt)

n
t=1. The rank of the estimated subspace Dn is

assumed known and fixed throughout the algorithm as r. In practice, we assume is
the upper bound of the rank of the underlying subspace. The desired properties for
the algorithm include:

• Low complexity: each step of the online algorithm at time index n should be
adaptive with small complexity compared to running a batch algorithm using
history data;

• Small storage: The online algorithm should require a storage size that does not
grow with the data size;

• Convergence: The subspace sequence generated by the online algorithm should
converge to the true subspace U = Un if it is constant under the assumption
that the sampled covariance matrix of xt converges.
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• Adaptivity: The online algorithm should be able to track the changes of the
underlying subspace in a timely fashion.

4.2.2 Conventional Subspace Identification and Tracking

When xt’s are fully observed, our problem is equivalent to the classical SIT problem,
which is widely studied and has a rich literature in the signal processing community.
Here we describe the Projection Approximation Subspace Tracking (PAST) algorithm
in detail which is the closest to our proposed algorithm in the conventional scenario.
First, consider optimizing the scalar function with respect to a subspace W ∈ RM×r,
given by

J(W ) = E‖xt −WW Txt‖2
2, (4.3)

When Ut = U is fixed over time, let Cx = E[xtx
T
t ] = UUT + σ2IM be the data

covariance matrix. It is shown in [78] that the global minima of (4.3) is the only
stable stationary point, which is obtained by W = UrQ, where Ur is composed of
the r dominant eigenvectors of Cx, and Q ∈ Cr×r is a unitary matrix. When the data
is noise-free, we can choose Ur = U . This motivates PAST to optimize the following
function at time n without constraining W to have orthogonal columns:

Wn = argmin
W∈RM×r

n∑
i=1

αn−i‖xt −WW Txt‖2
2, (4.4)

≈ argmin
W∈RM×r

n∑
i=1

αn−i‖xt −WW T
n−1xt‖2

2, (4.5)

where the expectation in (4.3) is replaced by geometrically weighting the previous
observations by α in (4.4), which is further approximated by replacing the second W
by its previous estimate in (4.5). Based on (4.5), the subspace Wn can be found by
first estimating the coefficient using the previous subspace estimate as an = W T

n−1xn,
then update the subspace as

Wn = argmin
W∈RM×r

n∑
i=1

αn−i‖xt −Wat‖2
2. (4.6)

Now let α = 1 and Rn =
∑n

i=1 ana
T
n . In [86], the asymptotic dynamics of the PAST

algorithm is described by the Ordinary Differential Equation (ODE) below and its
equilibrium as t goes to infinity:

Ṙ = E[ãnã
T
n ]−R = W TCxW −R,

Ẇ = E[xn(xn −Wãn)T ]R† = (I −WW T )CxWR†,

where ãn = W Txn, R = R(t) and W = W (t) are continuous time versions of Rn

and Wn, and † denotes pseudo-inverse. It is proved in [86] that as t increases, W (t)
converges to the global optima, i.e. to a matrix which spans the eigenvectors of Cx
corresponding to the r largest eigenvalues. In Section 4.4.1 we show that our proposed
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PETRELS algorithm becomes essentially equivalent to the PAST algorithm when all
entries of the data stream are observed, and can be shown to converge globally.

4.2.3 Matrix Completion

When only partial observations are available and Ut = U are fixed, our problem is
closely related to the Matrix Completion (MC) problem, which has been extensively
studied recently. AssumeX ∈ RM×n is a low-rank matrix, P is an M×n mask matrix
with 0 at missing entries and 1 at observed entries. Let Y = P �X be the observed
partial matrix, where � denotes point-wise multiplication. Matrix completion aims
to solve the following problem:

min
Z

rank(Z) s.t. P � (X −Z) = 0, (4.7)

i.e. to find a low-rank matrix such that the observed entries are satisfied. This
problem is combinatorially intractable due to the rank constraint. It has been shown
in [80] that by replacing the rank constraint with nuclear norm minimization, (4.7) can
be replaced by a convex optimization problem, given the following spectral-regularized
MC problem:

min
Z

1

2
‖P � (X −Z)‖2

F + µ‖Z‖∗, (4.8)

where ‖Z‖∗ is the nuclear norm of Z, i.e. the sum of singular values of Z, and µ > 0
is a regularization parameter. Interestingly, the solution of (4.8) is the same as that
of (4.7), i.e. provides exact recovery for matrix completion under mild conditions
[80]. The nuclear norm [87] of Z is given by

‖Z‖∗ = min
U ,V :Z=UV T

1

2

(
‖U‖2

F + ‖V ‖2
F

)
(4.9)

where U ∈ CM×r and V ∈ Cn×r. Substituting (4.9) in (4.8) we can rewrite the MC
problem as

min
U ,V
‖P � (X −UV )‖2

F + µ
(
‖U‖2

F + ‖V ‖2
F

)
. (4.10)

Our problem formulation can be viewed as an online way of solving the above
batch-setting MC problem, where the columns of X are drawn randomly and treated
as a new measurement at each time index with a fixed underlying subspace Ut = U .
The online algorithm has potential advantages for adapting changes in matrix size
and avoiding large matrix manipulations. We will compare the PETRELS algorithm
against some of the popular MC algorithms proposed recently in Section 4.5.

4.3 The PETRELS Algorithm

We now describe our proposed Parallel Estimation and Tracking by REcursive Least
Squares (PETRELS) algorithm.
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4.3.1 PETRELS

We first define the function ft(D) at each time t = 1, · · · , n for a fixed subspace
D ∈ RM×r, which is the total projection residual on the observed entries,

ft(D) = min
at
‖Pt(xt −Dat)‖2

2, t = 1, · · · , n. (4.11)

Here r is the rank of the estimated subspace, which is assumed known and fixed
throughout the algorithm1. We aim to minimize the following loss function at each
time n with respect to the underlying subspace:

Dn = argmin
D∈RM×r

Fn(D) = argmin
D∈RM×r

n∑
t=1

λn−tft(D), (4.12)

whereDn is the estimated subspace of rank r at time n, and the parameter 0� λ ≤ 1
discounts past observations.

To motivate the loss function in (4.12) we note that if Ut = U is not changing
over time, then the RHS of (4.12) is minimized to zero when Dn spans the subspace
defined by U . If Ut is slowly changing, then λ is used to control the memory of the
system and maintain tracking ability at time n. For example, by using λ → 1 the
algorithm gradually loses its ability to forget the past.

Fixing D, ft(D) can be written as

ft(D) = xTt
(
Pt − PtD(DTPtD)†DTPt

)
xt, (4.13)

where † denotes matrix pseudo-inverse. Plugging this back to (4.12) the exact opti-
mization problem becomes:

Dn = argmin
D∈RM×r

n∑
t=1

λn−txTt
(
Pt − PtD(DTPtD)†DTPt

)
xt,

which is difficult to solve over D and requires storing all previous observations. In-
stead, we propose PETRELS to approximately solve this optimization problem.

Before developing PETRELS we note that if there are further constraints on the
coefficients at’s, a regularization term can be incorporated as:

ft(D) = min
at∈Rr

‖Pt(Dat − xt)‖2
2 + β‖at‖p, (4.14)

where p ≥ 0. For example, p = 1 enforces a sparse constraint on at, and p = 2
enforces a norm constraint on at.

In (4.12) the discount factor λ is fixed, and the influence of past estimates decreases
geometrically; a more general online objective function can be given as

Fn(D) = λnFn−1(D) + fn(D), (4.15)

1The rank may not equal the true subspace dimension.
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where the sequence {λn} is used to control the memory and adaptivity of the system
in a more flexible way.

Algorithm 4 PETRELS for SIT from Partial Observations

Input: a stream of vectors yt and observed pattern Pt.
Initialization: an M × r random matrix D0, and (R0

m)† = δIr, δ > 0 for all
m = 1, · · · ,M .

1: for n = 1, 2, · · · do
2: an = (DT

n−1PnDn−1)†DT
n−1yn.

3: x̂n = Dn−1an.
4: for m = 1, · · · ,M do
5: βnm = 1 + λ−1aTn (Rn−1

m )†an,
6: vnm = λ−1(Rn−1

m )†an,
7: (Rn

m)† = λ−1(Rn−1
m )† + pmt(β

n
m)−1vnm(vnm)T ,

8: dnm = dn−1
m + pmn(xmn − aTndn−1

m )(Rn
m)†an.

9: end for
10: end for

The proposed PETRELS algorithm, as summarized by Algorithm 4, alternates
between coefficient estimation and subspace update at each time n. In particular,
the coefficient vector an is estimated by minimizing the projection residual on the
previous subspace estimate Dn−1:

an = argmin
a∈Rr

‖Pn(xn −Dn−1a)‖2
2 = (DT

n−1PnDn−1)†DT
n−1yn, (4.16)

where D0 is a random subspace initialization. The full vector xn can then be esti-
mated subsquently as:

x̂n = Dn−1an, (4.17)

and the residual error is given as rn = Pn(xn − x̂n).
The subspace Dn is then updated by minimizing

Dn = argmin
D

n∑
t=1

λn−t‖Pt(xt −Dat)‖2
2, (4.18)

where at, t = 1, · · · , n are estimates from (4.16). Comparing (4.18) with (4.12), the
optimal coefficients are substituted for the previous estimated coefficients. This re-
sults in a simpler problem for finding Dn. The discount factor mitigates the error
propagation and compensates for the fact that we used the previous coefficients up-
dated rather than solving (4.12) directly, therefore improving the performance of the
algorithm.
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The objective function in (4.18) can be equivalently decomposed into a set of
smaller problems for each row of Dn = [dn1 ,d

n
2 , · · · ,dnM ]T as

dnm = argmin
dm

n∑
t=1

λn−tpmt(xmt − aTt dm)2, (4.19)

for m = 1, · · · ,M . To find the optimal dnm, we equate the derivative of the RHS of
(4.19) to zero, resulting in(

n∑
t=1

λn−tpmtata
T
t

)
dnm −

n∑
t=1

λn−tpmtxmtat = 0.

which can be rewritten as Rn
md

n
m = snm, where Rn

m =
∑n

t=1 λ
n−tpmtata

T
t , and snm =∑n

t=1 λ
n−tpmtxmtat. Therefore, dnm can be found as

dnm = (Rn
m)†snm. (4.20)

Now we show how (4.20) can be updated recursively. First we rewrite

Rn
m = λRn−1

m + pmnana
T
n , (4.21)

snm = λsn−1
m + pmnxmnan, (4.22)

for all m = 1, · · · ,M . Then we plug (4.21) and (4.22) into (4.20), and get

Rn
md

n
m = λsn−1

m + pmnxmnan

= λRn−1
m dn−1

m + pmnxmnan

= Rn
md

n−1
m − pmnanaTndn−1

m + pmnxmnan

= Rn
md

n−1
m + pmn(xmn − aTndn−1

m )an, (4.23)

where dn−1
m is the the row estimate in the previous time n − 1. This results in a

parallel procedure to update all rows of the subspace matrix Dn, give as

dnm = dn−1
m + pmn(xmn − aTndn−1

m )(Rn
m)†an. (4.24)

Finally, by the Recursive Least-Squares (RLS) updating formula [47], (Rn
m)† can be

easily updated without matrix inversion using

(Rn
m)† = (λRn−1

m + pmnana
T
n )† = λ−1(Rn−1

m )† + pmtG
n
m; (4.25)

where Gn
m = (βnm)−1vnm(vnm)T , with βnm and vnm given as

βnm = 1 + λ−1aTn (Rn−1
m )†an, vnm = λ−1(Rn−1

m )†an.

To enable the RLS procedure, the matrix (R0
m)† is initialized as a matrix with large

entries on the diagonal, which we choose arbitrarily as the identity matrix (R0
m)† =
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δIr, δ > 0 for all m = 1, · · · ,M . It is worth-noting that the fast implementation of
RLS updating rules is in general very efficient. However, cautions need to be taken
since direct application of fast RLS algorithms suffer from numerical instability of
finite-precision operations when running for a long time [88].

The PETRELS algorithm can be regarded as a second-order stochastic gradient
descent method to solve (4.12) by using dn−1

m , m = 1, · · · ,M as a warm start at time
n. Specifically, we can write the gradient of fn(D) in (4.11) at Dn−1 as

∂fn(D)

∂D

∣∣∣
D=Dn−1

= −2Pn(xn −Dn−1an)aTn , (4.26)

where an is given in (4.16). Then the gradient of Fn(D) at Dn−1 is given as

∂Fn(D)

∂D

∣∣∣
D=Dn−1

= −2
n∑
t=1

λn−tPt(xt −Dn−1at)a
T
t .

Therefore the Hessian for each row of D at dn−1
m is

Hn(dn−1
m , λ) =

∂2Fn(D)

∂dm∂dTm

∣∣∣
dm=dn−1

m

= 2
n∑
t=1

λn−tpmtata
T
t . (4.27)

Hence the updating rule for each row dm given in (4.24) can be written as

dnm = dn−1
m −Hn(dn−1

m , λ)−1∂fn(D)

∂dn−1
m

, (4.28)

which is equivalent to second-order stochastic gradient descent approach. Compared
with first-order algorithms, PETRELS enjoys a faster convergence speed to the sta-
tionary point of Fn(D) and gets rid of the problem of tuning the step-size [89].

4.3.2 Comparison with GROUSE

The GROUSE algorithm [84] proposed by Balzano et. al. addresses the same problem
of online identification of low-rank subspace from highly incomplete information. The
GROUSE method can be viewed as optimizing (4.12) for λ = 1 at each time n using
a first-order stochastic gradient descent on the orthogonal Grassmannian defined as
Gr = {D ∈ RM×r : DTD = Ir} instead of RM×r. Thus, in the GROUSE algorithm,

Dn = argmin
D∈Gr

Gn(D) = argmin
D∈Gr

n∑
t=1

ft(D). (4.29)
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GROUSE updates the subspace estimate along the direction of ∇ft(D)|D=Dn−1 on
Gr, given by a fast rank-one update as

Dn = Dn−1 −
[
(cos(σηn)− 1)

x̂t
‖x̂n‖2

+ sin(σηt)
rt
‖rt‖2

] aTn
‖an‖2

, (4.30)

where σ = ‖x̂t‖2‖rt‖2, and ηn is the step-size at time n. At each step GROUSE also
alternates between coefficient estimation (4.16) and subspace update (4.30). If the
step size satisfies

lim
n→∞

ηn = 0 and
∞∑
t=1

ηt =∞,

then GROUSE is guaranteed to converge to a stationary point of Gn(D). How-
ever, due to the existence of “barriers” in the search path on the Grassmannian [85],
GROUSE may be trapped at a local minima as shown in Section 4.5 in the example
of direction-of-arrival estimation.

Remark: If we relax the objective function of GROUSE (4.29) to all rank-r
subspace RM×r, given as

Dn = argmin
D∈RM×r

n∑
t=1

ft(D),

which is equivalent to PETRELS without discounting. Therefore following the dis-
cussions above, it is possible to use a second-order stochastic gradient descent method
to update the underlying subspace, yielding the update rule for each row of Dn as

dnm = dn−1
m − γnHn(dn−1

m , λ = 1)−1∂fn(D)

∂dn−1
m

, (4.31)

where γn is the step-size at time n. Compared with the update rule for PETRELS
in (4.28), the discount parameter has a similar role as the step-size, but weights the
contribution of previous data input geometrically.

4.3.3 Simplified PETRELS

In the subspace update step of PETRELS in (4.18), consider replacing the objective
function in (4.12) by

Dn = argmin
D

F̂n(D) = argmin
D

n∑
t=1

λn−t‖x̂t −Dat‖2
2, (4.32)

where at and x̂t, t = 1, · · · , n are estimates from earlier steps in (4.16) and (4.17).
The only change we made is to remove the partial observation operator from the
objective function, and replace it by the full vector estimate. It remains true that
dnm = argmindm F̂n(dm) = dn−1

m if the corresponding mth entry of xn is unobserved,

52



i.e. m /∈ Ωn, since

F̂n(dm) =
n−1∑
t=1

λn−t‖x̂mt − dTmat‖2
2 + ‖(dn−1

m − dm)Tat‖2
2,

= λF̂n−1(dm) + ‖(dn−1
m − dm)Tat‖2

2

≥ λF̂n−1(dn−1
m ) = F̂n(dn−1

m )

is minimized when dm = dn−1
m for m /∈ Ωn.

This modification is equivalent to the original PETRELS in the full observation
scenario, but generally leads to a simplified updating rule for Rn

m, since now the
updating formula for all rows dm’s is the same, where Rn

m = Rn = λRn−1 + ana
T
n

for all m. The row updating formula (4.24) is replaced by

Dn = Dn−1 + Pn(xn −Dn−1an)aTnR
†
n, (4.33)

which further saves storage requirement for the PETRELS algorithm from O(Mr2),
to store all Rn

m’s, to O(r2). In terms of performance, we analyze its convergence in
the rank-one scenario in Section 4.4.2, and compare it with PETRELS numerically
in Section 4.5.

4.4 Convergence Analysis

4.4.1 PETRELS in the Full Observation Scenario

In the full observation regime, i.e. yn = xn for all n, the PETRELS algorithm
becomes essentially equivalent to the PAST algorithm [78] for SIT, except that the
coefficient is estimated as an = DT

n−1yn = DT
n−1xn in the PAST algorithm versus

an = (DT
n−1Dn−1)−1DT

n−1xn in PETRELS. Now let λ = 1. Similar to PAST in [86],
the asymptotic dynamics of the PETRELS algorithm can be described by the ODE
below,

Ṙ = E[ãnã
T
n ]−R = (DTD)−1DTCxD(DTD)−1 −R, (4.34)

Ḋ = E[xn(xn −Dãn)T ]R† = (I −D(DTD)−1DT )CxD(DTD)−1R−1. (4.35)

where ãn = (DTD)−1DTxn, R = R(t) and D = D(t) are continuous-time versions

of Rn and Dn. Now let D̃ = D(DTD)−1/2 and R̃ = (DTD)1/2R(DTD)1/2, since
from (4.35)

DTḊ = DT (I −D(DTD)−1DT )CxD(DTD)−1R−1 = 0,
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we have d
dt

(DTD) = DTḊ+ ḊTD = 0 and further d
dt
f(DTD) = 0 for any function

of DTD. Hence,

˙̃
D = Ḋ(DTD)−1/2, (4.36)

˙̃
R = (DTD)1/2Ṙ(DTD)1/2. (4.37)

Therefore (4.34) and (4.35) can be rewritten as

˙̃
R = D̃TCxD̃ − R̃,
˙̃
D = (I − D̃D̃T )CxD̃R̃

†,

which is equivalent to the ODE of PAST. Hence we conclude that PETRELS will
converge to the global optima in the same dynamic as the PAST algorithm.

4.4.2 Simplified PETRELS in Rank-One Scenario

In the partial observation regime, it is straightforward to see that PETRELS converges
to local optima from the gradient descent viewpoint. With respect to convergence to
global optima, it is difficult to directly prove performance guarantees for PETRELS
due to the asynchronous update for each row of the subspace matrix; however, the
simplified version of PETRELS, where all rows are jointly updated at each time, is
easier to analyze. In particular, when the underlying subspace is rank one, and the
estimated rank of the subspace is also one, we are able to show that the simplified
PETRELS algorithm is guaranteed to approach a global optima in each step with
high probability with respect to random observations in the noise-free setting.

Let the ground truth of the rank-one subspace be denoted by d ∈ CM up to a
scaling factor. Assume xn = cnd ∈ CM is the full stream vector at the nth time
index. The set Ωn includes indices of observed entries, which are sampled uniformly
with replacement, and its complement is denoted by Ωc

n. Let dn ∈ CM be the updated
subspace estimate at time n from PETRELS, we group the entries in d, dn−1 and dn
as

d = [dΩn ,dΩcn ], dn = [dnΩn ,d
n
Ωcn

], dn−1 = [dn−1
Ωn

,dn−1
Ωcn

].

In simplified PETRELS, the coefficient estimate in (4.16) at time n is given as

an =
(dn−1

Ωn
)TdΩn

‖dn−1
Ωn
‖2

2

cn,

then dnΩn is given by (4.33) as

dnΩn =
1

an
xnΩn =

‖dn−1
Ωn
‖2

2

(dn−1
Ωn

)TdΩn

dΩn , (4.38)

54



and dnΩcn = dn−1
Ωcn

(i.e. the randomness of the data). Note that dn does not depend on
the coefficient cn, so that the performance is solely determined by the initialization
d0 and the random partial observations.

We are interested in the convergence performance under this special case. Define
the the squared inner product between d and dn as

γn =
(dTdn)2

‖d‖2
2‖dn‖2

2

. (4.39)

Note that γn is a lower bounded by 0 and upper bounded by 1, and it will converge
to 1 when dn converges to d up to a scalar. The coherence of a vector d ∈ CM is
defined as [81]

µ(d) =
M‖d‖2

∞
‖d‖2

2

, (4.40)

and it is obvious that 1 ≤ µ(d) ≤ M . With these preparations, we now state the
following result.

Theorem 4.4.1. At step n, γn ≥ γn−1 with probability at least

1− exp

(
− γn−1|Ωn|

2 [16µ(d) + γn−1µ(dn−1)]µ(dn−1)

)
with respect to uniformly sampled measurements.

Proof. See Appendix 7.3.1.

Remark: To get γn ≥ γn−1 with probability at least 1− ε, where ε > 0, we let

γn−1|Ωn|
2 [16µ(d) + γn−1µ(dn−1)]µ(dn−1)

= log(
1

ε
),

therefore the number of measurements is bounded as

|Ωn| = 2 log(
1

ε
)µ(dn−1)

16µ(d) + γn−1µ(dn−1)

γn−1

≤ 34 log(
1

ε
)
µ(dn−1)

γn−1

max{µ(dn−1), µ(d)}.

If µ(dn−1) is close to µ(d), then the required number of measurements is approxi-

mately 34 log(1
ε
)µ(d)2

γn−1
. For an incoherence vector where µ(d) is close to 1, then we

could see the required number of measurements is proportional to 4 log(1
ε
), decrease

per step as inverse proportional to γn−1, which is irrelevant to the actual dimension
of the vector M . This tells that it is possible to track and estimate an underlying
subspace from highly incomplete measurements.

The convergence in the general case of partial observation is beyond the scope of
this chapter and will be left for future investigations.
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4.5 Numerical Results

Our numerical results fall into four parts. First we examine the influence of parameters
specified in the PETRELS algorithm, such as discount factor, rank estimation, and
its robustness to noise level. Next we look at the problem of direction-of-arrival
estimation and show the proposed PETRELS algorithm demonstrates performance
superior to GROUSE by identifying and tracking all the targets almost perfectly even
in low SNR. Thirdly, we compare our approach with matrix completion, and show
that PETRELS is at least competitive with state of the art batch algorithms. Finally,
we provide numerical simulations for the extensions of the PETRELS algorithm.

4.5.1 Choice of Parameters

At each time t, a vector xt is generated as

xt = Dtrueat + nt, t = 1, 2, · · · (4.41)

where Dtrue is an r-dimensional subspace generated with i.i.d. N (0, 1) entries, at is
an r × 1 vector with i.i.d. N (0, 1) entries, and nt is an m× 1 Gaussian noise vector
with i.i.d. N (0, ε2) entries. We further fix the signal dimension m = 500 and the
subspace rank rtrue = 10. We assume that a fixed number of entries in xt, denoted
by K, are revealed each time. This restriction is not necessary for the algorithm
to work as shown in matrix completion simulations, but we make it here in order
to get a meaningful estimate of at. Denoting the estimated subspace by D̂, we use
the normalized subspace reconstruction error to examine the algorithm performance;
this is calculated as ‖PD̂⊥Dtrue‖2

F/‖Dtrue‖2
F , where PD̂⊥ is the projector for the

orthogonal subspace D̂⊥ .
The choice of discount factor λ plays an important role in how fast the algorithm

converges. With K = 50, a mere 10% percent of the full dimension, the rank is
estimated accurately as r = 10 in a noise-free setting where ε = 0. We run the
algorithm to time n = 2000 for the same data, the normalize subspace reconstruction
error is minimized when λ is around 0.98 in Fig. 4.2. Hence, we will keep λ = 0.98
hereafter.

In reality it is almost impossible to accurately estimate the intrinsic rank in ad-
vance. Fortunately the convergence rate of our algorithm degrades gracefully as the
rank estimation error increases. In Fig. 4.3, the evolution of normalized subspace
error is plotted against data stream index, for rank estimation r = 10, 12, 14, 16, 18.
We only examine the rank over-estimation case here since this is usually the case in
applications, and the readers are referred to the next section for examples for the case
of rank underestimation.

Taking more measurements per time leads to faster convergence since it is ap-
proaching the full information regime, as shown in Fig. 4.4. Theoretically it requires
M ∼ O(r log r) ≈ 23 measurements to test if an incomplete vector is within a sub-
space of rank r [83], and the simulation shows our algorithm can work even when M
is close to this lower bound.
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Figure 4.2: The normalized subspace reconstruction error as a function of the discount
factor λ after running the algorithm to time n = 2000 when 50 out of 500 entries of
the signal are observed each time without noise.
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Figure 4.3: The normalized subspace reconstruction error as a function of data stream
index when the rank is over-estimated when 50 out of 500 entries of the signal are
observed each time without noise.
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Figure 4.4: The normalized subspace reconstruction error as a function of data stream
index when the number of entries observe per time M out of 500 entries are varied
with accurate rank estimation and no noise.

Finally the robustness of the algorithm is tested against the noise variance ε2 in
Fig. 4.5, where the normalized subspace error is plotted against data stream index
for different noise level ε.

We now consider a scenario where a subspace of rank r = 10 changes abruptly at
time index n = 3000 and n = 5000, and examine the performance of GROUSE [84]
and PETRELS in Fig. 4.6 when the rank is over-estimated by 4 and the noise level
is ε = 10−3. The normalized residual error for data stream and normalized subspace
error are shown respectively in Fig. 4.6 (a) and (b). Both PETRELS and GROUSE
can successfully track the changed subspace, but PETRELS can track the change
faster.

4.5.2 Direction-Of-Arrival Analysis

Given GROUSE [84] as a baseline, we evaluate the resilience of our algorithm to
different data models and applications. We use the following example of Direction-Of-
Arrival analysis in array processing to compare the performance of these two methods.
Assume there are n = 256 sensors from a linear array, and the measurements from
all sensors at time t are given as

xt = V Σat + nt, t = 1, 2, · · · (4.42)

where V ∈ Cn×p is a Vandermonde matrix given as

V = [α1(ω1), · · · ,αp(ωp)], (4.43)
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Figure 4.5: The normalized subspace error against data stream index with different
noise level ε when 50 out of 500 entries of the signal are observed each time with
accurate rank estimation r = 10.

where αi(ωi) = [1, ej2πωi , · · · , ej2πωi(n−1)]]T , 0 ≤ ωi < 1; Σ = diag{d} =
diag{d1, · · · , dp} is a diagonal matrix which characterizes the amplitudes of each
mode. The coefficients at are generated with N (0, 1) entries, and the noise is
generated with N (0, ε2) entries, where ε = 0.1.

Each time we collect measurements from K = 30 random sensors. We are in-
terested in identifying all {ωi}pi=1 and {di}pi=1. This can be done by applying the
well-known ESPRIT algorithm [41] to the estimated subspace D̂ of rank r, where r is
specified a-priori corresponding to the number of modes to be estimated. Specifically,
if D1 = D̂(1 : n− 1) and D2 = D̂(2 : n) are the first and the last n− 1 rows of D̂,
then from the eigenvalues of the matrix T = D†1D2, denoted by λi, i = 1, · · · , r, the
set of {ωi}pi=1 can be recovered as

ωi =
1

2π
arg λi, i = 1, · · · , r. (4.44)

In a dynamic setting when the underlying subspace is varying, the proposed PE-
TRELS algorithm does a better job of discarding out-of-date modes and picking up
new ones. We divide the running time into 4 parts, and the frequencies and ampli-
tudes are specified as follows:

1. Start with the same frequencies

ω = [0.1769, 0.1992, 0.2116, 0.6776, 0.7599];
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Figure 4.6: The normalized subspace error when the underlying subspace is changing
with fixed rank r = 10. The rank is over-estimated by 4 and the noise level is ε = 10−3,
when 50 out of 500 entries of the signal are observed each time for both GROUSE
and PETRELS.
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and amplitudes
d = [0.3, 0.8, 0.5, 1, 0.1].

2. Change two modes (only frequencies) at stream index 1000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.8599];

and amplitudes
d = [0.3, 0.8, 0.5, 1, 0.1].

3. Add one new mode at stream index 2000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.8599,0.9513];

and amplitudes
d = [0.3, 0.8, 0.5, 1, 0.1,0.6].

4. Delete the weakest mode at stream index 3000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.9513];

and amplitudes
d = [0.3, 0.8, 0.5, 1, 0.6].

Fig. 4.7 shows the ground truth of mode locations and amplitudes for the scenario
above. Note that there are three closely located modes and one weak mode in the
beginning, which makes the task challenging. We compare the performance of the
proposed PETRELS algorithm and GROUSE. The rank specified in both algorithms
is r = 10, which is the estimated number of modes; in our case it is twice the number of
true modes, and the estimated directions at each time for 10 modes are shown against
the data stream index in Fig. 4.8. The color shows the amplitude corresponding to
the color bar. The proposed PETRELS algorithm identifies all modes correctly. In
particular it distinguishes the three closely-spaced modes perfectly in the beginning,
and identifies the appearance and disappearance of the later weak mode.

The auxiliary modes are exhibited as “noise” in the scatter plot. With GROUSE
the closely spaced nodes are erroneously estimated as one mode, the weak mode is
missing, and spurious modes have been introduced. The PETRELS algorithm also
fully tracked the later changes in accordance with the entrance and exit of each mode,
while GROUSE is not able to react to changes in the data model.

4.5.3 Matrix Completion

We compare performance of the proposed PETRELS algorithm on matrix completion
against batch algorithms LMaFit [90], FPCA [91], Singular Value Thresholding (SVT)
[92], OptSpace [82] and GROUSE [84]. The low-rank matrix is generated from a
matrix factorization model with X = UV T ∈ R1000×2000, where U ∈ R1000×10 and
V ∈ R2000×10, all entries in U and V are generated from standard normal distribution
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Figure 4.7: Ground truth of the actual mode locations and amplitudes in a dynamic
scenario.

N (0, 1) (Gaussian data) or uniform distribution U [0, 1] (uniform data). The sampling
rate is taken to be 0.05, so only 5% of all entries are revealed.

The running time is plotted against the normalized matrix reconstruction error,
calculated as ‖X̂ −X‖F/‖X‖F , where X̂ is the reconstructed low-rank matrix for
Gaussian data and uniform data respectively in Fig. 4.9 (a) and (b). The proposed
PETRELS algorithm matches the performance of batch algorithms on Gaussian data
and improves upon the accuracy of most algorithms on uniform data, where the
Grassmaniann-based optimization approach may encounter “barriers” for its conver-
gence. Note that different algorithms have different input parameter requirements.
For example, OptSpace needs to specify the tolerance to terminate the iterations,
which directly decides the trade-off between accuracy and running time; PETRELS
and GROUSE require an intial estimate of the rank. Our simulation here only shows
one particular realization and we simply conclude that PETRELS is competitive.

4.5.4 Simplified PETRELS

Under the same simulation setup as for Fig. 4.3 except that the subspace of rank
10 is generated by D̂true = DtrueΣ, where Σ is a diagonal matrix with 5 entries
from N (0, 1) and 5 entries from 0.01 · N (0, 1), we examine the performance of the
simplified PETRELS algorithm (with λ = 0.9) in Section 4.3.3 A and the original
PETRELS (with λ = 0.98) algorithm when the rank of the subspace is over-estimated
as 12 or under-estimated as 8. When the rank of D is over-estimated, the change
in (4.10) will introduce more errors and converges slower compared with the original
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Figure 4.8: Tracking of mode changes in direction-of-arrival estimation using PE-
TRELS and GROUSE algorithms: the estimated directions at each time for 10 modes
are shown against the data stream. All changes are identified and tracked successfully
by PETRELS, but not by GROUSE.
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Figure 4.9: Comparison of matrix completion algorithms in terms of speed and accu-
racy: PETRELS is a competitive alternative for matrix completion tasks.

PETRELS algorithm; however, when the rank ofD is under-estimated, the simplified
PETRELS performs better than PETRELS.
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Figure 4.10: The normalized subspace reconstruction error against data stream in-
dex when the rank is over-estimated as 12 or under-estimated as 8 for the original
PETRELS and modified algorithm.
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Chapter 5

Waveform Coordination for Range
Sidelobe Suppression in Radar

5.1 Introduction

Phase coding [93] is a common technique in radar for constructing waveforms with an
impulse-like autocorrelation function. In this technique, a long pulse is phase coded
with a unimodular sequence and the autocorrelation function of the coded waveform
is controlled via the autocorrelation function of the unimodular sequence. A key issue
in phase coding is the presence of range sidelobes in the ambiguity function of the
coded waveforms. Range sidelobes due to a strong reflector can result in masking of
nearby weak targets. It is however impossible to design a single unimodular sequence
for which the autocorrelation function has no range sidelobes. This has led to the
idea of using complementary sets of unimodular sequences [94]–[98] for phase coding.

Perhaps the most famous class of complementary sequences are Golay complemen-
tary sequences or Golay pairs introduced by Marcel Golay [94]. Golay complementary
sequences have the property that the sum of their autocorrelation functions vanishes
at all delays other than zero. Thus, if each sequence is transmitted separately and
the autocorrelation functions are added together the output will be free of range side-
lobes. In other words, the effective ambiguity function of a Golay pair of phase coded
waveforms is free of range sidelobes along the zero-Doppler axis. However, this ideal
property is very sensitive to Doppler effect. Off the zero-Doppler axis the ambigu-
ity function of Golay pairs of phase coded waveforms has large range sidelobes, e.g.,
see [93],[99]. The ambiguity function of a pulse train of Golay complementary wave-
forms, in which the two waveforms are transmitted alternatively in time over several
Pulse Repetition Intervals (PRIs), suffers from the same problem. The sensitivity of
Golay complementary waveforms to Doppler has been a major barrier in adoption
of these waveforms for radar pulse compression. Various generalizations of comple-
mentary waveforms, including multiple complementary waveforms [98], multiphase
(or polyphase) complementary waveforms [100], and near-complementary waveforms
[99],[101] suffer from a similar problem.
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A natural question to ask is whether or not it is possible to construct a Doppler
resilient pulse train of Golay complementary waveforms, for which the range sidelobes
of the pulse train ambiguity function vanish inside a desired Doppler interval. This
question was recently considered in [102, 103], where it is shown that by carefully
choosing the order in which a Golay pair of phase coded waveforms is transmitted
over time we can clear out the range sidelobes of the pulse train ambiguity function
along modest (close to zero) Doppler shifts. More specifically, it is shown that range
sidelobes along modest Doppler shifts can be significantly suppressed if the transmis-
sion of the two waveforms in pair is coordinated according to the locations of 1’s and
−1’s in a Prouhet-Thue-Morse (PTM) sequence defined over {1,−1}. The resulting
pulse train is called a PTM pulse train and its ambiguity function has a high-order
null along the zero-Doppler axis. This led to the discovery that if the transmission of
a Golay pair of phase coded waveforms is coordinated in time according to the entries
in a biphase sequence then the magnitude of the range sidelobes can be controlled by
shaping the spectrum of the biphase sequence [104].

The rest of the chapter is organized as follows. Section 5.2 describes the Golay
complementary waveforms. In Section 5.3, we extend the result of [102]–[104] to con-
struct pulse trains of Golay complementary waveforms, for which the range sidelobes
of the ambiguity function vanish inside a desired Doppler interval away from zero.
This is accomplished by coordinating the transmission of a Golay pair of phase coded
waveforms in time according to the 1’s and −1’s in a (2M ,m)-PTM sequence. The
(2M ,m)-PTM sequence has length 2M ×m and is obtained by repeating each 1 and
−1 in the length-2M PTM sequence m times, that is by oversampling a length-2M

PTM sequence by a proper factor m determined by the Doppler region of interests.
Finally in Section 5.4, we present a new radar primitive that enables instantaneous
radar polarimetry at essentially no increase in signal processing complexity, by the
transmission of Golay complementary waveforms across orthogonal polarization chan-
nels and multiple antennas over time in an Alamouti fashion to construct a unitary
waveform matrix, and discuss its Doppler resilience via generalized PTM sequencing
for a four-antenna MIMO radar.

5.2 Golay Complementary Waveforms

Definition 5.2.1. Two length L unimodular sequences of complex numbers x(`) and
y(`) are Golay complementary if for k = −(L − 1), . . . , (L − 1) the sum of their
autocorrelation functions satisfies

Cx(k) + Cy(k) = 2Lδ(k), (5.1)

where Cx(k) is the autocorrelation of x(`) at lag k and δ(k) is the Kronecker delta
function. Henceforth we may drop the discrete time index ` from x(`) and y(`) and
simply use x and y. Each member of the pair (x, y) is called a Golay sequence.
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The baseband waveform sx(t) phase coded by the Golay sequence x is given by

sx(t) =
L−1∑
`=0

x(`)Ω(t− `Tc), (5.2)

where Ω(t) is a unit energy pulse shape supported mostly on (0, Tc) and Tc is the chip

length, i.e.
∫ Tc

0
Ω(t)2dt ≈ 1. The ambiguity function χsx(τ, ν) of sx(t) is given by

χsx(τ, ν) =

∞∫
−∞

sx(t)sx(t− τ)e−jνtdt

=
L−1∑

k=−(L−1)

Ax(k, νTc)χΩ(τ − kTc, ν)

= Ax(k1(τ), νTc)χΩ(τ − k1(τ)Tc, ν) + Ax(k2(τ), νTc)χΩ(τ − k2(τ)Tc, ν),
(5.3)

where k1(τ) = d τ
Tc
e − 1, k2(τ) = d τ

Tc
e = k1 + 1, s(t) is the complex conjugate of s(t),

χΩ(τ, ν) is the ambiguity function of the pulse shape Ω(t), and Ax(k, νTc) is given by

Ax(k, νTc) =
L−1∑

`=−(L−1)

x[`]x[`− k]e−jν`Tc . (5.4)

At ν = 0, Ax(k, 0) = Cx(k) is the autocorrelation of the sequence x. The last equation
of (5.3) follows from that Ω(t) has finite support.

The baseband waveform sx(t) is modulated by a carrier of frequency ωc and trans-
mitted. It reflects back from a target after a round-trip delay τ0 and Doppler shift ν0.
The received signal is demodulated by ωc, low-passed and the baseband waveform is
given by

rx(t) = Asx(t− τ0)ejν0tejφ, (5.5)

where A is the scattering coefficient, φ = ωcτ0 is the phase shift in the carrier due
to propagation delay, ν0 = 2ωcv/c is the Doppler shift, where v is the velocity of
the target. The received signal goes through a matched-filter bank matched to the
signal sx(t− τ)ejνt, in which the delay τ and Doppler shift ν may vary. The output
is equivalent to sampling the cross-ambiguity function

χrxsx(τ, ν) =

∫ ∞
−∞

rx(t)sx(t− τ)e−jνtdt

= Aejφe−j(ν−ν0)τ0χsx(τ − τ0, ν − ν0). (5.6)

We can think of the individual delay τ0 and Doppler shift ν0 associated with
scatterers as specifying points in a two-dimensional image with coordinates of delay
τ and Doppler shift ν. When the received signal is processed by a matched filter
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to a complex conjugate replica of sx(t − τ0)ejν0t, the output is maximized since the
ambiguity function χsx(τ, ν) is maximized at (0, 0). From (5.6), it also implies that
by using a single pulse it is impossible to achieve the ideal thumbtack output, i.e. a
sharp response at the correct delay and Doppler shift, and zero otherwise.

If the complementary waveforms sx(t) and sy(t) are transmitted separately in
time, with a length-T time interval between the two transmissions. The ambiguity
function of the radar waveform S(t) = sx(t) + sy(t− T ) is given by

χS(τ, ν) = χsx(τ, ν) + e−jνTχsy(τ, ν) + χsxsy(τ + T, ν) + e−jνTχsysx(τ − T, ν). (5.7)

The cross-ambiguity terms only appear at ±T , therefore can be omitted by truncation
on the delay-Doppler plane. However, in practice (5.7) will not be computed directly.
Instead the two non-offset terms will be computed separately by matching to sx(t)
and sy(t) and combined. After all, the sum of the match filtered returns gives the
ambiguity function

χS(τ, ν) = χsx(τ, ν) + ejνTχsy(τ, ν). (5.8)

Remark: Here, we ignore the range aliasing effects and only focus on the mainlobe
of the ambiguity function, which corresponds to χS(τ, ν) given in (5.8). Range aliasing
effects can be accounted for using standard techniques devised for this purpose (e.g.
see [93]) and hence will not be further discussed.

Since the chip length Tc is typically very small, the relative Doppler shift over
chip intervals is negligible compared to the relative Doppler shift over the PRI T , and
hence the ambiguity function χS(τ, ν) can be approximated by

χS(τ, ν) =
L−1∑

k=−(L−1)

[Cx(k) + ejνTCy(k)]χΩ(τ − kTc, ν), (5.9)

where in this approximation we have replaced Ax(k, νTc) and Ay(k, νTc) with the
autocorrelation functions Cx(k) and Cy(k), respectively.

Along the zero-Doppler axis (ν = 0), the ambiguity function χS(τ, ν) reduces to
the autocorrelation sum

χS(τ, 0) =
L−1∑

k=−(L−1)

[Cx(k) + Cy(k)]χΩ(τ − kTc, 0) = 2LχΩ(τ, 0) (5.10)

which is “free” of range sidelobes.1 Fig. 5.1(a) shows the perfect autocorrelation
property of a Golay pair of phase coded waveforms. Off the zero-Doppler axis however,
the ambiguity function has large sidelobes in delay (range) as Fig. 5.1(b) shows. The
color bar values are in dB.

The range sidelobes persist even when a pulse train is constructed in which S(t) =
sx(t)+sy(t−T ) is transmitted several times, with a pulse repetition interval PRI of T

1The shape of the autocorrelation function depends on the autocorrelation function χΩ(τ, 0) for
the pulse shape Ω(t). The Golay complementary property eliminates range sidelobes caused by
replicas of χΩ(τ, 0) at nonzero integer delays.
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Figure 5.1: (a) The perfect autocorrelation property of a Golay pair of phase-coded
waveforms; (b) The ambiguity function of a Golay pair of phase-coded waveforms
separated in time.
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seconds between consecutive transmissions. In other words, the ambiguity function of
a conventional pulse train of Golay complementary waveforms, where the transmitter
alternates between sx(t) and sy(t) during several PRIs, also has large range sidelobes
along nonzero Dopplers. The range sidelobes in the ambiguity function can cause
masking of a weak target that is situated near a strong reflector. Fig. 5.2 shows
the delay-Doppler map at the output of a radar receiver (matched filter), when an
alternating pulse train of Golay complementary waveforms was transmitted over N =
256 PRIs. The radar scene contains three stationary reflectors at different ranges and
two slow-moving targets, which are 30dB weaker than the stationary reflectors. We
notice that the range sidelobes from the strong reflectors make it difficult to resolve the
weak targets. The sensitivity of Golay complementary waveforms to Doppler effect
has been the main barrier in adopting these waveforms for radar pulse compression.

N=256, Alternating sequence with output in dB
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Figure 5.2: Ambiguity function of a length-256 alternating pulse train of Golay com-
plementary waveforms.

5.3 Doppler Resilience of Golay Waveforms

5.3.1 Range Sidelobe Suppression in Small Doppler

It is natural to ask whether or not it is possible to construct a Doppler resilient pulse
train of Golay complementary waveforms, for which the range sidelobes of the pulse
train ambiguity function vanish inside a desired Doppler interval. The developments
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in [102] led to the introduction of P-pulse trains in [104] and the discovery that if
the transmission of a Golay pair of phase coded waveforms is coordinated in time
according to the 1’s and −1’s in a biphase sequence P , then magnitude of the range
sidelobes can be controlled by shaping the spectrum of P .

Definition 5.3.1. Consider a biphase sequence P = {pn}N−1
n=0 , pn ∈ {−1, 1} of length

N , where N is even. Let 1 represent sx(t) and let −1 represent sy(t). The P-pulse
train ZP(t) of (sx(t), sy(t)) is defined as

ZP(t) =
1

2

N−1∑
n=0

[(1 + pn)sx(t− nT ) + (1− pn)sy(t− nT )] . (5.11)

The nth entry in the pulse train is sx(t) if pn = 1 and it is sy(t) if pn = −1. Consec-
utive entries in the pulse train are separated in time by a PRI T .

The ambiguity function of the P-pulse train ZP(t), aftering ignoring range aliases
which are offset from the zero-delay axis by integer multiples of T by similar discus-
sions in the previous section, is given by

χZP (τ, ν) =
1

2

[
χsx(τ, ν) + χsy(τ, ν)

]N−1∑
n=0

ejnνT +
1

2

[
χsx(τ, ν)− χsy(τ, ν)

]N−1∑
n=0

pne
jnνT .

We discretize χZP (τ, ν) by letting τ = kTc and ν = θ/T , and ignore the pulse shape
ambiguity function, the above equation can be further written as

χZP (k, θ) =
1

2
[Ax(k, θ) + Ay(k, θ)]

N−1∑
n=0

ejnθ +
1

2
[Ax(k, θ)− Ay(k, θ)]

N−1∑
n=0

pne
jnθ

=
1

2
[Cx(k) + Cy(k)]

N−1∑
n=0

ejnθ +
1

2
[Cx(k)− Cy(k)]

N−1∑
n=0

pne
jnθ, (5.12)

where θ = νT is the relative Doppler shift over a PRI, and we have replaced Ax(k, θ)
and Ay(k, θ) with Cx(k) and Cy(k) again.

The first term on the RHS of (5.12) is free of range sidelobes due to the comple-
mentary property of Golay sequences x and y. The second term represents the range
sidelobes, as Cx(k)− Cy(k) is not an impulse. The magnitude of the range sidelobes
is proportional to the magnitude of the spectrum SP(θ) of the sequence P , which is
given by

SP(θ) =
N−1∑
n=0

pne
jnθ. (5.13)

The question is how to design the sequence P to suppress the range sidelobes along
a desired Doppler interval. One way to accomplish this is to design the sequence P
so that its spectrum SP(θ) has a high-order null at a Doppler frequency inside the
desired interval. This idea has been explored in [102]–[104], where it is shown that
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the spectrum of a PTM sequence of length 2M+1 has an Mth-order null at θ = 0.
The PTM sequence is formally defined as follows.

Definition 5.3.2. [105]-[108] The Prouhet-Thue-Morse (PTM) sequence P =
(pk)k≥0 over {−1, 1} is defined by the following recursions:

1. p0 = 1

2. p2k = pk

3. p2k+1 = pk = −pk
for all k > 0.

Example 5.3.1. The PTM sequence of length 8 is given as

P = (pk)
7
k=0 = +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1.

The corresponding pulse train of Golay complementary waveforms is given by

ZP(t) = sx(t) + sy(t− T ) + sy(t− 2T ) + sx(t− 3T )

+ sy(t− 4T ) + sx(t− 5T ) + sx(t− 6T ) + sy(t− 7T ).

The ambiguity function of ZP(t) has a second-order null along the zero-Doppler axis.

The PTM sequence was originally discovered by Prouhet [105] for partitioning a
set of integers into disjoint subsets, where the sums of the elements raised to some
integer power in the two subsets are equal.2 Prouhet was interested in the following
problem. Given M , is it possible to partition the set of integers S = {0, 1, · · · , N−1}
into two disjoint subsets S0 ⊂ S and S1 ⊂ S such that∑

n∈S0

nm −
∑
n∈S1

nm = 0, (5.14)

for all 0 ≤ m ≤ M? Prouhet proved that this is possible only when N = 2M+1 and
that the partition is identified by the PTM sequence. In other words, the solution is
S0 = {n|0 ≤ n ≤ 2M+1 − 1, pn = 1} and S1 = {n|0 ≤ n ≤ 2M+1 − 1, pn = −1}, where

{pn}2M+1−1
n=0 is the length-2M+1 PTM sequence.

Fig. 5.3 (a) shows the ambiguity function of a length-(N = 28) PTM pulse train
of Golay complementary waveforms, which has a seventh-order null at zero-Doppler.
The horizonal axis is Doppler shift in rad and the vertical axis is delay in sec. The
magnitude of the pulse train ambiguity function is color coded and presented in dB
scale. A zoom in around zero-Doppler is shown in Fig. 5.3 (b). We notice that the
range sidelobes inside the Doppler interval [−0.1, 0.1]rad have been cleared out. They
are at least 80 dB below the peak of the ambiguity function.

2However, Prouhet did not explicitly write the sequence. This was left to Thue [106] and Morse
[107], who each rediscovered the PTM sequence independently.
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Figure 5.3: Ambiguity function of a length-(N = 28) PTM pulse train of Golay com-
plementary waveforms: (a) the entire Doppler band (b) Doppler band [−0.1, 0.1]rad
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N=256, PTM with output in dB
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Figure 5.4: The PTM pulse train of Golay complementary waveforms can bring out
weak targets which would have otherwise been masked by the range sidelobes of
nearby strong reflectors.

Fig. 5.4 shows the effect of range sidelobe suppression in bringing out weak targets
in the presence of strong reflectors for the five target scenario discussed earlier in Fig.
5.2. This example demonstrates the value of PTM pulse trains for radar imaging.
We note that the Golay complementary sequences used for phase coding in obtaining
figures in this chapter are of size 64 and the pulse shape is a raised-cosine pulse. The
chip length is Tc = 100 nsec, the carrier frequency is 17 GHz (corresponding to a
surveillance radar), and the PRI is T = 50 µsec.

5.3.2 Range Sidelobes Suppression in Higher Doppler

We now consider the design of biphase sequences whose spectra have high-order nulls
at Doppler frequencies other than zero. Consider the Taylor expansion of the spec-
trum SP(θ) around θ = θ0:

SP(θ) =
∞∑
t=0

1

n!
f

(t)
P (θ0)(θ − θ0)t (5.15)
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where the coefficients f
(t)
P (θ0) are given by

f
(t)
P (θ0) =

[
dt

dθt
SP(θ)

]
θ=θ0

= jt
N−1∑
n=0

ntpne
jnθ0 , t = 0, 1, 2, · · · (5.16)

We wish to zero-force all the derivatives f
(t)
P (θ0) up to order M , that is we wish

to design the sequence P so that

f
(t)
P (θ0) = 0, for all t = 0, 1, · · · ,M. (5.17)

We consider rational Doppler shifts θ0 = 2πl/m, where l and m 6= 1 are co-prime
integers. We assume the length of P is N = mq for some integer q. We have the
following theorem.

Theorem 5.3.3 (Oversampled PTM Sequencing). Let P = {pn}2Mm−1
n=0 be a (2M ,m)-

PTM sequence, that is to say that {prm+i}2M−1
r=0 , i = 0, · · · ,m− 1 is a PTM sequence

of length 2M , then the spectrum SP(θ) of P has M th-order nulls at all θ0 = 2πl/m
where l and m 6= 1 are co-prime integers.

Proof. See Appendix 7.4.1

Remark: For the special case m = 2 and θ0 = π, f
(t)
P (θ0) = jt

∑N−1
n=0 n

t(−1)npn. It
follows from [102] that{(−1)npn} has to be a PTM sequence of length 2M+1 in order
to zero-force up to the Mth-order Taylor expansion at zero Doppler. We denote
{p̃n} = {(−1)npn}, and henceforth pn = (−1)np̃n. This result coincides with the
(2M , 2)-PTM sequence as in Theorem 5.3.3. From this point, the result in [102] can
be treated as a special case of the (2M ,m)-PTM sequence.

We have the following corollary.

Corollary 5.3.2. Let P be the (2M ,m)-PTM sequence, then the spectrum SP(θ) of
P has

1. an (M − 1)th-order null at θ0 = 0.

2. (M−h−1)th-order nulls at all θ0 = 2πl/(2hm), where l and m 6= 1 are co-prime,
and 1 ≤ h ≤M − 1.

Proof. See Appendix 7.4.2.

Example 5.3.3. The spectrum of the (23, 2)-PTM sequence, i.e.,

P = {+1,+1,−1,−1,−1,−1,+1,+1,−1,−1,+1,+1,+1,+1,−1,−1},

has a third-order null at θ0 = π, a second-order null at θ0 = 0, first-order nulls at
θ0 = π/2 and θ0 = 3π/2, and zeroth-order nulls at θ0 = π/4 and θ0 = 3π/4. This
spectrum is shown in Fig. 5.5 in solid black line. The spectrum of the (22, 2)-PTM
sequence is also shown. This spectrum has a second-order null at θ0 = π rad, a
first-order null at θ0 = 0, and zeroth-order nulls at θ0 = π/2 and θ0 = 3π/2.
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Figure 5.5: The spectra of (23, 2)- and (22, 2)-PTM sequences.

For certain values of m, it is possible to achieve an Mth-order null with a sequence
of length shorter than 2M ×m, as the following theorem shows.

Theorem 5.3.4. Let m ≡ 2 (mod 4), and P̃ = {p̃n}2M−1m−1
n=0 be be the (2M ,m/2)-

PTM sequence, then P = {pn}2M−1m−1
n=0 , where pn = (−1)np̃n has M th-order nulls at

all θ0 = 2πl/m where l and m 6= 1 are co-prime integers.

Proof. See Appendix 7.4.3.

Fig. 5.6 (a) shows the ambiguity function of a (28, 3)-PTM sequence of Golay
complementary waveforms. The color bar values are in dB. This ambiguity function
has an eighth-order null at θ0 = ±2π/3, a seventh-order null at zero Doppler, sixth-
order nulls at θ0 = ±π/3, and so on. A zoom in around θ0 = 2π/3 is provided in Fig.
5.6 (b) to demonstrate that range sidelobes in this Doppler region are significantly
suppressed. The range sidelobes in this region are at least 80 dB below the peak of
the ambiguity function.

5.4 Instantaneous Radar Polarimetry

Fully polarimetric radar systems are capable of transmitting and receiving on two
orthogonal polarizations simultaneously. The combined signal then has an electric
field vector that is modulated both in direction and amplitude by the waveforms on
the two polarization channels as seen in Fig. 5.7, and the receiver is used to obtain
both polarization components of the reflected waveform. The use of two orthogonal
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Figure 5.6: Ambiguity function of the (28, 3)-PTM pulse train of Golay complemen-
tary waveforms: (a) the entire Doppler band (b) Zoom in around θ0 = 2π/3.
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polarizations increases the degrees of freedom available for target detection and can
result in significant improvement in detection performance.

Figure 5.7: Two orthogonal polarizations of the electromagnetic field.

In general the reflection properties that apply to each polarization component are
also different, and indeed reflection can change the direction of polarization. Thus,
polarimetric radars are able to obtain the scattering tensor of a target

Σ =

(
σV V σV H
σHV σHH

)
, (5.18)

where σV H denotes the target scattering coefficient into the vertical polarization chan-
nel due to a horizontally polarized incident field. Target detection is enhanced by con-
current rather than serial access to the cross-polarization components of the scattering
tensor, which varies more rapidly in standard radar models used in target detection
and tracking [109, 110] than in models used in remote sensing or synthetic aperture
radar [111, 112]. In fact what is measured is the combination of three matrices

H =

(
hV V hV H
hHV hHH

)
= CRxΣCTx, (5.19)

where CRx and CTx correspond to the polarization coupling properties of the transmit
and receive antennas, whereas Σ results from the target. In most radar systems the
transmit and receive antennas are common, and so the matrices CTx and CRx are
conjugate. The cross-coupling terms in the antenna polarization matrices are clearly
frequency and antenna geometry dependent but for the linearly polarized case this
value is typically no better than about -20dB.

In this section, we follow [113],[114] to describe a new approach to radar po-
larimetry that uses orthogonal polarization modes to provide essentially independent
channels for viewing a target, and achieve diversity gain. Unlike conventional radar
polarimetry, where polarized waveforms are transmitted sequentially and processed
non-coherently, the approach in [113],[114] allows for Instantaneous Radar Polarime-
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try (IRP), where polarization modes are combined coherently on a pulse-by-pulse
basis. IRP enables detection based on full polarimetric properties of the target and
hence can provide better discrimination against clutter. When compared to a radar
system with a singly-polarized transmitter and a singly-polarized receiver instan-
taneous radar polarimetry can achieve the same detection performance (same false
alarm and detection probabilities) with a substantially smaller transmit energy, or
alternatively it can detect at substantially greater ranges for a given transmit energy.
The aim in this section is to present the main idea for waveform transmission in IRP,
its Doppler resilience via PTM sequencing, and the generalization to a four-antenna
radar system.

5.4.1 Unitary Waveform Matrices

Let us employ both polarization modes to transmit four phase-coded waveforms w1
H ,

w1
V , w2

H , w2
V . On each polarization mode we transmit two phase-coded waveforms

separated by a PRI of length T . We employ Alamouti coding [115] to coordinate the
transmission of waveforms over the V and H channels; that is, we define

w2
H = w̃1

V and w2
V = −w̃1

H , (5.20)

where ·̃ denotes complex conjugate time-reversal. After discretizing (at chip intervals)
and converting time-indexed sequences to z-transform domain, we can write the radar
receive equation in matrix form as

R(z) = z−dHW (z) +Z(z), (5.21)

where R(z) is the 2 × 2 radar measurement matrix at the receiver, H is the 2 × 2
scattering matrix in (5.19) and Z(z) is a noise matrix. The entries of H are taken
to be constant (fixed draw from a random vector) since they correspond to a fixed
range (delay d) and a fixed time. For now, we limit our analysis to zero-Doppler axis
and will postpone the treatment of Doppler effect. The Alamouti waveform matrix
W (z) is given by

W (z) =

(
w1
V (z) −w̃1

H(z)
w1
H(z) w̃1

V (z)

)
, (5.22)

where w̃(z) = zLw(z−1) for a length L sequence w.
If we require the matrix W (z) to be unitary, that is

W (z)W̃ (z)H =

(
w1
V (z) −w̃1

H(z)
w1
H(z) w̃1

V (z)

)(
w̃1
V (z) w̃1

H(z)
−w1

H(z) w1
V (z)

)
= 2Lz−L

(
1 0
0 1

)
, (5.23)

then it is easy to estimate the scattering matrix H by post-multiplying (5.21) with

W̃ (z)H . The unitary condition is equivalent to

|w1
V (z)|2 + |w1

H(z)|2 = 2L. (5.24)
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This is the same condition as the Golay complementary condition and is satisfied by
choosing wV (z) = X(z) and wH(z) = Y (z), where X(z) and Y (z) are z-transforms
of the Golay complementary sequences x and y, respectively. This shows that by
properly coordinating the transmission of Golay complementary waveforms across
polarizations and over time we can make the four channels HH, VV, VH, and HV
available at the receiver (with delay L) using only linear processing. The four matched
filters (in z-domain) are given by

Q(z) =

(
m1(z)rV (z) m2(z)rV (z)
m1(z)rH(z) m2(z)rH(z)

)
(5.25)

where m1(z) = w̃1
V (z)z−L − w̃1

H(z) and m2(z) = w̃1
H(z)z−L + w̃1

V (z).
Remark: The above description suggests that a radar image will be available only

on every second pulse, since two PRIs are required to form an image. However, after
the transmission of the first pulse, images can be made available at every PRI. This
is done by reversing the roles of the waveforms transmitted on the two pulses. Thus,
in the analysis, the matrix W (z) in (5.21) is replaced by

V (z) =

(
−w̃1

H(z) w1
V (z)

w̃1
V (z) w1

H(z)

)
, (5.26)

which is still unitary due to the interplay between Golay property and Alamouti
coding. Moreover, the processing involved is essentially invariant from pulse to pulse:
the return pulse in each of the channels is correlated against the transmit pulse on
that channel. This yields an estimate of the scattering matrix on each pulse.

5.4.2 Doppler Resilient IRP

In the previous section, we restricted our analysis to zero-Doppler axis. Off the zero-
Doppler axis, a relative Doppler shift of θ exists between consecutive waveforms on
each polarization channel and the radar measurement equation changes to

R(z) = z−dHW (z)D(θ) +Z(z), (5.27)

whereD(θ) = diag(1, ejθ). Consequently, the unitary property ofW (z) can no longer

be used to estimateH , due to the fact thatW (z)D(θ)W̃ (z) is not a factor of identity.

In other words, off the zero-Doppler axis the four elements in W (z)D(θ)W̃ (z) have
range sidelobes.

The matrix W (z)D(θ)W̃ (z) can be viewed as a matrix-valued ambiguity function
for IRP. In Section 4.3 and 4.4, we showed that the range sidelobes of the ambiguity
function of a pulse train of Golay waveforms can be suppressed (in a desired Doppler
band) by carefully selecting the order in which the Golay complementary waveforms
are transmitted. This result can be extended to IRP. In fact, the range sidelobes of the
IRP matrix-valued ambiguity function can be cleared out (inside a desired Doppler
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interval) by coordinating the transmission of the following Alamouti matrices

X1(z) =

(
X(z)
Y (z)

)
and X−1(z) =

(
−Ỹ (z)

X̃(z)

)
(5.28)

according to the 1’s and −1’s in the PTM sequence or its oversampled versions (de-
pending on the Doppler interval of interest) where 1 represents X1(z) and −1 repre-
sents X−1(z).

5.4.3 Four-Antenna IRP

The above IRP can be also equivalently employed on the two antennas in a 2 × 2
Multiple-Input-Multiple-Output (MIMO) radar system, by identifying each polariza-
tion with an antenna. Now we present its generalization to a 4 × 4 radar system, ,
where on each antenna we transmit a phase-coded waveform separated by a PRI of
length T . The waveform matrix transmitted over four PRIs is constructed as

W4(z) =

(
W (z) −W̃ (z)

W (z) W̃ (z)

)
, (5.29)

where W (z) is defined in (5.22). We write W4(z) explicitly as

W4(z) =


w1
V (z) −w̃1

H(z) −w̃1
V (z) w1

H(z)
w1
H(z) w̃1

V (z) −w̃1
H(z) −w1

V (z)
w1
V (z) −w̃1

H(z) w̃1
V (z) −w1

H(z)
w1
H(z) w̃1

V (z) w̃1
H(z) w1

V (z)

 , (5.30)

and it is easy to see W4(z) is also unitary since

W4(z)W̃4(z)H =

(
W (z) −W̃ (z)

W (z) W̃ (z)

)(
W̃ (z) W̃ (z)
−W (z) W (z)

)
= 4Lz−LI4, (5.31)

where we make use of (5.23) and I4 is the 4 × 4 identity matrix. This suggests we
could use similar technique to coordinate the transmission of Golay complementary
waveforms across antennas and time according to (5.30) and achieve IRP.

Similarly, the matrix W4(z)D4(θ)W̃4(z) can be viewed as a matrix-valued ambi-
guity function for the 4× 4 IRP, where D4(θ) = diag(1, ejθ, ej2θ, ej3θ). We could clear
out the range sidelobes of the IRP matrix-valued ambiguity function inside a desired
Doppler interval by coordinating the transmission of the following four matrices

X0(z) =


X(z)
Y (z)
X(z)
Y (z)

 ,X1(z) =


−Ỹ (z)

X̃(z)

−Ỹ (z)

X̃(z)

 ,X2(z) =


−X̃(z)

−Ỹ (z)

X̃(z)

Ỹ (z)

 ,X3(z) =


Y (z)
−X(z)
−Y (z)
X(z)
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according to the generalized Prouhet sequence P = {pn}N−1
n=0 such that pn ∈ {0, 1, 2, 3}

or its oversampled versions (depending on the Doppler interval of interest) where
pn = i represents transmitting Xi(z) in the nth PRI.

The sequence P is the answer to the more general Prouhet’s problem of finding a
partition of [0, 4M+1 − 1] into 4 sets I0, I1, I2 and I3 such that∑

i∈I0

ik =
∑
i∈I1

ik =
∑
i∈I2

ik =
∑
i∈I3

ik for k = 0, 1, · · · ,M.

Prouhet gave the following solution: define the sequence P = (T4(n))n≥0 by T4(n) =
s4(n) mod 4, where s4(n) equals the sum of the digits in the base-4 representation of
the integer n, then Ij = {0 ≤ i ≤ 4M+1 − 1 : T4(i) = j}.

Example 5.4.1. Let P be the generalized Prouhet sequence, we coordinate the trans-
mission of X0(z), · · · ,X3(z) according to P. For example, Let N = 42 − 1 = 15, P
and are the waveforms are transmitted in order as

P 0 1 2 3 1 2 3 0
X(z) X0 X1 X2 X3 X1 X2 X3 X0

P 2 3 0 1 3 0 1 2
X(z) X2 X3 X0 X1 X3 X0 X1 X2

to create a second order null at zero Doppler.
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Chapter 6

Optimal Training Sequences in
Multi-User MIMO-OFDM Systems

6.1 Introduction

Information-theoretic analysis by Foschini [116] and by Telatar [117] has shown that
multiple antennas at the transmitter and receiver enable high-rate wireless commu-
nication. Space-time codes, introduced by Tarokh et al. [118], improve the reliability
of communication over fading channels by correlating signals across different trans-
mit antennas. Orthogonal Frequency Division Multiplexing (OFDM) [119] is widely
adopted in broadband communications standards for its efficient implementation, high
spectral efficiency, and robustness to Inter-Symbol Interference (ISI). However, there
are two main drawbacks in OFDM; the first is high Peak-to-Average Power Ratio
(PAPR) which results in larger backoff with nonlinear amplifiers, and the second is
high sensitivity to frequency errors and phase noise. The focus in this chapter is train-
ing sequence design for the combination of Multiple-Input-Multiple-Output (MIMO)
systems and OFDM technology (see [120] and references therein), and we aim to
make this combination more attractive by reducing the overhead that is necessary for
channel estimation.

Current multi-user MIMO-OFDM systems [121] support multiple users by assign-
ing each time/frequency slot to only one user. For example, in OFDMA systems
(adopted in the WiMAX [122] and LTE standards [123]), different users are assigned
different subcarriers within the same OFDMA symbol. A different method of sepa-
rating users is through the random-access CSMA/CA medium access control (MAC)
protocol used in WLAN standards, e.g. IEEE 802.11n. Both methods require that
users not overlap in either time or frequency and this restriction results in a signifi-
cant loss in spectral efficiency. The introduction of multiple receive antennas at the
base station means that it is possible to improve spectral efficiency by allowing users
to overlap while maintaining decodability, as in the recently-proposed Coordinated
MultiPoint transmission (CoMP) techniques in the LTE-Advanced standard [124].

Accurate Channel State Information (CSI) is required at the receiver for coher-
ent detection and is typically acquired by sending known training sequences from the
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transmit antennas and inferring channel parameters from the received signals. Various
OFDM channel estimation schemes [125]-[127] have been proposed for Single-Input
Single-Output (SISO) systems. However channel estimation is more challenging in a
multi-user MIMO-OFDM system because there are more link parameters to calculate,
and their estimation is complicated by interference between different transmissions.
The direct approach is to invert a large matrix that describes cross-antenna inter-
ference at each OFDM tone [128]. Complexity can be reduced by exploiting the
correlation between adjacent subchannels [129]. It is also possible to develop solu-
tions in the time domain [130] where the challenge is to estimate time of arrivals.
Here it is possible to reduce complexity by exploiting the power-delay profiles of
the typical urban and hilly terrain propagation models. MIMO Channel estimation
schemes were investigated in [131] for single-carrier single-user systems in the context
of GSM-EDGE.

Linear Least-Squares (LLS) channel estimation is of great practical importance
since it does not require prior knowledge of the channel statistics and enjoys low
implementation complexity. We consider frequency-selective block-fading channels
where the Time Domain (TD) representation requires fewer parameters than the
Frequency Domain (FD) representation. Our focus is on the design of (optimal)
training sequences for Multi-User MIMO OFDM systems that minimize the mean
squared error of time-domain LLS channel estimation. The design of optimal training
sequences for single-user MIMO-OFDM systems is investigated in [132] and [133]. The
Fourier methods used in [132] provide some control over PAPR and some resilience
to frequency offsets. The construction of optimal training sequences for multi-user
MIMO-OFDM systems has been investigated in both the time domain [134] and the
frequency domain [135], but these designs do not easily extend to multiple OFDM
training symbols. It is also possible to take advantage of the similarities between
communications and radar signal processing, where the path gains and delays are the
range/Doppler coordinates of a scattering source and the problem is to estimate them.
The unitary filter bank developed for Instantaneous Radar Polarimetry [136] supports
frequency domain LLS channel estimation in a 2× 2 MIMO OFDM system [137] and
is able to suppress interference over two OFDM symbols with linear complexity. This
example is a special case of a more general construction of filter banks for the analysis
of acoustic surface waves [138, 98]. A limitation of these methods is that the number
of OFDM training symbols is at least the number of transmit antennas.

In contrast, our framework supports the design of optimal training sequences for an
arbitrary number of transmit antennas and an arbitrary number of training symbols.
It provides the first general solution to the channel estimation problem for Multi-User
MIMO-OFDM systems where Spatial Division Multiple Access (SDMA) is employed
to increase the spectral efficiency. The optimality of our designs holds irrespective
of the number of transmit antennas per user, the number of OFDM sub-carriers, the
channel delay spread, and the number of users provided that the number of tones
dedicated to estimation exceeds the product of the number of transmit antennas and
the worst case delay spread. Not only does our design algorithm generate training
sequences that minimize mean squared channel estimation error, but the designs have
additional properties that make them very attractive from several implementation
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perspectives: 1) Individual training sequences can be drawn from standard signal
constellations, 2) Low PAPR, and 3) Low channel estimation complexity without
sacrificing optimality.

The rest of this chapter is organized as follows. The uplink Multi-User MIMO-
OFDM communication system model is described in Section 6.2. The design of
optimal training sequences is given for one and multiple training symbol scenarios
separately in Section 6.3. Simulation results are presented in Section 6.4.

6.2 System Model

We consider the uplink of a Multi-User MIMO-OFDM system, as shown in Fig. 6.1.
We denote the Discrete Fourier Transform (DFT) size by N and the number of users
by L (L ≥ 1) where the ith user is equipped with Mi transmit antennas, 0 ≤ i ≤
L− 1. Therefore, the total number of transmit antennas among all users is given by
M =

∑L−1
i=0 Mi.

We assume that the channel is quasi-static and remains constant over K successive
OFDM training symbols. The channel from the jth transmit antenna of the ith
user to the Base Station (BST) can be represented either in TD or FD. Let the
Channel Frequency Response (CFR) be Hi,j = [Hi,j(0), · · · , Hi,j(N − 1)]T where
Hi,j(k), 0 ≤ k ≤ N −1, is the frequency response at the kth subcarrier. However, the
Channel Impulse Response (CIR) in TD is represented by a much smaller number of
parameters. We assume that the maximal memory over all CIRs is νmax, and write
the CIR as hi,j = [hi,j(0), · · · , hi,j(νmax)]T . Estimating the CIR instead of the CFR
leads to the reduction of the number of unknowns from MN to M(νmax + 1). Hence,
a more accurate channel estimate is attainable using the same amount of training.
Furthermore, the CFR can be reconstructed from the CIR as follows

Hi,j(k) =
1√
N

νmax∑
t=0

hi,j(t)e
−j 2π

N
tk. (6.1)

At the jth (0 ≤ j ≤ Mi − 1) transmit antenna of the ith (0 ≤ i ≤ L − 1) user,
an OFDM symbol Xi,j of size N is given by Xi,j = [Xi,j(0), · · · , Xi,j(N − 1)]T . Let

xi,j = [xi,j(0), xi,j(1), · · · , xi,j(N − 1)]T be the Inverse Discrete Fourier Transform
(IDFT) of Xi,j. We use a Cyclic-Prefix (CP) of length Lp for the guard interval in
the OFDM system so that

x̃i,j = [x(N − Lp + 1), · · · , x(N − 1), x(0), · · · , x(N − 1)]T (6.2)

where Lp is chosen to be greater than the channel memory, i.e. Lp ≥ (νmax + 1).
Finally, x̃i,j goes through Parallel-to-Serial (P/S) conversion and is modulated to the
carrie frequency for transmission.

At the base station, all users are synchronized with the BST, where the received
signal is down-converted to baseband and passed through a Serial-to-Parallel (S/P)
converter. Then, the CP is removed and the Fast Fourier Transform (FFT) is applied.
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Figure 6.1: The uplink of a Multi-User MIMO-OFDM communication system.

The received OFDM symbol Y = [Y (0), · · · , Y (N − 1)]T in one symbol time can be
written as

Y =
L−1∑
i=0

Mi−1∑
j=0

diag(Hi,j)Xi,j +N , (6.3)

where N ∼ N (0N×1, σ
2IN) is Additive White Gaussian Noise (AWGN). We consider

the mapping (i, j) 7→ m : m =
∑i

s=0Ms + j −Mi, 0 ≤ m ≤M − 1, and re-label Hi,j

and Xi,j as Hm and Xm, respectively. The label can be inverted easily as

i = argmin
0≤i∗≤L−1

i∗ s.t. m ≤
i∗∑
s=0

Ms, j = m+Mi −
i∑

s=0

Ms. (6.4)

Then, equation (6.3) can be written as

Y =
M−1∑
m=0

diag(Hm)Xm +N . (6.5)

Remark: The development of the algorithm requires labeling of transmit an-
tennas among all users, and that both the BST and all the users are aware of that
labeling.
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6.3 Main Results

We first consider TD LLS channel estimation when only one training symbol is allowed
by leveraging the channel representation in TD. A general approach when K ≥ 2
training symbol is given by further incorporating space-time code structure into the
design. Then, a special construction utilizing Quaternions is given when K = 2.
Finally, an alternative scheme using equally-spaced pilots instead of the whole symbol
for training is given under some mild conditions. In the following sections, we assume
one receive antenna, since the same channel estimation scheme can be applied at all
receive antennas without loss of generality.

6.3.1 One OFDM Training Symbol

Since there are fewer parameters to be estimated in the TD, we apply the IDFT of
size N to (6.5), and get

y =
M−1∑
m=0

Smhm + n

=
[
S0 S1 · · · SM−1

] [
hH0 hH1 . . . hHM−1

]H
+ n

, Sh+ n, (6.6)

where y ∈ CN , hm ∈ Cνmax+1, 0 ≤ m ≤M − 1, and Sm ∈ CN×(νmax+1) is the circulant
training matrix constructed from the corresponding training sequence transmitted
over the mth antenna.

Let F = [f0, · · · ,fN−1] be the DFT matrix of size N with fi denoting its ith

column, and let F0 = [f0, · · · ,fνmax ] be composed of the first (νmax + 1) columns of
F . Then, Sm can be written as

Sm = FHDmF0, (6.7)

where Dm = diag (Xm(0), · · · , Xm(N − 1)). The matrix S ∈ CN×M(νmax+1) defined
in (6.6) is formed by horizontally concatenating the matrices Sm, 0 ≤ m ≤ M − 1.
To enable LLS channel estimation, the following condition on dimensionality has to
be satisfied [139]

N ≥M(νmax + 1) or, M ≤ N

(νmax + 1)
. (6.8)

To minimize the variance of the channel estimation error, the matrix S is required to
satisfy SHS = cIM(νmax+1), and this requires that

SHmSn = cδmnI(νmax+1), 0 ≤ m,n ≤M − 1. (6.9)

Given (6.7), the optimality condition becomes

FH
0 D

H
mDnF0 = cδmnI(νmax+1), 0 ≤ m,n ≤M − 1. (6.10)
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Next, let Fm be composed of (νmax+1) consecutive columns of F starting at index
m(νmax + 1), i.e.

Fm =
[
fm(νmax+1), · · · ,f(m+1)(νmax+1)−1

]
= ΛmF0, 0 ≤ m ≤M − 1, (6.11)

where
Λm = diag

(
1, ej

2π(νmax+1)
N

m, · · · , ej 2π(νmax+1)(N−1)
N

m
)
. (6.12)

It can be easily shown that FH
m Fn = δmnI(νmax+1). Now we present a general

approach which gives a family of optimal training sequences. As a starting point,
we choose the FD training sequence as an arbitrary constant-amplitude sequence X.
Let D = diag (X(0), · · · , X(N − 1)), then DHD = cIN where c is determined by the
signal constellation and/or transmit power constraints. The FD training sequence at
the mth transmit antenna is given by

Xm = ΛmX, 0 ≤ m ≤M − 1. (6.13)

Equivalently, Dm = ΛmD = DΛm, 0 ≤ m ≤ M − 1. Furthermore, we have the
following theorem.

Theorem 6.3.1. The choice of FD training sequences in (6.13) is optimal for a single
training OFDM symbol.

Proof. It is enough to show that (6.9) holds. Since

Sm = FHDmF0 = FHDΛmF0 = FHDFm, (6.14)

it follows that

SHmSn = (FHDFm)HFHDFn = FH
mD

HDFn = cδmnI(νmax+1). (6.15)

The LLS estimate (LLSE) of h is given as ĥ = 1
c
SHy, where each CIR can be

estimated as ĥm = 1
c
SHmy. Then, the CFR is given by

Ĥm =
1

c
FSHmy =

1

c
(FFH

0 )DH
mFy, 0 ≤ m ≤M − 1. (6.16)

The resulting channel estimation error variance is given by

σ2
e = σ2Tr

(
(SHS)−1

)
=
M(νmax + 1)

c
σ2. (6.17)

6.3.2 K OFDM Training Symbols with K ≥ 2

The major limitation of using only one training OFDM symbol is that the total
number of transmit antennas is limited by N

(νmax+1)
. When the channel is quasi-static
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overK ≥ 2 OFDM training symbols it is possible to increase the number of admissable
transmit antennas and reduce MMSE by a factor of K.

Denoting the received TD OFDM symbol in the tth symbol time by yt, 0 ≤ t ≤
K − 1, we express the received symbol block y as

y =


y0

y1
...

yK−1

 =


S00 S01 · · · S0,M−1

S10 S11 · · · S1,M−1
...

...
. . .

...
SK−1,0 SK−1,1 · · · SK−1,M−1



h0

h1
...

hM−1

+ n

, Sh+ n, (6.18)

where Stm = FHDtmF0, and the matrices Dtm’s are diagonal with the FD training
sequences appearing on their main diagonals. Least-square estimation is possible
when the following dimensionality condition for the matrix S ∈ CKN×M(νmax+1) holds

KN ≥M(νmax + 1), or,
L−1∑
i=0

Mi = M ≤ KN

(νmax + 1)
. (6.19)

For S to be optimal, it has to satisfy SHS = c̃IM(νmax+1) for some c̃. We extend
our previous approach by constructing a unitary matrix of higher dimension with
the space-time code structure. Let the matrix Σ ∈ CKN×KN be constructed as a
Kronecker product Σ = U ⊗ V where U = [Utq] ∈ CK×K is a unitary matrix and
V ∈ CN×N is a diagonal matrix satisfying V HV = c̃IN . Therefore the matrix Σ
satisfies

ΣHΣ = UHU ⊗ V HV = c̃IKN . (6.20)

We give the following general design of optimal training sequences. For 0 ≤ m ≤
M − 1, let p =

⌊
m
K

⌋
, 0 ≤ p ≤

⌊
M−1
K

⌋
and q = m−Kp ∈ {0, · · · , K − 1}. For the mth

transmit antenna, its FD training sequence matrix at the tth OFDM training symbol
is given by

Dtm = ΣtqΛp, if m = Kp+ q, 0 ≤ m ≤M − 1, (6.21)

where Σtq = UtqV is the N ×N diagonal matrix located at the (t, q) block of Σ.
The bijection π : m 7→ {p, q} groups the antennas into K classes depending

on the equivalence of the residue q. For two antennas not in the same class, their
training sequences can be proved orthogonal over any OFDM training symbol. For
two antennas in the same class, their training sequences can be proved orthogonal
over all K OFDM training symbols. We give the detailed proof below.

Theorem 6.3.2 (K Training Symbols). The training sequences in (6.21) are optimal
for K training OFDM symbols.

Proof. See Appendix 7.5.1.

Finally, the LLSE of h is given by ĥ = 1
c̃

∑K−1
t=0 S

H
t yt where each CIR can be

estimated as ĥm = 1
c̃

∑K−1
t=0 S

H
tmyt. Then, the CFR at the mth transmit antenna is
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given by

Ĥm =
1

c̃
F ĥm =

1

c̃
(FFH

0 )
K−1∑
t=0

DH
tmFyt. (6.22)

Let c̃ = Kc, the resulting channel estimation error variance is given by

σ2
e = σ2Tr

(
K−1∑
t=0

SHt St)
−1

)
=
M(νmax + 1)

Kc
σ2.

6.3.3 Special case when K = 2

When K = 2, like the Alamouti Space-Time Block Code (STBC), our construction
of training sequences makes use of Hamilton’s Biquaternions. We choose two FD
training sequences X and Z where the sum of their squared amplitudes is constant,
i.e.

DH
XDX +DH

ZDZ = c̃IN . (6.23)

where DX = diag (X(0), · · · , X(N − 1)), and DZ = diag (Z(0), · · · , Z(N − 1)).
For 0 ≤ m ≤ M − 1, let p =

⌊
m
2

⌋
, 0 ≤ p ≤

⌊
M−1

2

⌋
and q = m − 2p ∈ {0, 1}.

Let Xp = ΛpX and Zp = ΛpZ, 0 ≤ p ≤
⌊
M−1

2

⌋
, where Λp is defined in (6.12). The

diagonal FD training matrices of the mth antenna in the 0th and 1st training symbols
are given by D0m and D1m respectively:

D0m =

{
ΛpDX , if m = 2p
ΛH
p D

H
Z , if m = 2p+ 1

, D1m =

{
ΛpDZ , if m = 2p
−ΛH

p D
H
X , if m = 2p+ 1

. (6.24)

Theorem 6.3.3 (Alamouti Signaling). The FD training sequences in (6.24) are op-
timal for two training OFDM symbols.

Proof. See Appendix 7.5.2.

If all the users employ two transmit antennas and Alamouti code, their training
sequences in two symbol intervals are assigned according to (6.24), which can be
generated simply using the same Alamouti code generator, thus greatly reduce the
training assignment complexity.

6.3.4 Discussions

The PAPR of the training sequence S(n), 0 ≤ n ≤ N − 1, is given by

PAPR =
max
n
|S(n)|2

1
N

∑N−1
n=0 |S(n)|2

. (6.25)

The transform operator Λm between different FD training sequences can be viewed
as a frequency modulation, which is equivalent to circulant shift of the training se-
quence in the TD. Hence, we have the following proposition.
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Proposition 6.3.1. All TD training sequences of Xm’s in (6.13) have the same
PAPR.

This property is important when designing the training sequences. As long as
the PAPR of X is low, all training symbols will have low PAPR. Another merit of
our design is that if N

(νmax+1)
= 2k, for some integer k, and if X is chosen from a

2k-phase shift keying (PSK) constellation, then the transform Λm guarantees that
all FD training sequences {Xm, 0 ≤ m ≤M − 1} will belong to the same 2k-PSK
constellation, which is very easy to generate.

One possible choice for X is a Constant-Amplitude-Zero-Auto-Correlation
(CAZAC) sequence [140], which is a complex-valued sequence with constant ampli-
tude and zero autocorrelation at nonzero lags. One example of a CAZAC sequence
of length N is the chirp sequence given by

X(k) =

{ √
c exp(j πuk

2

N
), if N is even√

c exp(j πuk(k+1)
N

), if N is odd
, 0 ≤ k ≤ N − 1. (6.26)

where u is any integer relatively prime1 to N . A disadvantage of this and other
CAZAC sequences is that the entries are not restricted to a standard signal constel-
lation. An alternative is provided by Golay complementary sequences [94] which only
assume values from {−√c,√c}. A third possibility is the flat sequence (impulsive in
TD) {X : X(k) =

√
c, for all k}. These three choices have different PAPRs, as sum-

marized in Table 6.1. Given the above discussion, it is possible to generate a family
of optimal training sequences with low PAPR from a standard signal constellation.

Chirp-based Golay-based TD Impulsive
PAPR 0 dB ≤ 3 dB 10 dB

Table 6.1: PAPR Comparison of Three Training Sequence Candidates

It is also possible to exploit alternative design to reduce the number of pilots
per training symbol. Assume the number of subcarriers N can be decomposed as
N = NpT where Np ≥ (νmax + 1), then it is possible to use Np equally-spaced
pilots in each training symbol instead of the whole symbol. At the mth antenna, the
training sequence is given by diagonal matrix D̂m ∈ CNp×Np and the pilot locations
are {sT}Np−1

s=0 . Consider the one training symbol scenario without loss of generality.
Instead of taking IDFT of (6.5) of length N , we now take IDFT of (6.5) only at pilot
tones of length Np, and get

ŷ =
M−1∑
m=0

Ŝmhm + n, (6.27)

where ŷ ∈ CNp , Ŝm = F̂HD̂mF̂0 ∈ CNp×(νmax+1), F̂ is the DFT matrix of size Np,

F̂0 = [f̂st = e
j 2πst
Np ] ∈ CNp×(νmax+1) is the submatrix of F0 at rows corresponding to

pilot frequencies. It is obvious that F̂0 is also the first (νmax + 1) columns of the

1Two integers are said to be relatively prime if their greatest common divisor is 1.
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DFT matrix F̂ , and F̂H
0 F̂0 = 1

T
Iνmax+1. Therefore, it is clear that we can follow the

same framework in both single and multiple training symbol scenarios, by replacing
N by Np in both the dimensionality conditions and design parameters at the cost of
increasing the MMSE by a factor of T .

6.4 Numerical Results

We consider uplink transmission in a Multi-User MIMO-OFDM system with N = 64
and νmax = 15. Each BST is equipped with two co-located receive antennas and two
users are each equipped with two transmit antennas over which the Alamouti STBC is
employed. Each user employs a non-systematic rate-1/2 convolutional code with octal
generator (133, 171) and constraint length 7, which are further QPSK modulated. All
channel paths are assumed to have uncorrelated and identically-distributed CIRs with
8 zero-mean complex Gaussian taps following an exponentially-decaying power delay
profile with a 3 dB decay per tap. K OFDM training symbols are transmitted over
each transmit antenna for channel estimation as described in Section 6.3. The CIR
estimates are used for detection of the OFDM data symbols through the joint Linear
Minimum-Mean-Square-Error (LMMSE) technique [141] where the received signals
from the two receive antennas are processed jointly to separate the two users.
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Figure 6.2: BER versus SNR for K = 1 (dashed) and 2 (solid) training OFDM
symbols from optimal training sequences (generated from Golay, TD impulsive and
chirp) and non-optimal random sequence compared with perfect CSI.

Using these parameters, the dimensionality condition in (6.19) is met with K ≥ 1.
In Fig. 6.2, the Bit Error Rate (BER) performances of three FD training sequences
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proposed in Section 3.4 (namely: Chirp, Golay, and TD Impulsive) with K = 1 and 2
are compared with the perfect CSI case. All training sequences can be generated
from standard QPSK constellation except chirp sequences. In Fig. 6.2, all users are
assumed to have perfect frequency synchronization with the receiver. All training
sequences achieve roughly the same BER performance with SNR losses of 1.5 and
0.7 dB for K = 1 and 2, respectively compared with the perfect CSI case. The
performance of a random BPSK sequence not satisfying the optimality condition
is also shown for comparison. The performance of the random sequence is inferior
to that of the other sequences satisfying the optimality condition; especially with
K = 1 training symbol where the number of equations equals the number of unknowns
making the channel estimate unreliable when the optimality condition is not satisfied.
From another perspective, our optimally-designed training sequences with K = 1
training symbol achieve comparable performance to that of the random sequence
with K = 2 training symbols, i.e. with 50% less training overhead. This is besides
the additional complexity needed to invert the matrix SHS which is not a scaled
identity in the case of non-optimal sequences.

We further examine the performance of the optimal training sequences when Phase
Noise (PN) is present at the transmitter and receivers in Fig. 6.3 when its variance
σ2
pn = 0, 10−5 and 10−4. Although all the optimal training sequences obtain MMSE,

their PAPR and robustness to phase noise and carrier frequency offset is different.
The readers are referred to [8] which explores this tradeoff in detail.
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Figure 6.3: BER versus SNR for different PN levels σ2
pn = 0 (solid), 10−5 (dashed),

and 10−4 (dash-dotted) with K = 2 training OFDM symbols.
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Chapter 7

Appendix

7.1 Proofs in Chapter 2

7.1.1 Preparations for Proofs

The Statistical Orthogonality Condition (StOC) for a measurement matrix X is first
introduced in [23] and defined as below.

Definition 7.1.1. Let Π̄ = (π1, . . . , πp) be a random permutation of {1, . . . , p}, and
define Π = (π1, . . . , πk) and Πc = (πk+1, . . . , πp) for any k ≤ p. Then the matrix X is
said to satisfy the (k, ε, δ)-StOC, if there exist ε, δ ∈ [0, 1) such that the inequalities

‖(XH
ΠXΠ − I)z‖∞ ≤ ε‖z‖2, (7.1)

‖XH
ΠcXΠz‖∞ ≤ ε‖z‖2, (7.2)

hold for every fixed z ∈ Ck with probability exceeding 1− δ, with respect to Π̄.

We have the following proposition rephrased from [23] stating that the StOC is
satisfied with high probability if X satisfies the strong coherence property.

Proposition 7.1.2 ([23]). If the matrix X satisfies the strong coherence property,
then it satisfies (k, ε, δ)-StOC for k ≤ n/(2 log p), with ε = 10µ

√
2 log p and δ ≤ 4p−1.

If (7.1) and (7.2) hold for a realization of permutation Π̄, then for t ≤ k, let
Πt = (π1, . . . , πt) and Πc

t = (πt+1, . . . , πk), so that Πt ∪ Πc
t = Π and Πt ∩ Πc

t = ∅. For
every z ∈ Ct, we have∥∥∥∥[XH

Πt
XΠt − It XH

Πt
XΠct

XH
Πct
XΠt XH

Πct
XΠct

− Ik−t

] [
z

0k−t

]∥∥∥∥
∞
≤ ε‖z‖2,

from (7.1), therefore

‖(XH
ΠtXΠt − It)z‖∞ ≤ ε‖z‖2, and ‖XH

Πct
XΠtz‖∞ ≤ ε‖z‖2.
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Moreover, from (7.2) we have

‖XH
ΠcXΠtz‖∞ =

∥∥∥∥[XH
ΠcXΠt XH

ΠcXΠct

] [ z
0k−t

]∥∥∥∥
∞
≤ ε‖z‖2.

We also need the following proposition that shows a random submatrix of X is
well-conditioned with high probability, which is mainly due to Tropp [142], and first
presented in the form below by Candès and Plan [143].

Proposition 7.1.3 ([142, 143]). Let Π̄ = (π1, . . . , πp) be a random permutation of
{1, . . . , p}, and define Π = (π1, . . . , πk) for any k ≤ p. Then for q = 2 log p and
k ≤ p/(4‖X‖2

2), we have

(
E
[
‖XH

ΠXΠ − I‖q2
])1/q ≤ 21/q

30µ log p+ 13

√
2k‖X‖2

2 log p

p

 . (7.3)

with respect to the random permutation Π̄.

The following proposition [143] states a probabilistic bound on the extreme sin-
gular values of a random submatrix of X, by applying Markov’s inequality

Pr
(
‖XH

ΠXΠ − I‖2 ≥ 1/2
)
≤ 2qE

[
‖XH

ΠXΠ − I‖q2
]

to Proposition 7.1.3.

Proposition 7.1.4 ([143]). Let Π̄ = (π1, . . . , πp) be a random permutation of
{1, . . . , p}, and define Π = (π1, . . . , πk) for any k ≤ p. Suppose that µ(X) ≤
1/(240 log p) and k ≤ p/(c2

2‖X‖2
2 log p) for numerical constant c2 = 104

√
2, then we

have
Pr
(
‖XH

ΠXΠ − I‖2 ≥ 1/2
)
≤ 2p−2 log 2.

Notice that ‖XH
ΠXΠ − I‖2 = max{λmax(XH

ΠXΠ) − 1, 1 − λmin(XH
ΠXΠ)}, where

λmax(XH
ΠXΠ) and λmin(XH

ΠXΠ) are the maximum and minimum eigenvalues of
XH

ΠXΠ, i.e. all the eigenvalues of XH
ΠXΠ are bounded in [1/2, 3/2]. If for a

realization of permutation Π̄, ‖XH
ΠXΠ − I‖2 ≥ 1/2, we have

‖(XH
ΠXΠ)−1‖2 ≤ 2 and ‖XΠ(XH

ΠXΠ)−1‖2 ≤
√

2.

Moreover, for t ≤ k and Πt = (π1, . . . , πt), we have ‖XH
Πt
XΠt − It‖2 ≤ 1/2, since

eigenvalues of XH
Πt
XΠt are majorized by eigenvalues of XH

ΠXΠ.
Finally, we bound the `∞ norm of correlated Gaussian noise in the below form.

Let P ∈ Cn×n be a projection matrix such that P 2 = P . Since η ∼ CN (0, σ2In)
is i.i.d. complex Gaussian noise, XHPη ∼ CN (0, σ2XHPX) is also Gaussian dis-
tributed, but is correlated with covariance matrix σ2XHPX. We want to bound
Pr(‖XHPη‖∞ ≥ τ) for some τ > 0. First, we need the Sidak’s lemma [144] below.

Lemma 7.1.5 (Sidak’s lemma). Let [X1, · · · , Xn] be a vector of random multivariate
normal variables with zero means, arbitrary variances σ2

1, · · · , σ2
n and and an arbitrary
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correlation matrix. Then, for any positive numbers c1, · · · , cn, we have

Pr(|X1| ≤ c1, · · · , |Xn| ≤ cn) ≥
n∏
i=1

Pr(|Xi| ≤ ci).

Since XHPη ∼ CN (0, σ2XHPX), then each xHi Pη ∼ CN (0, σ2
i ), where σ2

i =
σ2xHi Pxi ≤ σ2. Then

Pr(|xHi Pη| ≤ τ) = 1− 1

π
e−τ

2/σ2
i ≥ 1− 1

π
e−τ

2/σ2

.

Following Sidak’s lemma, for τ > 0 we have

Pr(‖XHPη‖∞ ≤ τ) ≥
p∏
i=1

Pr(|xHi Pη| ≤ τ) ≥ (1− 1

π
e−τ

2/σ2

)p ≥ 1− p

π
e−τ

2/σ2

,

provided the RHS is greater than zero. We have the proposition below.

Proposition 7.1.6. Let η be a random vector with i.i.d. CN (0, σ2) entries, P be a
projection matrix, and X be a unit-column matrix, then for τ > 0 we have

Pr(‖XHPη‖∞ ≤ τ) ≥ 1− p

π
e−τ

2/σ2

,

provided the RHS is greater than zero.

Now let τ = σ
√

(1 + α) log p for α > 0, we have

Pr{‖XHPη‖∞ ≤
√
σ2(1 + α) log p} ≥ 1− (pαπ)−1.

7.1.2 Proof of Theorem 2.2.1

We first write the data vector β as β = PΠz, where z ∈ Ck is a deterministic vector,
and PΠ ∈ Rp×k is a partial identity matrix composed of columns indexed by Π. Then
the measurement vector can be written as

y = Xβ + η = XPΠz + η = XΠz + η,

where XΠ denotes the submatrix of X composed of columns indexed by Π.
We note that in OMP, the residual rt, t = 0, · · · , k − 1 is orthogonal to the

selected columns in previous iterations, so in each iteration a new column will be
selected. Define a subset Πt which contains t variables that are selected at the tth
iteration, and Pt = XΠt(X

H
Πt
XΠt)

−1XH
Πt

is the projection matrix onto the linear
subspace spanned by the columns of XΠt , and we assume P0 = 0.

We want to prove Πt ⊆ Π by induction. First at t = 0, Πt = ∅ ⊂ Π. Assume at
iteration t, Πt ⊆ Π, then the residual rt can be written as

rt = (I − Pt)y = (I − Pt)XΠz + (I − Pt)η , st + nt.
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Let M t
Π = ‖XH

Π st‖∞, M t
Πc = ‖XH

Πcst‖∞ and Nt = ‖XHnt‖∞, then a sufficient
condition for Πt+1 ⊆ Π, i.e. for OMP to select a correct variable at the next iteration
is that

M t
Π −M t

Πc > 2Nt, (7.4)

since ‖XH
Π rt‖∞ ≥M t

Π −Nt > M t
Πc +Nt ≥ ‖XH

Πcrt‖∞.
Define the event G1 = {X satisfies the (k, ε, δ)-StOC} that happens with prob-

ability at least 1 − 4p−1 with respect to Π̄ from Proposition 7.1.2, and the event
G2 = {‖XH

ΠXΠ − I‖2 ≤ 1/2} that happens with probability at least 1 − 2p−2 log 2

with respect to Π̄ from Proposition 7.1.4. Let the event G = G1∩G2. From the above
discussions the event G holds with probability at least 1−4p−1−2p−2 log 2 with respect
to Π̄.

Now we bound M t
Π and M t

Πc under the event G. Let Πc
t = Π\Πt be the set of

yet to be selected indices of the support of β, and βΠct
= zΠct

be the corresponding
coefficients. Since (I − Pt)XΠz ∈ R(XΠct

) belongs to the linear subspace spanned
by the columns of XΠct

, we can find a vector w of dimension (k − t) such that
XΠct

w = (I − Pt)XΠz, where the vector w can be written as

w = (XH
Πct
XΠct

)−1XH
Πct

(I − Pt)XΠct
zΠct

= zΠct
− (XH

Πct
XΠct

)−1XH
Πct
PtXΠct

zΠct
.

We use the following lemma from [19].

Lemma 7.1.7 ([19]). The minimum and maximum eigenvalue of XH
Πct

(I − Pt)XΠct

is bounded as

λmin(XH
Πct

(I − Pt)XΠct
) ≥ λmin(XH

ΠXΠ),

λmax(XH
Πct

(I − Pt)XΠct
) ≤ λmax(XH

ΠXΠ).

The readers are referred to [19] for the proof. Since we have

‖w‖2 ≤ ‖(XH
Πct
XΠct

)−1‖2‖XH
Πct

(I − Pt)XΠct
zΠct
‖2 (7.5)

≤ 2‖XH
ΠXΠ‖2‖zΠct

‖2 ≤ 3‖zΠct
‖2, (7.6)

where (7.5) follows from Lemma 7.1.7, and (7.6) follows from Proposition 7.1.4. Also,

‖XH
Πct
PtXΠct

zΠct
‖∞ = ‖XH

Πct
XΠt(X

H
ΠtXΠt)

−1XH
ΠtXΠct

zΠct
‖∞

≤ ε‖(XH
ΠtXΠt)

−1XH
ΠtXΠct

zΠct
‖2

≤ ε‖(XH
ΠtXΠt)

−1‖2‖XH
ΠtXΠct

‖2‖zΠct
‖2 ≤ ε‖zΠct

‖2,

therefore M t
Π can be bounded as

M t
Π = ‖XH

Πct
XΠct

zΠct
−XH

Πct
PtXΠct

zΠct
‖∞

≥ ‖zΠct
‖∞ − ‖(XH

Πct
XΠct

− I)zΠct
‖∞ − ‖XH

Πct
PtXΠct

zΠct
‖∞

≥ ‖zΠct
‖∞ − 2ε‖zΠct

‖2. (7.7)
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where (7.7) follows from (7.1). Next, M t
Πc can be bounded as

M t
Πc = ‖XH

Πc(I − Pt)XΠz‖∞ = ‖XH
ΠcXΠct

w‖∞ ≤ ε‖w‖2 ≤ 3ε‖zΠct
‖2. (7.8)

where (7.8) follows from (7.2).
Conditioned on the event G, for each Pt, since I −Pt is also a projection matrix,

define the event

Ht = {Nt ≤ σ
√

(1 + α) log p}, t = 0, · · · , k − 1 (7.9)

then from Proposition 7.1.6, it happens with probability at least 1 − (pαπ)−1 with
respect to η. We further define the event H = ∩k−1

t=0Ht, then from the union bound
Pr(H|G) = Pr(H) ≥ 1 − k(pαπ)−1. Similarly, for the event H′ = ∩kt=0Ht, then from
the union bound Pr(H′|G) = Pr(H′) ≥ 1− (k + 1)(pαπ)−1.

Now define the event I = G ∩ H, from the above discussions we have Pr(I) ≥
1−k(pαπ)−1−2p−2 log 2−4p−1. Now we are in order to analyze the OMP performance
under the event G. We want to prove Πt ⊆ Π by induction.

Plug in the above bounds (7.7), (7.8) and (7.9) into (7.4), it is sufficient that at
the tth iteration

‖zΠct
‖∞ > 5ε‖zΠct

‖2 + 2σ
√

(1 + α) log p. (7.10)

Note that ‖zΠct
‖∞ ≥ |β|(t+1), ‖zΠct

‖2 ≤
√
k − t|β|(t+1), (7.10) is satisfied by the

condition in (2.13) for 0 ≤ t ≤ k − 1, therefore a correct variable is selected at the
tth iteration, Πt ⊆ Π. Since the sparsity level of β is k, the OMP algorithm in
Algorithm 1 successfully finds the support of β in k iterations under the event I, and
we’ve proved Theorem 2.2.1.

7.1.3 Proof of Theorem 2.2.2

Now we define the event I ′ = H′ ∩ G, where I ′ ⊂ I and happens with probability at
least 1− (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1. Conditioned on the event I ′, in order to
prove Theorem 2.2.2, we need to further show that ‖XHrt‖∞ > δ for 0 ≤ t ≤ k − 1
so that the algorithm doesn’t stop early, and ‖XHrk‖∞ ≤ δ so that the algorithm
stops at the kth iteration. While the latter is obvious from the definition of Hk, for
the first inequality we have

‖XHrt‖∞ ≥M t
Π −Nt

≥ ‖zΠct
‖∞ − 2ε‖zΠct

‖2 − σ
√

(1 + α) log p (7.11)

> 3ε‖zΠct
‖2 + σ

√
(1 + α) log p (7.12)

≥ σ
√

(1 + α) log p = δ,

where (7.11) follows from (7.7) and (7.9), and (7.12) follows from (7.10).
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7.1.4 Proof of Corollary 2.2.4

The proof of Corollary 2.2.4 is straightforward by early-terminating the induction
procedure at the k′th iteration.

7.1.5 Proof of Corollary 2.2.5

Again we prove by induction. First at t = 0, Πt = ∅ ⊂ Π. Assume at iteration t, the
OMP algorithm has successfully detected the t largest entries of |β|. For i ∈ Πc

t that
corresponds to the t+ 1th largest entry of |β|, we have

|xHi rt| ≥ |zi| − 2ε‖zΠct
‖2 − σ

√
(1 + α) log p = |β|(t+1) − 2ε‖zΠct

‖2 − σ
√

(1 + α) log p

from a simple variation of (7.7). On the other hand, for j ∈ Πc
t that corresponds to

the rest undetected entries of β, we have

|xHj rt| ≤ |zj|+ 2ε‖zΠct
‖2 + σ

√
(1 + α) log p ≤ |β|(t+2) + 2ε‖zΠct

‖2 + σ
√

(1 + α) log p.

To detect the (t+ 1)th largest entries it is sufficient to have

|β|(t+1) − |β|(t+2) ≥ 4ε
√
k − t|β|(t+1) + 2σ

√
(1 + α) log p.

This is satisfied when (2.17) holds by simply plugging it into the above equation.

7.2 Proofs in Chapter 3

7.2.1 Proof of Theorem 3.3.1

Proof. Without loss of generality, let |θ1| ≥ |θ2| ≥ · · · ≥ |θN |. We have

x = Ψθ = (I +E)θ = θ +Eθ, (7.13)

where the ith entry of x is given as xi = θi + eTi θ. By the triangle inequality and
Hölder’s inequality we have

|eTmθ| ≤
N∑
n=1

|emnθn| ≤ ‖em‖p‖θ‖q ≤ β‖θ‖q (7.14)

for all 1 ≤ m ≤ N . Also, by the triangle inequality we have

|θm| − |eTmθ| ≤ |θm + eTmθ| ≤ |θm|+ |eTmθ|. (7.15)

By combining the above two inequalities, we obtain

|θm| − β‖θ‖q ≤ |θm + eTmθ| ≤ |θm|+ β‖θ‖q. (7.16)
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Let ΣN−k denote any subset of {1, · · · , N} with cardinality (N − k). To get the
upper bound, we can write

‖x− xk‖1 = min
ΣN−k

∑
m∈ΣN−k

|xm|

= min
ΣN−k

∑
m∈ΣN−k

|θm + eTmθ|

≤ ‖θ − θk‖1 + (N − k)β‖θ‖q (7.17)

where (7.17) follows from (7.16). The upper bound is achieved when (3.11) holds
with the positive sign, given by

min
ΣN−k

∑
m∈ΣN−k

|θm + eTmθ|

= min
ΣN−k

∑
m∈ΣN−k

∣∣∣∣∣θm + ej arg(θm)β

(
N∑
n=1

( |θn|
‖θ‖q

)q/p
e−j arg(θn) · θn

)∣∣∣∣∣
= min

ΣN−k

∑
m∈ΣN−k

|θm|+ (N − k)β

(
N∑
n=1

( |θn|
‖θ‖q

)q/p
|θn|
)

= ‖θ − θk‖1 + (N − k)β

∑N
n=1 |θn|q

‖θ‖q/pq
(7.18)

= ‖θ − θk‖1 + (N − k)β‖θ‖q, (7.19)

where in writing (7.18) and (7.19) we have used the fact that 1/p + 1/q = 1. To get
the lower bound, note that∑

m∈ΣN−k

|xm| =
∑

m∈ΣN−k

|θm + eTmθ|

≥
∑

m∈ΣN−k

|θm| − (N − k)β‖θ‖q

≥ ‖θ − θk‖1 − (N − k)β‖θ‖q (7.20)

for all ΣN−k. Then,

‖x− xk‖1 = min
ΣN−k

∑
m∈ΣN−k

|xm| ≥ ‖θ − θk‖1 − (N − k)β‖θ‖q, (7.21)

and it is easy to see that the bound is achieved when (3.11) holds with the negative
sign.
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7.2.2 Proof of Theorem 3.3.2

Proof. By taking β = η in Theorem 3.3.1 and letting E be the perturbation matrix
with ‖em‖p = β = η, we have

‖x− xk‖1 = ‖θ − θk‖1 + (N − k)η‖θ‖q (7.22)

for x = (I +E)θ. Since E ∈ {Ẽ : ‖ẽi‖p ≥ η}, then

max
Ẽ:‖ẽi‖p≥η

‖x− xk‖1 ≥ ‖θ − θk‖1 + (N − k)η‖θ‖q. (7.23)

7.3 Proofs in Chapter 4

7.3.1 Proof of Theorem 4.4.1

Proof. We first define βnΩn =
‖dΩn‖22‖dnΩn‖

2
2

(dTΩnd
n
Ωn

)2 . Obviously βnΩn ≥ 1 for all n. With this we

have ‖dnΩn‖2
2 = βn−1

Ωn
‖dn−1

Ωn
‖2

2, and dTΩnd
n
Ωn

= βn−1
Ωn
dTΩnd

n−1
Ωn

. Combining with dnΩcn =

dn−1
Ωcn

, γn can be written as

γn =
(dTΩnd

n
Ωn

+ dTΩcnd
n
Ωcn

)2

‖d‖2
2(‖dnΩn‖2

2 + ‖dnΩcn‖
2
2)

=
(βn−1

Ωn
dTΩnd

n−1
Ωn

+ dTΩcnd
n−1
Ωcn

)2

‖d‖2
2(βn−1

Ωn
‖dn−1

Ωn
‖2

2 + ‖dn−1
Ωcn
‖2

2)

= γn−1

[
(βn−1

Ωn
− 1)

dTΩnd
n−1
Ωn

dTdn−1 + 1
]2

(βn−1
Ωn
− 1)

‖dn−1
Ωn
‖22

‖dn−1‖22
+ 1

, (7.24)

Next we define

qn−1
i =

1

dTdn−1
did

n−1
i and pn−1

i =
1

‖dn−1‖2
2

(dn−1
i )2
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for 1 ≤ i ≤M , then |qn−1
i | ≤ 1

M

(
µ(d)µ(dn−1)

γn−1

)1/2

and 0 ≤ pn−1
i ≤ µ(dn−1)

M
, and we have

γn = γn−1

[
(βn−1

Ωn
− 1)

∑|Ωn|
i=1 q

n−1
Ωn(i) + 1

]2

(βn−1
Ωn
− 1)

∑|Ωn|
i=1 p

n−1
Ωn(i) + 1

= γn−1

[
(βn−1

Ωn
− 1)

∑|Ωn|
i=1 (pn−1

Ωn(i) + qn−1
Ωn(i) − p

n−1
Ωn(i)) + 1

]2

(βn−1
Ωn
− 1)

∑M
i=1 p

n−1
Ωn(i) + 1

≥ γn−1

(βn−1
Ωn
− 1)

|Ωn|∑
i=1

(2qn−1
Ωn(i) − p

n−1
Ωn(i)) + 1

 .
By applying the Hoeffding’s inequality [145] to

Xi = 2qn−1
Ωn(i) − pn−1

Ωn(i), i = 1, · · · , |Ωn|,

where Xi’s are independent random variables satisfying

Xi ≤ 2|qn−1
Ωn(i)| − pn−1

Ωn(i) ≤
2

M

(
µ(d)µ(dn−1)

γn−1

) 1
2

,

Xi ≥ −2|qn−1
Ωn(i)| − pn−1

Ωn(i) ≥ −
2

M

(
µ(d)µ(dn−1)

γn−1

) 1
2

− µ(dn−1)

M
,

and E[
∑|Ωn|

i=1 Xi] = E[
∑M

i=1 1{i∈Ωn}(2q
n−1
i − pn−1

i )] = |Ωn|
M

, given 1{G} is the indicator
function of event G, we have for t > 0,

Pr

|Ωn|∑
i=1

Xi −
|Ωn|
M
≤ −t

 ≤ exp

(
− t2M2γn−1

[4µ(d)1/2 + (γn−1µ(dn−1))1/2]
2
µ(dn−1)|Ωn|

)

≤ exp

(
− t2M2γn−1

2 [16µ(d) + γn−1µ(dn−1)]µ(dn−1)|Ωn|

)
,

where the second inequality follows from (a + b)2 ≤ 2(a2 + b2). Now let t = |Ωn|
M

, we
have

Pr

|Ωn|∑
i=1

Xi ≤ 0

 ≤ exp

(
− γn−1|Ωn|

2 [16µ(d) + γn−1µ(dn−1)]µ(dn−1)

)

≤ exp

(
− γn−1|Ωn|

2 [16µ(d) + µ(dn−1)]µ(dn−1)

)
.
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Since

Pr (γn ≥ γn−1) ≥ Pr

(βn−1
Ωn
− 1)

|Ωn|∑
i=1

(2qn−1
Ωn(i) − pn−1

Ωn(i)) ≥ 0


≥ Pr

|Ωn|∑
i=1

(2qn−1
Ωn(i) − pn−1

Ωn(i)) ≥ 0

 ,

therefore we have γn ≥ γn−1 with probability at least 1−exp
(
− γn−1|Ωn|

2[16µ(d)+γn−1µ(dn−1)]µ(dn−1)

)
.

7.4 Proofs in Chapter 5

7.4.1 Proof of Theorem 5.3.3

Proof. If we express 0 ≤ n ≤ N − 1 as n = rm + i, where 0 ≤ r ≤ q − 1 and
0 ≤ i ≤ m−1, then using binomial expansion for nt = (rm+ i)t we can write f

(t)
P (θ0),

θ0 = 2πl/m, where l and m 6= 1 are co-prime integers, as

f
(t)
P (θ0) = jt

N−1∑
n=0

ntpne
jnθ0

= jt
q−1∑
r=0

m−1∑
i=0

(rm+ i)tprm+ie
j(rm+i) 2πl

m

= jt
q−1∑
r=0

m−1∑
i=0

t∑
u=0

(
t

u

)
it−u(rm)uprm+ie

j 2πli
m

= jt
t∑

u=0

(
t

u

)
mu

m−1∑
i=0

it−uej
2πli
m

[
q−1∑
r=0

ruprm+i

]
. (7.25)

Define a length-q sequence {br}q−1
r=0 as br = prm+i, 0 ≤ r ≤ q − 1. If {br}q−1

r=0 satisfies

q−1∑
r=0

rubr = 0, for all 0 ≤ u < t, (7.26)

then the coefficient f
(t)
P (θ0) will be zero. From (5.14), it follows that the zero-forcing

condition in (7.26) will be satisfied if {br}q−1
r=0 is the PTM sequence of length 2t. We

note that f
(M)
P (θ0) is automatically zero as

∑m−1
i=0 ej

2πli
m = 0. Therefore, to zero-force

the derivatives f
(t)
P (θ0) for all t ≤ M , it is sufficient to select P = {pn}2Mm−1

n=0 such
that each {prm+i}q−1

r=0, i = 0, · · · ,m− 1 is the length-2M PTM sequence. We call such
a sequence a (2M ,m)-PTM sequence. The (2M ,m)-PTM sequence has length 2M ×m
and is constructed from the length-2M PTM sequence by repeating each 1 and −1
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in the PTM sequence m times, that is oversampling the PTM sequence by a factor
m.

7.4.2 Proof of Corollary 5.3.2

Proof. The proof for θ0 = 0 is straightforward. For θ0 = 2πl/(2hm), we have

f
(t)
P (θ0) =

t∑
u=0

(
t

u

)
(2hm)u

2hm−1∑
i=0

it−uej
2πli

2hm

 q

2h
−1∑

r=0

rup2hmr+i

 (7.27)

where q = 2M . The corollary follows from the fact that downsampling a PTM se-
quence by a power of 2 produces a PTM sequence of shorter length.

7.4.3 Proof of Theorem 5.3.4

Proof. Let m′ = m/2 and 0 ≤ t ≤M , the coefficient f
(t)
P (θ0) is given by

f
(t)
P (θ0) = jt

2M−1m−1∑
n=0

ntpne
jnθ0

= jt
2Mm′−1∑
n=0

nt(−1)np̃ne
j 2πln
m

= jt
2Mm′−1∑
n=0

nt(−1)np̃n(−1)nej
π(m+2l)n

m

= jt
2Mm′−1∑
n=0

ntp̃ne
j
π(m′+l)n

m′

= f
(t)

P̃ (θ̃0)

where θ̃0 = (m′ + l)π/m′. The last equation equals to zero following from Theorem
5.3.3, therefore P has Mth-order nulls at θ0.

7.5 Proofs in Chapter 6

7.5.1 Proof of Theorem 6.3.2

Proof. It is enough to show that

K−1∑
t=0

SHtmStn = FH
0

(
K−1∑
t=0

DH
tmDtn

)
F0 = c̃δmnI(νmax+1) (7.28)
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It is obvious that when m = n, the above equation holds. When m 6= n, we
write m = Kp1 + q1 and n = Kp2 + q2, then Dtm = Σtq1Λp1 and Dtn = Σtq2Λp2 for
0 ≤ t ≤ K − 1. The proof can be splitted into two cases:

• When q1 = q2 = q ∈ {0, · · · , K − 1} but p1 6= p2, we have

K−1∑
t=0

SHtmStn = FH
p1

(
K−1∑
t=0

ΣH
tqΣtq

)
Fp2 = c̃FH

p1
Fp2 = 0(νmax+1).

• When q1 6= q2, we have

K−1∑
t=0

DH
tmDtn = ΛH

p1

(
K−1∑
t=0

ΣH
t,q1

Σt,q2

)
Λp2 = 0N . (7.29)

Now, Eq. (7.28) follows trivially.

7.5.2 Proof of Theorem 6.3.3

Proof. It is enough to show that

SH0mS0n + SH1mS1n = FH
0 (DH

0mD0n +DH
1mD1n)F0 = c̃δmnI(νmax+1). (7.30)

It is obvious that the above equation holds when m = n. When m 6= n, we write
m = 2p1 + q1 and n = 2p2 + q2 and consider two cases

• q1 = q2 but p1 6= p2. Without loss of generality, we assume q1 = q2 = 0 and get

SH0mS0n = FH
0 D

H
0mD0nF0 = FH

p1
DH

XDXFp2 ,

SH1mS1n = FH
0 D

H
1mD1nF0 = FH

p1
DH

ZDZFp2 .

Hence we have,

SH0mS0n + SH1mS1n = FH
p1

(
DH

XDX +DH
ZDZ

)
Fp2 = c̃FH

p1
Fp2 = 0(νmax+1).

(7.31)

• q1 6= q2. Without loss of generality, we assume q1 = 0 and q2 = 1 and get

DH
0mD0n +DH

1mD1n = (Λp1DX)H(ΛH
p2
DH

Z ) + (Λp1DZ)H(−ΛH
p2
DH

X )

= ΛH
p1

(DH
XD

H
Z −DH

ZD
H
X )ΛH

p2
= 0(νmax+1).

therefore (7.30) follows directly.
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