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Abstract—Change-point detection is of great interest in ap-
plications such as target tracking, anomaly detection and trend
filtering. In many cases, it is also desirable to localize the change-
point, if it exists. Motivated by the unprecedented scale and
rate of modern high-dimensional streaming data, we propose
a change-point detection and estimation procedure based on
data sketching, which only requires a single sketch per high-
dimensional data vector, by cyclically applying a small set of
Gaussian sketching vectors. We demonstrate that when the
underlying changes exhibit certain low-dimensional structures,
such as sparsity, and the signal-to-noise ratio is not too small,
the change-points can be reliably detected and located with a
small number of sketching vectors based on filtering via convex
optimization. Our procedure can be implemented in an online
fashion to handle multiple change-points, since it sequentially
operates on small windows of observations.

Index Terms—streaming data, change-point detection, sketch-
ing, atomic norm

I. INTRODUCTION

High-dimensional streaming data arises in many applica-
tions from video surveillance, social networks, to medical care.
The volume and velocity of modern data generation make
it prohibitive to either observe and store the complete data
stream within the budget and time constraints of the sensing
platform. In recent years, sketching has been advocated [1],
[2] as an attractive manner to reduce the dimensionality of
streaming data on the fly while still being able to preserve
some key properties of the stream, such as graph cuts [3],
principal subspace [4], and covariance structures [5]. Often,
the data stream exhibits certain low-dimensional structures,
which allow the number of required sketches to be much
smaller than its ambient dimension, reducing the complexity
in sensing and storage.

Extracting useful information from high-dimensional
streaming data in an online fashion is of great interest to
allow real-time situation awareness. In particular, change-
point detection and estimation are greatly desirable for a
number of applications such as target tracking [4], anomaly
detection [6] and trend filtering [7]. Unfortunately, traditional
change-point detection algorithms often require sampling of
the complete data stream, and fail to recognize the inherit low
dimensionality of the change-points, making them not scaling
well to handle high-dimensional data [8].
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In this paper, we’re interested in designing data sketching
schemes from which the change-points can be reliably de-
tected and localized. We assume the change possesses certain
low-dimensional structures, such as sparsity or low-rankness,
which is well captured as a signal with small atomic norms
[9]. For each of the data vector in the stream, a single sketch is
obtained by applying a sketching vector cyclically chosen from
a small set. The sketches are then used to construct an atomic
norm minimization algorithm that detects and estimates the
change-points. We further characterize the performance trade-
off between the number of sketches, the low-dimensionality
of the change-point, and the signal-to-noise ratio. Numerical
examples are provided to demonstrate the effectiveness of the
proposed approach.

The rest of this paper is organized as follows. Section II
presents the problem formulation and review the backgrounds.
Section III describes the proposed approach and its perfor-
mance analysis. Section IV provides numerical simulations,
and we conclude the paper in Section V.

II. PROBLEM FORMULATION AND BACKGROUNDS

A. Data stream model

Consider a high-dimensional data stream, where a data
vector βt ∈ Rp is generated at each time t, 1 ≤ t ≤ n.
For simplicity, we assume there exists only one change-point
in the stream, at time 1 ≤ t? ≤ n− 1, and that

βt =

{
β1, 1 ≤ t ≤ t?
β2, t? + 1 ≤ t ≤ n .

Note that the data stream is assumed to take a constant value
before and after the change-point. Furthermore, we assume the
data stream does not change significantly; in other words, the
change, defined as

∆ , β2 − β1,

has certain low-dimensional structures such as sparsity, which
may be determined by a much smaller number of parameters
than its ambient dimension p, but not the data vectors βt

themselves. This assumption is in the same spirit to those
in sparse linear discriminant analysis cf. [?] where the mean
vectors are assumed to differ by a small number of coordinates.
Furthermore, in many applications assuming the sparsity of the
change is far more practical than that of the data vectors. For
example, in hyperspectral imaging [6], where βt corresponds
to the image frames which are typically of high entropy,
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the differences between consecutive frames only contain a
few salient features due to changes in the scene. As another
example, in sensor networks where βt is the readings from
p sensors, if a small number of sensors break down or are
maliciously attacked, the resulting difference in measurements
at the change-point is a sparse vector whose nonzero entries
correspond to the affected sensors.

B. Sketching framework

Our goal is to develop a low-complexity data sketching
scheme that can reliably detect and localize change-points.
Sketching, when it is linear, reduces the dimensionality of the
data stream by means of linear transformations, possibly noisy.
Motivated by the recent work [5] where a single sketch per
data vector is demonstrated sufficient for retrieving covariance
structures of high-dimensional streaming data, we propose
the following single-sketch observation model via random
projections:

yt = x
T
t βt + εt, t = 1, . . . , n. (1)

where yt is referred to as the sketch, xt ∈ Rp is the sketching
vector, and the noise εt’s are independent and distributed as
N (0, σ2/2). The sketching scheme (1) can be accomplished
with a single pass of the data, since each entry of the data
stream only needs to be accessed once in order to acquire the
observation (1). This allows dimensionality reduction on the
fly, where the complete data stream need not be stored.

C. Atomic norm for low-complexity signals

As mentioned earlier, the change ∆ = β2−β1 is assumed
to possess certain low-dimensional structures, such that it may
be determined by a much smaller number of parameters than
its ambient dimension p. A general framework to model such
parsimonious structures is the atomic norm [9]. Consider the
representation of ∆ as

∆ =

k∑
i=1

ciai, ai ∈ A, ci ≥ 0, (2)

where A is a set of atoms that constitutes simple building
blocks of ∆, and k is the number of employed atoms, with
k � p. The atomic norm of ∆ is defined as

‖∆‖A = inf
t
{t > 0 : ∆ ∈ t conv(A)} (3)

where conv(A) is the convex hull of A. Many of the well-
known structural-motivating norms are special cases of (3),
such as the `1 norm for promoting sparsity [10], the nuclear
norm for low-rankness [11], etc. For most parts of this
paper, we will focus on the case when ∆ is k-sparse, but
it is straightforward to generalize to other low-dimensional
structures under the atomic norm framework.

III. CHANGE-POINT DETECTION AND ESTIMATION

Under the single-sketch observation model, we propose to
employ a set of m sketching vectors in a cyclic order for (1),
where xt = xt+m, ∀t, and {xt}mt=1 consists of i.i.d. Gaussian
vectors drawn from N (0, 1pIp).

For m ≤ t ≤ n − 1, we further define the sketch
difference between two consecutive sketches exploiting the
same sketching vector as

zt+1 = yt+1 − yt−m+1

= xT
t+1(βt+1 − βt−m+1) + εt+1 − εt−m+1

= xT
t+1ηt+1 + ε̃t+1, (4)

where ε̃t+1 = εt+1 − εt−m+1 ∼ N (0, σ2) and

ηt+1 =

 0, m ≤ t ≤ t? − 1
∆, t? ≤ t ≤ t? +m− 1
0, t? +m ≤ t ≤ n− 1

.

The proposed change-point detection algorithm (for a single
sparse change-point) can be described below as:

• Input: the sketches {yt}nt=1, the sketching vectors
{xt}mt=1, the regularization parameter λ, the threshold γ;

• Filtering by LASSO: for m ≤ t ≤ n−m, compute the
solution of the following problem:

η̂t = argmin
η∈Rp

t+m∑
i=t+1

(zi − xT
i η)

2 + λ‖η‖1

= argmin
η∈Rp

‖zt −Xtη‖22 + λ‖η‖1, (5)

where zt = [zt+1, zt+2, . . . , zt+m]T , Xt =
[xt+1,xt+2, . . . ,xt+m]T . Though it appears that
we need to solve a different convex program at each
time, at consecutive times the convex programs only
differ by two measurements (the measurement matrix
Xt is actually fixed across time up to a row shift) and
thus can be solved efficiently via, e.g., homotopy-based
approaches [12].

• Thresholding: Set ξt = ‖η̂t‖2. If maxm≤t≤n−m ξt <
γ, declare there are no change-points; otherwise declare
there is a change-point and determine its location as

τ̂ = argmax
m≤t≤n−m

ξt.

The key idea of the approach is explained by Fig. 1. At
each candidate change-point t, as in Fig. 1 (a), we examine
the sketch difference between the windows of length m before
and after t, which can be written as (4). The difference is
maximized at the change-point, when the sketch difference zt?
compressively measures the sparse difference ∆, as shown
in Fig. 1 (b). The LASSO algorithm (5) allows denoising
and identification of the embedded vector ∆ from a number
of sketches much smaller than p by exploiting its sparsity.
Moreover, a window of m sketches needs to be stored instead
of all sketches.

A. Performance Analysis

For appropriately selected window size, the proposed ap-
proach is guaranteed to detect and localize the change-point.
as shown by the following theorem.

Theorem 1 (Single change-point). Set λ = 4σ
√
log p. The

change-point can be detected with probability at least 1 −
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(a) before the change-point

(b) at the change-point

Fig. 1. Illustration of the proposed data sketching and change-point detection procedure.

c1np
−c2 , if the window size m satisfies

‖∆‖2 > Cσ

√
k log p

m
, (6)

where c1, c2, C are some universal constants. The threshold
can be selected as γ = ‖∆‖2/2. Moreover, the detected
change-point satisfies |t̂− t?| < m.

Proof. When m ≤ t ≤ t? −m or t? +m ≤ t ≤ n −m, the
signal underlying the LASSO problem (5) can be regarded as
ηt = 0, where the noise vector ε = [ε̃t+1, . . . , ε̃t+m]T contains
i.i.d. Gaussian entries N (0, σ2). From [13, Corollary 1] and
the union bound, with probability at least 1 − c1(n − 3m +
1)p−c2 , we have

ξt = ‖η̂t − 0‖2 ≤ Cσ
√
k log p

m
,

for some constants c1, c2, C. On the other hand, at the change-
point t = t?, the signal underlying the LASSO problem (5) can
be regarded as ηt? = ∆, with the noise similarly contains i.i.d.
Gaussian entriesN (0, σ2). With probability at least 1−c1p−c2 ,
we have

ξt? = ‖η̂t? −∆ + ∆‖2
≥ ‖∆‖2 − ‖η̂t? −∆‖2

≥ ‖∆‖2 − Cσ
√
k log p

m
.

Therefore, as long as ‖∆‖2 ≥ 2Cσ
√

k log p
m , by setting

γ = ‖∆‖2/2, we can detect the existence of the change-point
with high probability. Moreover, ξt that is a window-length
away from the actual change-point t? is below the threshold,
therefore making sure the localization accuracy is within m.

A few discussions are in order. First, from (6) the choice of
the window length m depends on the SNR , ‖∆‖22/σ2

2 , so
that

m &
k log p

SNR
,

which implies the localization accuracy improves with the
increase of the SNR, and we can use fewer sketching vectors
if the sparsity level of the change-point is small.

To extend to other low-dimensional structures, one simply
replace the `1 norm by the atomic norm ‖·‖A, and the window
length m will be similarly constrained [9] by the following

metric:
m &

w2(TA(∆) ∩ Sp−1)
SNR

where TA(∆) = cone{z−∆ : ‖z‖A ≤ ‖∆‖A}, and w(K) ,
E[sup{yT g : y ∈ K}] for g ∼ N (0, Ip) denotes the Gaussian
width of a set K.

B. Comparisons to Related Work

Our approach is different from the line of work on quickest
change-point detection [14], which focuses on detecting the
onset of the change-point as quickest as possible. Our approach
is inspired by the interesting work of Soh and Chandrasekaran
[8] considered an approach that combines filtering and proxi-
mal denoising with by assuming the data vectors possess low-
dimensional structures rather than the change. Moreover, no
sketching is applied to the data to reduce dimensionality. Xie
et.al. considered change-point detection for partially observed
data stream when the data vectors lie in a low-dimensional
subspace [15]. Multiple change-point detection has been stud-
ied as a variable selection problem by [16] using LASSO for
scalar processes and by Angelosante and Giannakis [17] using
sparse group LASSO [18] for vector processes, by assuming
the number of change-points is small and the corresponding
changes are sparse. Zhang et. al. [19] extended the approach
in [17] to linear regression models which appears in a similar
form as our sketching model. However, these approaches are
offline and require batch processing.

IV. NUMERICAL EXAMPLES

In this section, we provide a few numerical experiments to
demonstrate the effectiveness of the proposed approach. Our
approach can be applied even with multiple change-points, as
long as the spacing between change points exceeds 2m. In this
case, we will first threshold to find neighborhoods that contain
a single change-point, and then search locally for peaks to
determine each change-point.

We set p = 200, and n = 500. Let the change-points
occur at t? ∈ {100, 200, 300, 400} with the change ∆ at
each change-point being a k-sparse vector with uniformly
selected support and non-zeros drawn uniformly at random
from {±1}. We randomly generate m sketching vectors whose
entries are drawn i.i.d. from N (0, 1/p), and the noise in
the sketch is drawn i.i.d. from N (0, σ2). The regularization
parameter for LASSO is set as λ = σ

√
2 log p. We first
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compare the proposed scheme against a baseline change-point
detector, which is to directly compute the energy of the sketch
difference ‖zt‖2 in each sketch window without performing
LASSO. Fig. 2 compares ‖zt‖2 with ξt = ‖η̂t‖2 from the
proposed approach when σ = 0.05, k = 3 and m = 20. It is
evident that LASSO helps filtering the noise in the sketches
by motivating the sparsity of the change vector, therefore the
relative difference in the computed statistics is much more
significant after filtering by the LASSO.
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Fig. 2. Comparison of the statistics from the proposed change-point detection
algorithm (marked as Lasso difference) with a baseline approach (marked as
Sketch difference) without filtering by LASSO.

Next we examine the effects of the noise level σ, and the
number of sketches m on the performance of the proposed
approach when k = 4. Fig. 3 shows the value of ξt of
the proposed approach against the time index under different
parameter settings. The calculated statistic ξt exhibits more
fluctuations in its value with the increase of the noise level
and the decrease of the window size. Also, the peaks of the
ξt are less localized with the increase of the window size.

V. CONCLUSIONS

This paper proposes a low-complexity sketching scheme for
detecting and estimating change-points from only a single pass
of high-dimensional streaming data. A set of sketching vectors
is applied cyclically to the streaming data to obtain a single
sketch per data vector. The scheme exploits parsimonious rep-
resentations of the change-point, and uses convex optimization
to improve the detection performance and recover the change-
point. Furthermore, it can be implemented in an online fashion,
and can handle multiple change-points as long as they are
not too close. In the future work, it is interesting to further
study the trade-offs between localization accuracy, sketching
complexity, and the signal-to-noise ratio.
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