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Empirical Risk Minimization (ERM)

Given a set of data M,

L 1
minimize, f(x) = N Z l(x; 2)
zeEM
Here, N = number of total samples.
e convex: least squares, logistic regression

e non-convex: PCA, training neural networks (focus of this talk)
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Distributed ERM

Distributed/Federated learning: due to privacy and scalability, data
are distributed at multiple locations / workers / agents.

Let M = U; M; be a data partition with equal splitting:
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n = number of agents

N/n = number of local samples
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Challenges in federated/decentralized learning

e Communication efficiency: limited bandwidth, stragglers, ...

e Heterogeneity: non-iid data across the agents

e Privacy: does not come for free without sharing data




Communication efficiency



Communication efficiency

Communication cost = Communication rounds x Cost per roundJ

e Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).
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Communication cost = Communication rounds x Cost per roundJ

e Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).

e Communication compression: compress the message into fewer
bits, e.g. sparsification or quantization (Alistarh et al., 2017).
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Communication efficiency

Communication cost = Communication rounds x Cost per roundJ

e Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).

e Communication compression: compress the message into fewer
bits, e.g. sparsification or quantization (Alistarh et al., 2017).
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We will focus on communication compression methods.
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Two distributed schemes

- i% fi(z)
4? ]
N4
O LN
S

fa(x) fa(z)

Server/client model

PS coordinates global information
sharing

Coping with privacy

e, fi(z)

. &
fs(z)‘i* ‘

o / “ 2
Ja(x) fa(x)
@

%"

fa(x)

Network /decentralized model

agents share local information over a
graph topology

Coping with heterogeneity



A prelude: what should we compress?
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A prelude: what should we compress?
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A prelude: what should we compress?
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Somewhat surprisingly, direct compression doesn't work! )




A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .
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A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .

o Let 2 = (b, b,b), and the compressor be top;,
V(%) =b(-15,13,13)"  — C(Vfi(z")) = b(~15,0,0)"
Vfa(x®) = b(13,-15,13)" —  C(V/fa(x°)) = b(0,—15,0)"
Vfs(x®) =b(13,13,-15)7  —  C(Vf3(z")) = b(0,0,—15)"



A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .
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o Let 2 = (b, b,b), and the compressor be top;,
Vi(x) =b(-15,13,13)" —  C(Vfi(z")) = b(—15,0,0)"
Vfa(x®) = b(13,-15,13)" —  C(V/fa(x°)) = b(0,—15,0)"
Vfs(x®) =b(13,13,-15)7  —  C(Vf3(z")) = b(0,0,—15)"

e The next iteration
3
1
1_ .0 0V 0
@ =2~y ;:1 C(Vfi(z")) = (1+5n)z

and then x' = (1 + 5n)'z° diverges exponentially.



A better scheme: shift compression

e Model update:

(Stich et al., 2018; Richtérik et al., 2021)

— g! is the compressed surrogate of V f;(x")
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(Stich et al., 2018; Richtérik et al., 2021)
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e Update g} with a shift compression:
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A better scheme: shift compression

(Stich et al., 2018; Richtérik et al., 2021)

o Model update:
n
s a1y
i3
— g! is the compressed surrogate of V f;(x")

e Update g} with a shift compression:

gt =gi +C(Vfil=z""") — g])

difference compression

— gl is constructed accumulatively over time

We'll consider algorithms using shift compression! J




BEER: Fast Decentralized Nonconvex Optimization
with Communication Compression

Haoyu Zhao Boyue Li Zhize Li Peter Richtarik
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):
e slow convergence rates (need more communication rounds) and
e Incompatible with heterogeneity: bounded gradient or dissimilarity

E¢,op, IV f (&) < G* or Ei|[Vfi(z) - V()| < G?
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e slow convergence rates (need more communication rounds) and
e Incompatible with heterogeneity: bounded gradient or dissimilarity
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Can we converge at the rate O (%) under arbitrary heterogeneity? J
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):

e slow convergence rates (need more communication rounds) and

e Incompatible with heterogeneity: bounded gradient or dissimilarity

E¢,np, IV f(2:&) < G* or Ei|[Vfi(z) —

Vi) <6

Can we converge at the rate O (%) under arbitrary heterogeneity? J

Yes, by using gradient tracking!

11



Decentralized gradient descent: a naive extension

Centralized Gradient Descent (GD):

d)t _ mtfl _ 77Vf(1l3t71)
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Centralized Gradient Descent (GD):
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Decentralized Gradient Descent (DGD):
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Decentralized Gradient Descent (DGD):

SCI; = Z]‘ wijwz-_l —?’]Vfi(ﬂ)g_l)

mixing local gradient

12



Decentralized gradient descent: a naive extension

Centralized Gradient Descent (GD):

2t — i1 _ an(:Bt71)
Constant step size, linear convergence for strongly convex problems.
Decentralized Gradient Descent (DGD):

SCI; = Z]‘ wijwz_l —'f]Vfi(II)E_l)

mixing local gradient

Constant step size, does not converge!

12



Decentralized gradient descent: a naive extension

Centralized Gradient Descent (GD):

2t — i1 _ an(:Bt71)
Constant step size, linear convergence for strongly convex problems.
Decentralized Gradient Descent (DGD):

SCI; = Z]‘ wijwz_l —'f]Vfi(II)E_l)

mixing local gradient

Constant step size, does not converge!

At optimal point * : Vf(x*) =0, but Vf;(z*) #0 J

How do we fix this?
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DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ =1 t
€T = E jwzﬂ’j —ns;
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si = wyst ™+ Vhilel) - V(i)
mixing gradient tracking
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gradient st:
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This trick, and other alternatives, have been used extensively to fix the
non-convergence issue in decentralized optimization.
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DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ =1 t
€T = E jwljwj —ns;

—_———
mixing

si=>_ wis; '+ Vi) = Vfil@i ™)

mixing

gradient tracking

This trick, and other alternatives, have been used extensively to fix the
non-convergence issue in decentralized optimization.

e EXTRA (Shi, Ling, Wu and Yin, 2015); NEXT (Di Lorenzo and Scutari, 2016);
NIDS (Li, Shi, Yan, 2017); ADD-OPT (Xi, Xin, and Khan, 2017); DIGING
(Nedic, Olshevsky, and Shi, 2017); DGD (Qu and Li, 2018);

® many, many more...
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BEER: gradient tracking + shift compression

X =[xy, %3, -, xy,]: local models.
VFE(X) = [Vfi(z1),Vfa(x2), -,V n(xn)]: local gradients.
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BEER: gradient tracking + shift compression

X =[xy, %3, -, xy,]: local models.
VFE(X) = [Vfi(z1),Vfa(x2), -,V n(xn)]: local gradients.
¢ model update:
t+1 _ xt YA T Ut
X" =X"+yH' (W I)n‘(/;t
gradien

mixing

where H! is the accumulated compressed surrogate of X*¢, and V!
is the global gradient estimates across the agents.
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BEER: gradient tracking + shift compression

X =[xy, %3, -, xy,]: local models.
VFE(X) = [Vfi(z1),Vfa(x2), -,V n(xn)]: local gradients.

¢ model update:

XM =X+ yH (W —I) - V?
N— .
mixing gradient

where H' is the accumulated compressed surrogate of X*t, and V!
is the global gradient estimates across the agents.

e gradient tracking:

Vil =V GY W - I)+ VF(X') - VF(XY),

mixing gradient tracking

where G? is the accumulated compressed surrogate of V.

14



BEER: gradient tracking + shift compression

X =[xy, %3, -, xy,]: local models.
VFE(X) = [Vfi(z1),Vfa(x2), -,V n(xn)]: local gradients.

¢ model update:
X =Xty yHI (W —I)— V!
mixing gradient

where H' is the accumulated compressed surrogate of X*t, and V!
is the global gradient estimates across the agents.

e gradient tracking:

Vil =V GY W - I)+ VF(X') - VF(XY),

mixing gradient tracking

where G? is the accumulated compressed surrogate of V.

e Both H! and G are updated using shift compression.
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Theoretical convergence of BEER

Theorem (Zhao et al., 2022)
To achieve E||V f (x°"*P'*)||? < ¢, BEER requires at most

1
¢ <p3a6>

communication rounds, without the bounded gradient assumption. Here,
« is the compression ratio, [3 is the spectral gap of the network.
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Theoretical convergence of BEER

Theorem (Zhao et al., 2022)
To achieve E||V f(x®Utut)[|2 <

€, BEER requires at most

1
¢ <p3a6>

communication rounds, without the bounded gradient assumption. Here,

« is the compression ratio, (3 is

the spectral gap of the network.
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BEER converges at the rate O (1) under arbitrary heterogeneity!
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BEER vs CHOCO-SGD

0 500 1,000 1,500 2,000
Communication rounds
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Figure: Training gradient norm and testing accuracy against communication
rounds for classification on the unshuffled MNIST dataset using a simple neural
network. Both BEER and CHOCO-SGD employ the biased gsgd, compression
with b = 20.
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SoteriaFL: A Unified Framework for Private FL with
Communication Compression

Zhize Li Haoyu Zhao
CMU Princeton




Motivation: a unified framework?

e Privacy: need to preserve the — o, fi()

privacy of local data ; ‘g’ ¥

e Communication: shift
compression with many options,

e.g. sparsification or quantization ‘ — T g

. . fa(x) / fa()
e Computation: stochastic local K]
. . . PO
gradient estimators with many w

options, e.g. SGD, SVRG or SAGA
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Motivation: a unified framework?

e Privacy: need to preserve the
privacy of local data

e Communication: shift
compression with many options,
e.g. sparsification or quantization

e Computation: stochastic local
gradient estimators with many
options, e.g. SGD, SVRG or SAGA

Can we develop a unified framework for private FL with compression,
with a characterization of the privacy-utility-communication trade-off?

J
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SoteriaFL: a unified framework for compressed private FL

Highlights of SoteriaFL:
e Flexible local gradient estimators
e Protect local data privacy
e State-of-the-art shift compression scheme

e Privacy-utility-communication trade-offs
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SoteriaFL: a unified framework for compressed private FL

Highlights of SoteriaFL:
e Flexible local gradient estimators
e Protect local data privacy

e State-of-the-art shift compression scheme

GODDESS OF SAFETY

e Privacy-utility-communication trade-offs

At each client:

Local gradient Gaussian ) . )

At the server:

Aggregation :> Model update :> Global shift update ’
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Privacy-utility-communication trade-off
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Under (e,0) local differential privacy:

Valog(1/8) e Communication:

e Utility/accuracy: -

v a3 log(1/6)
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Summary

Iteration
complexity /I
CHOCO-SGD/DeepSqueeze
va
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Provably efficient communication-compressed FL algorithms for
heterogeneous and private data!

Future work:

e privacy-preserving decentralized algorithms under data heterogeneity.
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Thank you!
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