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Abstract—This paper considers the design of distributed
optimization algorithms in the server-client setting, with the
goal of achieving better communication efficiency, a crucial
desiderata in modern distributed machine learning applications.
One popular approach to reduce communication is to impose
more computation between communication rounds, by letting
each client optimize an approximation of the global objective
function—constructed using the local objective function and ag-
gregated history information—and exchange the updates with the
parameter server for global consensus. In particular, judiciously
incorporating second-order information in the local approxima-
tion often leads to better communication efficiency when the
problem is ill-conditioned. However, existing methods construct
the second-order correction term in an isotropic manner, without
taking into account the curvature information of the global
objective function accumulated over the course of the algorithm.
This paper proposes a novel algorithm that refines this idea by
constructing a second-order correction term using a BFGS-style
update formula, where the kernel matrix is updated recursively
using only history gradients to harvest curvature information for
accelerating convergence. Numerical experiments demonstrate
improved communication efficiency over competitive baseline
algorithms on both synthetic and real datasets.

Index Terms—distributed optimization, communication effi-
ciency, server-client model, quasi-Newton methods.

I. INTRODUCTION

Distributed optimization takes a prominent role in modern
machine learning applications, due to its ability to process a
huge amount of data in parallel while maintaining privacy of
the clients. For instance, the emerging paradigm of federated
learning (FL) [1] enables training of machine learning models
at mobile devices in a distributed manner, through interaction
with a parameter server, without accessing users’ private data
directly. In this paper, we consider the following optimization
problem in a server-client model:

min
x

f(x) :=
1

N

N∑
i=1

fi(x), (1)
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where N denotes the number of clients or agents, and each
client i can access a twice-differentiable convex objective
function fi : Rd → R, for i ∈ {1, . . . , N}. In particular,
we aim to solve (1) where the clients can only communicate
with the central server to exchange parameters and gradients,
but not the local data or higher-order information directly.

Roughly speaking, distributed optimization algorithms gen-
erally alternate between global communication and local com-
putation, where the clients send their local parameters to the
server to obtain an averaged global parameter, which is then
sent back to the client for refinements using the local data.
To achieve better communication efficiency, a popular scheme
in practice is to impose more computation on the clients at
each iteration to reduce the communication frequency and
enable faster convergence. This includes methods that perform
multiple local gradient update steps before communicating
[1]–[5], as well as those that solve a more sophisticated local
approximation to the global objective function [6]–[10]. In this
paper, we follow the second approach by devising better local
approximations.

In order to enable faster convergence, it is desirable for the
client to construct an approximation of the global objective
function—based on its local information—as accurately as
possible. While exact Hessian information can be hard to com-
pute and communicate, it has been observed that judiciously
incorporating, even implicitly, second-order information in
the local approximation often leads to better communication
efficiency when the problem is ill-conditioned. This gives rise
to the consideration of local problems that take the form of
second-order approximations of the global objective function
at the current parameter estimate. However, existing meth-
ods, such as Distributed Approximate NEwton-type method
(DANE) [8], construct the second-order correction term in an
isotropic manner, without taking into account the curvature
information of the global objective function accumulated over
the course of the algorithm. Consequently, DANE suffers from
slow convergence or even divergence when the local data are
highly heterogenous, due to e.g., small sample sizes.

Inspired by the well-known BFGS algorithm [11], this paper
proposes a novel algorithm, called Curvature-Enhanced Dis-
tributed Approximate NEwton-type method (CEDANE), that
optimizes a refined local approximation by constructing the
second-order correction term using a BFGS-style [11] update
formula, where the kernel matrix is updated recursively using



only history gradients to harvest more curvature information
of the global objective function to accelerate convergence.
Importantly, the kernel matrix is non-isotropic, and mimics
the global Hessian matrix at the current global parameter
using only gradient information, with the hope of further
improving the communication efficiency especially in the face
of heterogeneous or limited local data. Numerical experiments
indeed demonstrate improved communication efficiency over
competitive baseline algorithms on both synthetic and real
datasets.

The rest of the paper is organized as follows. Sec-
tion II reviews preliminaries and motivates the development
of CEDANE. Section III presents the proposed CEDANE
algorithm. Section IV shows numerical experiments on both
synthetic and real datasets, and we conclude in Section V.
Lower-case and upper-case boldface letters denote vectors and
matrices, respectively. Let ⟨x,y⟩ = y⊤x denote the standard
inner-product in Rd. For a vector x ∈ Rd, ∥x∥22 = ⟨x,x⟩; for
a positive-definite matrix A, ∥x∥2A = x⊤Ax.

II. PRELIMINARIES

This section reviews two iterative distributed optimization
algorithms, DANE and BFGS, that inspired the proposed
CEDANE algorithm.

A. DANE algorithm
The Distributed Approximate Newton-type Method (DANE)

[8], [9] follows the following general recipe to solve (1) at each
iteration t, which takes two rounds of communication:

1) communication: the clients send their local parameters
x
(t)
i to the server to compute the global parameter,

x(t) = 1
N

∑N
i=1 x

(t)
i , then the server sends back the

global parameter x(t) to the clients;
2) communication: the clients send the local gradi-

ent ∇fi(x
(t)) at the global parameter x(t) to the

server to compute the global gradient, ∇f(x(t)) =
1
N

∑N
i=1 ∇fi(x

(t)), then the server sends the global gra-
dient back to the clients ∇f(x(t));

3) computation: the clients perform local updates, i.e. by
solving a local optimization problem which can be re-
garded an approximation to (1), based on the global
parameter x(t), global gradient ∇f(x(t)), and the local
objective function fi(x).

In particular, DANE asks each client to solve a local
optimization problem given as

x
(t+1)
i = argmin

x

{
f(x(t)) + ⟨∇f(x(t)),x− x(t)⟩

+
1

η
Dhi

(x,x(t))
}
, (2)

where η > 0,
hi(x) = fi(x) +

µ

2
∥x∥22

denotes the regularized local objective function with µ ≥ 0,
and Dhi

(x,x(t)) denotes the Bregman divergence associated
with hi between x and x(t), i.e.

Dhi(x,x
(t)) = hi(x)− hi(x

(t))− ⟨∇hi(x
(t)),x− x(t)⟩.

Therefore, the local problem (2) can be viewed as a second-
order approximation of the global objective function. In addi-
tion, by rearrangements and dropping constant terms, (2) can
be equivalently written as the following equation, which is
more practical to implement:

x
(t+1)
i = argmin

x

{
fi(x)− ⟨∇fi(x

(t))− η∇f(x(t)),x− x(t)⟩

+
µ

2
∥x− x(t)∥22

}
. (3)

When the local objective functions (1) are quadratic, (3) can
be solved analytically by setting the gradient to 0, resulting
in the following update formula

x(t+1) = x(t) − η

(
1

N

N∑
i=1

(∇2fi(x
(t)) + µI)−1

)
︸ ︷︷ ︸

Approximates inverse Hessian matrix

∇f(x(t)),

where the average of the inverse regularized Hessian matrices
can be regarded as approximating the inverse of the global
Hessian matrix, thus performing an approximate Newton step
for the global objective function with η as the step size. There-
fore, while only communicating parameters and gradients,
DANE implicitly uses some second-order information. Here,
the parameter µ can be viewed as a regularizer that controls
the well-posedness of the local problem, where increasing µ
helps to stabilize the convergence when the local problems
are ill-conditioned or heterogenous at an expense of slower
convergence.

B. BFGS algorithm

The BFGS algorithm [11] is a quasi-Newton algorithm de-
signed for unconstrained optimization problems, which keeps
track of an estimate of the inverse Hessian matrix,

(
B(t)

)−1

for faster convergence without explicitly computing the Hes-
sian matrix. It is straightforward to adapt the BFGS algorithm
to the server-client setting, where the parameter is updated at
each iteration according to

x(t+1) = x(t) − η
(
B(t)

)−1∇f(x(t)),

where η > 0 is the step size.1 In addition, the matrix
(
B(t)

)−1

is updated recursively by(
B(t+1)

)−1
= ∆(t)

(
B(t)

)−1
∆(t)⊤ +

s(t)s(t)⊤

y(t)⊤s(t)
, (4a)

where s(t), y(t), ∆(t) are defined accordingly as

s(t) = x(t+1) − x(t), (4b)

y(t) = ∇f(x(t+1))−∇f(x(t)), (4c)

∆(t) = I − s(t)y(t)⊤

y(t)⊤s(t)
. (4d)

The estimates B(t) are guaranteed to preserve symmetric
positive-definiteness if the global objective function is strongly

1Here, we set the step size η as a fixed parameter, rather than performing
line search as in contrast to canonical BFGS to avoid the communication over-
head in implementing the line search procedure in a distributed environment.



convex and the algorithm starts from a positive-definite ini-
tialization B(0). Note that the BFGS updates (4) use only
the global parameter and the global gradient, thus can be
implemented either at the server end or the client end.

III. PROPOSED CEDANE ALGORITHM

This section develops the proposed algorithm, dubbed
the Curvature-Enhanced Distributed Approximate NEwton-
type method (CEDANE), which is detailed in Algorithm 1.
CEDANE follows a similar recipe as DANE, but differs in the
designs of the local optimization problem solved at each client.
The key idea of CEDANE is to incorporate more curvature
information of the global objective function in the local
optimization problem without increasing the communication
overhead, a strategy that aims to facilitate a faster convergence
especially when the local problems are ill-conditioned or
heterogeneous.

Inspired by BFGS, at each iteration, CEDANE aims to solve
the following local optimization problem at each client

x
(t+1)
i = argmin

x

{
f(x(t)) + ⟨∇f(x(t)),x− x(t)⟩

+
1

η
D

g
(t)
i
(x,x(t))

}
, (5)

where D
g
(t)
i
(x,x(t)) denotes the Bregman divergence associ-

ated with g
(t)
i between x and x(t), and g

(t)
i is an iteration-

varying regularized local objective function given by

g
(t)
i (x) = fi(x) +

µ

2

∥∥x∥∥2
B(t) . (6)

Here, B(t) is an approximation to the global Hessian matrix
∇2f(x(t)) obtained through performing the BFGS-style up-
dates at each client following (4). Plugging in the expression
of D

g
(t)
i
(x,x(t)) into (5), we can rewrite the local problem as

x
(t+1)
i = argmin

x

{
fi(x)− ⟨∇fi(x

(t))− η∇f(x(t)),x⟩

+
µ

2
∥x− x(t)∥2

B(t)

}
, (7)

where the quadratic term is now kernelized by the approxi-
mation to the global Hessian matrix B(t), in sharp contrast to
DANE where the quadratic term is isotropic (cf. (3)). There-
fore, CEDANE incorporates the curvature information of the
global objective function without computing nor transmitting
the Hessian matrices explicitly.

Again, when the local objective functions are quadratic,
solving (7) analytically leads to the following update formula

x(t+1) = x(t) − η

(
1

N

N∑
i=1

(
∇2fi(x

(t)) + µB(t)
)−1

)
︸ ︷︷ ︸

Approximates inverse Hessian matrix

∇f(x(t)),

where it is postulated that the incorporation of B(t) in
CEDANE leads to a better approximation to the inverse of
the global Hessian matrix when the local objective functions
fi’s are more heterogeneous.

Algorithm 1 CEDANE

1: Input: step size η > 0, regularization µ ≥ 0.
2: Initialization: x(0)

i ,B(0) = I,∀i ∈ {1, . . . , N}.
3: for t = 0, 1, 2, . . . do
4: for Clients 1 ≤ i ≤ N in parallel do
5: Send ∇fi(x

(t)) to the server, which sends back
∇f(x(t)) = 1

N

∑N
i=1 ∇fi(x

(t)).
6: Solve the local optimization problem:

x
(t+1)
i = argmin

x

{
fi(x)− ⟨∇fi(x

(t))− η∇f(x(t)),x⟩

+
µ

2
∥x− x(t)∥2

B(t)

}
.

7: Send x
(t+1)
i to the server, which sends back x(t+1) =

1
N

∑N
i=1 x

(t+1)
i .

8: Update the BFGS matrix B(t) according to (4).
9: end for

10: end for

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the empirical performance
of CEDANE for linear regression using synthetic data, and
logistic regression using the Gisette dataset [12], both of
which are strongly convex problems. The proposed CEDANE
algorithm is compared against several competitive baselines
including DANE [8], ADMM [13], and BFGS.

We compare the communication efficiency of different al-
gorithms by analyzing the number of communication rounds
needed to achieve certain optimality gap to the global mini-
mum x⋆, defined as

(
f(x(t))−f(x⋆)

)
/f(x⋆). Throughout, we

use m to denote the number of data points at each client, κ to
denote the condition number of the global objective function.
The step size η is set to 1 for both DANE and CEDANE,
and all other hyper-parameters are best-tuned by hand. The
experiments are based on code from [14] and can be found at
https://github.com/diogo-mcardoso/cedane.

A. Linear regression

The local objective function is defined as

fi(x) =
1

2m
∥Aix− bi∥22,

for Ai ∈ Rm×d, bi ∈ Rm, d = 200 and m = 80. Here, bi is
generated according to bi = Aix

♮ + ϵi, with ϵi ∼ N (0, I),
and x♮ ∈ Rd is the parameter vector. Each row of Ai is
sampled i.i.d. from N (0,Σ), where Σ is a diagonal matrix
and Σii = i− logd κ, where κ ≥ 1 is the chosen condition
number of the problem.

Figure 1 shows the relative optimality gap against com-
munication rounds for κ = 10 and κ = 104 for vari-
ous algorithms. It can be seen that CEDANE outperforms
DANE and BFGS in both cases, requiring smaller amount
of communication to reach the same accuracy, while ADMM
significantly lags behind. On the other hand, BFGS, given
enough communications, outperforms DANE even without

https://github.com/diogo-mcardoso/cedane
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Fig. 1: The relative optimality gap vs. communication rounds for linear regression on synthetic datasets. The left and right
panels show the results when condition number κ = 10 and κ = 104, respectively.
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Fig. 2: The relative optimality gap vs. communication rounds for logistic regression on the Gisette dataset with the condition
number κ = 102 and κ = 104, respectively.

resorting to a line-search procedure to choose the step size.
CEDANE seems to work in a hybrid regime between DANE
and BFGS, where it explores local similarity and at the same
time, harvests important curvature information of the global
objective information to tackle the local-to-global dissimilarity.

B. Logistic regression
The local objective function is defined as

fi(x) = − 1

m

m∑
j=1

log
(
σ(bijx

⊤aij)
)
+

λ

2
∥x∥22,

where (aij , bij) is the j-th training sample at client i, λ > 0
is the regularization parameter which controls the condition
number, and σ(·) is the sigmoid function defined as σ(t) =

1
1+exp (−t) . The Gisette dataset has 6000 data points equally
divided in two different classes, where each data sample has
d = 5000. We append 1 to the vector aij to handle the
bias terms. The conditioning of the problem is controlled
by parameter λ. The dataset is normalized such that the
eigenvalues of the Hessian matrix are upper-bounded by λ+1
and lower-bounded by λ, and the condition number for the
problem is taken approximately to be κ = λ+1

λ .
We first evaluate the convergence rate with different con-

ditioning numbers, where Figure 2 shows the relative opti-
mality gap against communication rounds when κ = 102 and

κ = 104. CEDANE again outperforms DANE and BFGS for
κ = 102, but when κ = 104, we can see that CEDANE
converges faster only for the first 150 communications, after
which point BFGS harvests enough curvature information to
achieve faster convergence. Nevertheless, CEDANE might still
be advantageous in terms of communication efficiency when
the amount of possible communications is limited or the
desired accuracy is moderate.

Next, we analyze the effect on the communication rounds
when varying the number of agents and local sample size.
Figure 3a shows the number of communication rounds till
reach a relative optimality gap of 10−7 with different numbers
of clients. Because the total sample size is fixed for Gisette
dataset, increasing the number of clients decreases the size
of local data, which in turn increases the heterogeneity or
dissimilarity between the local data. We can see that the
performance of DANE is significantly impacted by decreasing
the size of the local data because the Hessian matrices are no
longer similar to the global Hessian matrix as required by [8].
As expected, BFGS is not impacted by varying the number of
clients as it estimates the global Hessian and is less impacted
by local heterogeneity. However, by incorporating the BFGS-
style approximation in its local problem, CEDANE is barely
affected by the reduced local sample size, corroborating the
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Fig. 3: Average number of communications needed to achieve 10−7 relative optimality gap on logistic regression using the
Gisette dataset, averaged over 10 independent runs with random partitions of the dataset and initialization. The left and right
panels show the results for (a) different number of clients with κ = 102 and (b) different condition numbers with 20 clients,
respectively. Here, the error bars represent the standard deviation, which are less visible on the right panel since they are two
orders of magnitude lower than the range of communication rounds.

hypothesis that CEDANE is more robust to heterogeneous
local data.

Figure 3b shows the number of communication rounds
till reaching a relative optimality gap of 10−7 with different
conditioning numbers with 20 clients. It can be seen that all
algorithms are impacted when the condition number increases.
CEDANE is still more robust then DANE and BFGS for
most of the conditions tested, being slightly worse than BFGS
when κ = 104, similar to previously seen in Figure 2b. It is
important to note that the results shown in Figure 3b are done
with 20 clients, coinciding with the scenario when DANE has
a performance closer to CEDANE according to Figure 3a. A
larger gap in performance would be expected for a greater
number of clients.

V. CONCLUSION

In this paper, we presented a novel communication-efficient
algorithm for the server-client setting, CEDANE, which con-
structs a local approximation to the global objective func-
tion using non-isotropic second-order curvature information
constructed from BFGS-style updates. Compared to other
distributed algorithms such as DANE [8] and BFGS, CEDANE
achieves faster convergence when the local data are more het-
erogeneous with the same amount of communication per itera-
tion, which is supported by experiments. However, CEDANE
has higher memory requirements because each client has to
store the approximate non-isotropic Hessian matrix. It might
be possible to improve CEDANE’s memory usage by resorting
to L-BFGS [11], which we leave for future work. Additional
future directions include generalizing the design of CEDANE
to the fully-decentralized setting without a parameter server
[14], [15], as well as the privacy-preserving setting [16].

REFERENCES

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
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