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Sensing, computing, and imaging advances

New imaging/sensing modalities allow us to probe the nature in
unprecedented manners.

microscopy

Radio astronomy

seismic imaging

The large amount of data brings exciting opportunities that call for
new tools that are scalable in computation and memory.



Low-rank matrices in data science
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Low-rank representations encode latent structures




A canonical problem: low-rank matrix sensing

M G Rnl Xna A(-)
rank(M) =r linear map

y = A(M) + noise

Recover M in the sample-starved regime:
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Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~AZ)
ZERn1Xn2



Convex relaxation via nuclear norm minimization
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@ cvx surrogate

min 1 Z ||«
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st. y~A(Z)

where || - ||« is the nuclear norm.
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Significant developments in the last decade:

Fazel '02, Recht, Parrilo, Fazel '10, Candés, Recht'09, Candes, Tao '10, Cai et al.’'10, Gross '10,

Negahban, Wainwright '11, Sanghavi et al.'13, Chen, Chi'14, ...



Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~AZ)
ZERn1 Xy

@ cvx surrogate

min 1 Z ||«
ZeRnlan
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where || - ||« is the nuclear norm.
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Significant developments in the last decade:

Fazel '02, Recht, Parrilo, Fazel '10, Candés, Recht'09, Candes, Tao '10, Cai et al.’'10, Gross '10,

Negahban, Wainwright '11, Sanghavi et al.'13, Chen, Chi'14, ...

Poor scalability: operate in the ambient matrix space
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Low-rank matrix factorization
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Low-rank matrix factorization

min  rank(Z) st. y~A(Z)
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Low-rank matrix factorization

min  rank(Z) st. y~A(Z)
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Nonconvex problems are hard (in theory)!
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Statistics meets optimization

Statistical model

—)

worst case average case
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Statistics meets optimization

Statistical model

—)

worst case average case

Vanilla gradient descent (GD):

X1 = — 1 Vf(xy)

fort=0,1,...



Low-rank matrix sensing: GD with balancing regularization
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Low-rank matrix sensing: GD with balancing regularization

win freg(X,Y) = Hy AXYT)H HXTX YTYH J

\

e Spectral initialization: find an initial
point in the “basin of attraction”.

“Basin of attraction”

(Xo,Yp) < SVD,.(A"(y))
‘ ¢ Gradient iterations:
Xt+1 Xy *anfreg(XtaYi)

- Yi—‘rl =Y — anfreg(Xty 1/t)

fort=0,1,...




Prior art: GD for asymmetric low-rank matrix sensing

Theorem (Tu et al., ICML 2016)

Suppose M = X, Y, is rank-r and has a condition number
K = Omax(M)/omin(M). For low-rank matrix sensing with
i.i.d. Gaussian design, vanilla GD (with spectral initialization)
achieves

1X:Y," = M|lp < & omin(M)

e Computational: within O(rlog L) iterations;
e Statistical: as long as the sample complexity satisfies

m 2 (n1 +n2)rik?.




Prior art: GD for asymmetric low-rank matrix sensing

Theorem (Tu et al., ICML 2016)

Suppose M = X, Y, is rank-r and has a condition number
K = Omax(M)/omin(M). For low-rank matrix sensing with
i.i.d. Gaussian design, vanilla GD (with spectral initialization)
achieves

1X:Y," = M|lp < & omin(M)

e Computational: within O(rlog 1) iterations;
e Statistical: as long as the sample complexity satisfies

m 2 (n1 +n2)rik?.

Similar results hold for many low-rank problems: matrix
completion, robust PCA, etc...

(Netrapalli et al. '13, Candes, Li, Soltanolkotabi '14, Sun and Luo '15, Chen and
Wainwright '15, Zheng and Lafferty '15, Ma et al. '17, ....)



Convergence slows down for ill-conditioned matrices
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Vanilla GD converges in O(rlog 1) iterations.
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Condition number can be large
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Condition number can be large
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Condition number can be large
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Condition number can be large

40

96%
K ~ 60

[
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Index

chlorine concentration levels
120 junctions, 180 time slots

rank-10 approximation

Must mind the condition number! |

Data source: www.epa.gov/water-research/epanet
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Getting rid of the condition number?

-o- VanillaGD & = 1
|~ VanillaGD x =5
|+ VanillaGD & = 10]
- VanillaGD & = 20

Relative error

e e

RN

10714 .
0 200 400 600 800 1000
Iteration count

12



This talk: the power of preconditioning

Acceleration for ill-conditioned matrix estimation:

Can we design provably fast gradient algorithms that are insensitive
to the condition number of low-rank matrices?
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This talk: the power of preconditioning

Acceleration for ill-conditioned matrix estimation:
Can we design provably fast gradient algorithms that are insensitive
to the condition number of low-rank matrices?

Robustness to adversarial outliers:

Can we design provably robust variants that are simultaneously
oblivious to the presence of outliers?

Generalization to tensors:

Can we generalize to higher-dimensional objects?

Going beyond spectral initialization and exact parameterization:

Can we still succeed with a misspecified rank?
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Accelerating gradient descent for ill-conditioned
low-rank matrix estimation

Tian Tong Cong Ma
CMU—Amazon UChicago



Our recipe: scaled gradient descent (ScaledGD)

1 , ® Spectral initialization: find an initial
_ T . . " . . ”
J(X,Y) = 2 Hy_A(XY )H2 point in the “basin of attraction”.

® Scaled gradient iterations:
X1 =X, —nVxf(X, Y1) (V,'Y,)"!
———
preconditioner

Y1 =Y, —nVy (X, Y) (X X))
N————

preconditioner

S —

- \ fort=0,1,...
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Our recipe: scaled gradient descent (ScaledGD)

, ® Spectral initialization: find an initial

1
fFX.Y) =7 Hy—A(XYT)HQ point in the “basin of attraction”.

® Scaled gradient iterations:

X1 =X —nVxf(Xe Ys) (Y, V)
———
preconditioner

Y1 =Y, —nVy f(X,Y) (X X,)!
~————

~—

- \ fort=0,1,...

preconditioner

ScaledGD is a preconditioned gradient method
without balancing regularization! J
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ScaledGD for low-rank matrix completion
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Huge computational saving: ScaledGD converges in an
k-independent manner with a minimal overhead!

J
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A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

X, Y
SR M, =X,Y]
/W)

¢ |

T
Mt+] = Xt+1Yt+l

X1, Y _
(Xees, Ver) (X11Q,Y:11Q ")



A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

(Xt7 Yt)

M,=X,Y]
/YE/W)

1
1 1
1 1
1 1

Y i

1
1
1

My, = Xt+1Y¢T+1
X1, Y
Xert, ¥en) (Xe11Q,Y11Q ™)
New distance metric as Lyapunov function:
2 (X XY H B 1/2H2
dist ([Y} , [K}) = Qeléllf,(r) (XQ - X%, .

2
+ove T -vos| —

+ a careful trajectory-based analysis - ~



Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X.Y," — M|lp < € omin(M)

e Computational: within O(log 1) iterations;
e Statistical: the sample complexity satisfies

m > (ny + ng)r?k?.
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," — Mllp S & - oumin(M)

e Computational: within O(log 1) iterations;

e Statistical: the sample complexity satisfies

m > (ny + ng)r?k2.

Strict improvement over Tu et al.: ScaledGD provably
accelerates vanilla GD at the same sample complexity!




ScaledGD works more broadly
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ScaledGD W#/QK log 1 (us? V logn)pnr?i? log 2

Huge computation savings at comparable sample complexities!

J
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Robustness to outliers and corruptions?

Tian Tong Cong Ma
CMU—Amazon UChicago



Qutlier-corrupted low-rank matrix sensing

M ¢ R A() e R
rank(M) =r linear map Y
s H
.
|
— =
Malious attacks =

y = AM)+ s, AM)={{Ai, M)},

outliers

Arbitrary but sparse outliers: [[s|lo < a-m, where 0 < a < 1is
fraction of outliers.

21



Dealing with outliers: subgradient methods

Least absolute deviation (LAD):

min  f(X,Y) = Hy - A(XYT)H1

)

® Median-truncated spectral
initialization: (Li et.al.'19).

e Subgradient iterations: (Charisopoulos
et.al.’19; Li et al'18)

Xip1 =X = Ox (X4, Y7)
— Yii1 =Y — 0y f( X4, Y7)
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Dealing with outliers: subgradient methods

Least absolute deviation (LAD):

min  f(X,Y) = Hy - A(XYT)H1

)

® Median-truncated spectral
initialization: (Li et.al.'19).

e Subgradient iterations: (Charisopoulos
et.al.’19; Li et al'18)

Xip1 =X = Ox (X4, Y7)
— Yii1 =Y — 0y f( X4, Y7)

Suffer from similar slow down due to ill-conditioning. J
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Dealing with outliers: scaled subgradient methods

Least absolute deviation (LAD):

min f(X,Y) = [y - AXYT)|

)

® Median-truncated spectral
initialization: (Li et.al.'19).

® Scaled subgradient iterations:
X1 =Xy —n0x f(X1,Yy) (V'Y
——
preconditioner

Y =Y — 0y f(X0, V) (X, X))
N ——’

preconditioner

where 17, is set as Polyak’s or geometric
decaying stepsize.

23



Performance guarantees

|| matrix sensing || quadratic sensing

Subgradient Method
(Charisopoulos et al, '19)

T=20)2 log ¢

a—2a)7

5 log i

€

ScaledSM

(Tong, Ma, Chi, TSP '21)

log 1

1
(1—-2a)? €

(1—2(1)2

log 1

€

Relative error
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Robustness to both ill-conditioning and adversarial corruptions! J
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Generalization to tensors

Tian Tong Harry Dong Cong Ma
CMU—Amazon cMU UChicago



Capturing multi-way interactions by tensors

simulated rasters

trial 1 25 50 75 100 m
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o -
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time time time time time
neural recordings video surveillance
&é&
& items
w ? weww 7 omma
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7 i 7 7 e
neuroimaging recommendation system

High-order tensors capture multi-way interactions across modalities.J
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Low-rank tensor under Tucker decomposition

Low-rank Tucker decomposition of a tensor:

T(ir,iz,iz) = »_ S(j1, g2, 33)U (i1, 1)V (i2, o) W (i3, ja)

J1,J2,33
&
Ay sl w

=(U,V,W)-8,

where U € R %", V € R™%™2 W € R™*"3 and § € R *"2%7s,
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Evidence that tensor problems are more challenging

Low-rank tensor recovery

Recover low-rank T' from y = A(T).
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28



Evidence that tensor problems are more challenging

Low-rank tensor recovery

Recover low-rank T from y = A(T).

® Computation hardness: the nuclear norm of a tensor is
NP-hard to compute (Hillar and Lim, '13);

e Computational barrier: polynomial-time algorithm exists
when the sample size is above Q(n3/2) (Barak and Moitra, '16);

28



Evidence that tensor problems are more challenging

Low-rank tensor recovery
Recover low-rank T from y = A(T). J

® Computation hardness: the nuclear norm of a tensor is
NP-hard to compute (Hillar and Lim, '13);

e Computational barrier: polynomial-time algorithm exists
when the sample size is above Q(n3/2) (Barak and Moitra, '16);

¢ Little existing results for the Tucker case: no provably
efficient first-order algorithm for low-rank tensor completion
(Han, Zhang, Willett, '20).

28



How to construct scaled gradients for tensors?
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How to construct scaled gradients for tensors?

min
F:(U7V7W7S)

f(F)

1
5 AU, V. W) - 8) —yl3

J

Step 1: unfolding the tensor along mode-1:

Mq(T)

— U
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How to construct scaled gradients for tensors?

min
F:(U7V7W7S)

1
5 AU, V. W) - 8) —yl3

J

Step 1: unfolding the tensor along mode-1:

Mq(T)

U

My (S)(V® W)IT

I\—Y—l
[7'T

Step 2: Treat this as a matrix problem for updating factor U

Upr1 = Uy — Vo f(F) (U Uy) ™

1

29



How to construct scaled gradients for tensors?

. 1 2
F)=— V.W)-S)—
F=(Un,a‘lfl,1W,S) fE) 2 e G et

J

Step 1: unfolding the tensor along mode-1:

My (S)(V® W)IT

M(T) = \U| — =7
U

Step 2: Treat this as a matrix problem for updating factor U

U1 = U, — Vo f(F) (U U,) ™

Step 3: update the core tensor S:

Sev = S — (U U) (VO™ (W W) ™) - Vs f(F)



ScaledGD for ill-conditioned low-rank tensor estimation

. 1 -
pdhn [(F) =3I A(U. V. W) - 8) —yll3 J

Scaled gradient iterations:

U =U —nVyf Ft( ) )

Vipr = Vi = Vv f(F}) ( )
Wi = W, —Vw f(F) (W, W) L
St+1=5t—n((Ut Ui)~ %(V Vi)~ (W, W) - Vs f(F),

where U, = (V; @ W)M1(S)T, Vi := (U, @ W) Mo (Sy) T,
W, := (U, ® V;))M3(S;) . Here, ./\/lk( ) is the matricization of S
along the k-th mode.

Key property: invariance to parameterization.
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ScaledGD for low-rank tensor completion

Theorem (Tong et. al., JMLR 2022)

For low-rank tensor completion under Bernoulli sampling, assume
n = ny = ng = ng, ScaledGD with spectral initialization and
projection achieves

H(Uta W7 Wt) : St - THF ,-S g Umin(T)

* Computational: within O(log 1) iterations;

e Statistical: as long as the sample complexity satisfies

n3p > 13/205/203/23 og .
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ScaledGD for low-rank tensor completion

Theorem (Tong et. al., JMLR 2022)

For low-rank tensor completion under Bernoulli sampling, assume
n = ny = ng = ng, ScaledGD with spectral initialization and
projection achieves

H(Uta W7 Wt) : St - THF ,-S g Umin(T)

* Computational: within O(log 1) iterations;

e Statistical: as long as the sample complexity satisfies

n3p > 13/205/203/23 og .

First provable linear convergence at a near-optimal sample
complexity for low-Tucker-rank tensor completion!
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Numerical evidence

min f(F) = %HPQ((U, V.W).S)— T)H2

F=(UV,W,S) F

—-ScaledGD £ =1
——ScaledGD k = 2
—+ScaledGD £ =5
—=-ScaledGD « = 10
~o-RegularizedGD k =1
——RegularizedGD x =2 | ]
—+ RegularizedGD k =5
~=-RegularizedGD k = 10

Relative error

L L -
0 200 400 600 800 1000
Iteration count

The benefit of ScaledGD is even more evident for tensors!

32



Numerical evidence

min  f(F) = %HPQ((U,V,W) .S) - T)H2

F=(U,V,W.,S) F

5000 — T T T T T T T [
-o-ScaledGD p

4500 |- RegularizedGD 2]
4000 - S
3500 -
3000 <
2500 e
2000

1500 -

Iteration count

1000 -

500

The benefit of ScaledGD is even more evident for tensors!




Tensor robust principal component analysis

Data = Sparse + Low-rank

Theorem (Dong, Tong, Ma, Chi, 2022)

For a low-rank plus sparse tensor, ScaledGD with spectral
initialization and iteration-varying thresholding converges at a
constant rate, as long as the corruption level per fiber satisfies

1

asS ——.
M2r3ﬁ

~
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Tensor robust principal component analysis

Data = Sparse + Low-rank

Theorem (Dong, Tong, Ma, Chi, 2022)

For a low-rank plus sparse tensor, ScaledGD with spectral
initialization and iteration-varying thresholding converges at a
constant rate, as long as the corruption level per fiber satisfies

a< L
~ 123

Can use selective mode updates to accelerate computation!
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Hyperparameter tuning via self-supervised learning

unfolding + self-supervised learning

P
r X 4 x| Gy Xy G

F’ G —> 7 —>— 7 X
y
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Hyperparameter tuning via self-supervised learning

unfolding + self-supervised learning
r x | G ) x| G Xy G )
G n n n —> &
y | P |
T
0 1 T-1

some materials data

Al Al \ ] \
) M7y, MO %
v » vi
S8/ dn s N - =
. oA v . DY Y
4 /
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Hyperparameter tuning via self-supervised learning

unfolding + self-supervised learning

> X 4 x| Gy Xy G
G n n e n Xp
y P p P J
T-1

low-rank + sparse decomposition

some materials data

“Deep Unfolded Tensor Robust PCA with Self-supervised Learning”, Dong, Shah, Donegan, and Chi, ICASSP 2023.
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Overparameterizing (Misspecified) ScaledGD?

Yandi Shen Cong Ma
UChicago UChicago




What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do
not know the exact rank?
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do
not know the exact rank?

Misspecification by overparameterization:

M=XX', XecR™,6 >r
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do
not know the exact rank?

Misspecification by overparameterization:

M=XX'", XeR™, k6 >y

ScaledGD:

X1 =X, —nVxf(Xy) (X X))
————

preconditioner

analysis break down and might be unstable...

36



What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do
not know the exact rank?

Misspecification by overparameterization:

M=XX" XeR™, 6 +>r

ScaledGD()\):

X1 =X, —nVx f(X) (X, X, + M) !

preconditioner

add regularization to stablize the preconditioner

36



Does preconditioning hurt generalization?

® |nfinitely many global minima, not all generalize

® Can we still guarantee generalization?

optimization generalization

WHEN DOES PRECONDITIONING HELP OR HURT GEN-
ERALIZATION?

*Shun-ichi Amari', Jimmy Ba%3, Roger Grosse®, Xuechen Li*, Atsushi Nitanda®*®,
Taiji Suzuki®®, Denny Wu?2, Ji Xu”
IRIKEN CBS, 2University of Toronto, ®Vector Institute, “Google Research, Brain Team,
SUniversity of Tokyo, *RIKEN AIP, "Columbia University
amari@brain.riken.jp, {jba, rgrosse, lxuechen, dennywu}@cs.toronto.edu,
{nitanda, taiji}@mist.i.u-tokyo.ac.jp, jixu@cs.columbia.edu
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Theoretical guarantees

Theorem (Xu, Shen, Ma, Chi, ICML 2023)

For low-rank matrix sensing with i.i.d. Gaussian design,
overparameterized ScaledGD(\) with A\ < opin(M), n < 1, and
Xo ~ aN(0,1/n) with sufficiently small « achieves

IX:Y," = M|l < & - omin(M)
* Computational: within O(log xlog(rkn) + log %) iterations;
e Statistical: the sample complexity satisfies

m = nr’poly(k).

e Qur analysis also enables exact convergence under random
initialization with correct rank specification.
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Comparison with overparameterized GD

error

GD

ScaledGD

»

iteration
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Comparison with overparameterized GD

4 K8 k% log(1/e)

(Stoger and Soltanolkotabi, '21)

error
A
y

GD

ScaledGD

[

1teration
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Compari

son with overparameterized GD

‘ K® k% log(1/e)

error

(Stoger and Soltanolkotabi, '21)

log(1/) GD

ScaledGD

[

1teration

ScaledGD picks up the signal component much faster than GD

even from small random initialization!

39



Concluding remarks



Bridging the theory-practice gap

Computational: Statistical:
near dimension-free near-optimal
iteration complexity sample complexity

Robustness:
adversarial outliers
ill-conditioning

Nonconvex low-rank matrix and tensor estimation:
® identification and exploitation of benign geometric properties;
® analyzing iterate trajectories beyond black-box optimization;

® simple variants of GD lead to robust and accelerated convergence.
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Preconditioning helps!

Preconditioning

—

Preconditioning dramatically increases the efficiency of vanilla
gradient methods even for challenging nonconvex problems!

Ongoing directions:
® asymmetric ScaledGD with overparameterization.

® Generalizing the idea of ScaledGD to other learning and
estimation problems.
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Thanks!

https://users.ece.cmu.edu/~yuejiec/
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