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ABSTRACT

Blind spikes deconvolution, or blind super-resolution, deals with the
problem of estimating the delays and amplitudes of spikes from its
convolution with an unknown low-pass point spread function. By
constraining the point spread function in a known low-dimensional
subspace, a convex optimization algorithm called AtomicLift has
been proposed to exactly recover the spikes up to an unavoidable
scaling ambiguity in the noiseless setting. This paper analyzes the
performance of AtomicLift in the presence of bounded noise, and
shows that the spikes are localized in a stable manner where the lo-
calization inaccuracy is proportional to the noise level. Moreover,
we show AtomicLift is also capable to handle sparse outliers in the
frequency domain.

Index Terms— blind spikes deconvolution, atomic norm, spec-
trum estimation

1. INTRODUCTION

Blind spikes deconvolution, or blind super-resolution, deals with the
problem of estimating the delays and amplitudes of spikes within a
unit interval [0, 1] from its convolution with an unknown low-pass
point spread function with a cut-off frequency fc. This problem nat-
urally arises in applications such as estimating the firing time of neu-
rons whose characteristic function is not known, estimating sparse
channel coefficients without transmitting training pilots, and, maybe
less obviously, self-calibration of uniform linear arrays.

Unlike the problem of spikes deconvolution with a known point
spread function [1], its blind counterpart is much more ill-posed.
Further assumptions are usually desirable either on the spike signal
or the point spread function to make the problem identifiable, e.g. by
assuming they satisfy generic sparsity or subspace constraints [2]. In
many applications, the point spread function may be well-modeled
as lying in a low-dimensional subspace, which is either known by de-
sign, or learned using training data. Under this constraint, to estimate
the point spread function one only needs to estimate its orientation
in the subspace, which has a much smaller degrees of freedom. The
spike signal, on the other hand, normally does not live in an a pri-
ori determined subspace, or even a finite union of subspaces, since
the location of the spikes can be arbitrary. Rather, the spike signal
shall be viewed as a sparse signal in a continuous dictionary with an
infinite number of atoms.

Motivated by recent advances in atomic norm minimization [3–
7], together with the trick of lifting a bilinear inverse problem to a
linear underdetermined problem [8–10], an algorithm called Atom-
icLift is developed in [11] for blind spikes deconvolution when the
point spread function lies in a known low-dimensional subspace in
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the noiseless setting. Specifically, AtomicLift is an atomic norm
minimization algorithm that motivates joint spectral sparsity among
all matrices that satisfy the measurements. Under mild randomness
assumptions of the subspace and a minimum separation between
spikes by 2/fc, AtomicLift admits exact recovery of the spike signal
up to an unavoidable scaling factor as soon as the cut-off frequency
fc is on the order of O(K2L2), where K is the number of spikes,
and L is the subspace dimension of the point spread function.

In this paper, we analyzes the performance of AtomicLift in the
presence of bounded noise. We first propose a natural extension of
the algorithm in [11] to handle bounded noise, where we seek a ma-
trix with minimum atomic norm that satisfies the measurements up to
the noise level. Two procedures are described for spike localization.
The first procedure is to identify peaks of a dual polynomial con-
structed using the dual solution of AtomicLift, and the second pro-
cedure is to apply conventional spectrum estimation methods such as
MUSIC [12] to the top left singular vector of the primal solution of
AtomicLift. Without exact knowledge of the model order K, both
procedures may yield spurious spikes in the estimates. Nonethe-
less, we prove that the localization inaccuracy of the first procedure
is proportional to the noise level, demonstrating the robustness of
AtomicLift in the noisy setting. Our analysis is inspired by [13] that
quantifies support recovery accuracy in super-resolution using total
variation minimization. Numerically, we observe both procedures
achieve comparable performance for spikes localization. Finally, we
demonstrate that AtomicLift is also robust to sparse outliers in the
frequency domain, which can be used to model excessively large
gains of antennas during the self-calibration of unitary linear arrays,
or harmonic interference in the time-domain signal. Here, Atomi-
cLift seeks a matrix that minimizes the sum of its atomic norm and
the `1 norm of the residual. Numerical examples are provided to
show the effectiveness of the proposed approach.

The rest of the paper is organized as below. Section 2 describes
the problem formulation of blind spikes deconvolution, and Atom-
icLift in the noiseless setting. Section 3 analyzes the performance
of AtomicLift in the setting with bounded noise. Section 4 general-
izes AtomicLift to handle sparse outliers. Numerical examples are
provided in Section 5 and we conclude in Section 6. Throughout
the paper, bold letters are used to denote matrices and vectors, and
unbolded letters to denote scalars. The transpose is denoted by (·)T ,
the complex conjugate is denoted by (·)∗, and the conjugate trans-
pose is denoted by (·)H .

2. BACKGROUNDS

Consider the received continuous-time signal y(t) as a convolution
between a point spread function g(t) and a spike signal x(t), possi-



bly corrupted by an additive noise w(t):

y(t) =

K∑
k=1

akg(t− τk) = x(t) ∗ g(t) + w(t), (1)

where x(t) =
∑K
k=1 akδ(t − τk), ak ∈ C and τk ∈ [0, 1) are the

amplitude and delay of the kth spike, 1 ≤ k ≤ K, respectively, and
K is the number of spikes. Further denote the set of spike locations
as T = {τk}Kk=1.

Typically, the time resolution of g(t) is constrained, and can be
quantified by its maximum cut-off frequency, denoted as fc. The
discrete Fourier transform (DFT) of (1) can be written as

yn = gn · xn + wn

= gn ·

(
K∑
k=1

ake
−j2πnτk

)
+ wn, n = −fc, . . . , fc (2)

where xn =
∑K
k=1 ake

−j2πnτk , gn andwn are the nth DFT sample
of g(t) and x(t), respectively. In the matrix form, we rewrite (2) as

y = diag(g)x + w, (3)

where y = [y−fc , . . . , yfc ]
T , x = [x−fc , . . . , xfc ]

T , g =
[g−fc , . . . , gfc ]

T , and w = [w−fc , . . . , wfc ]
T . Interestingly, (3) is

also related to blind calibration for uniform linear arrays, where g
can be interpreted as the vector of antenna gains. We are interested
in estimating the set of spikes T with their corresponding amplitudes
up to an unavoidable scaling ambiguity from y.

We now review the AtomicLift algorithm proposed in [11] in
the noiseless setting, where wn = 0. To make blind spikes deconvo-
lution more tractable, it is common to exploit additional structures
of the point spread function. One popular approach is to assume
the point spread function lies in certain low-dimensional subspace,
given as

g = Bh,

where B ∈ C(2fc+1)×L is known, but its orientation in the subspace
h ∈ CL is unknown. Also, L � (2fc + 1). In [11], the author
applied the lifting trick [8–10] to rewrite (2) as

yn = bTnhxn = bTnhe
T
nx = eTn (xhT )bn = eTnZ

?bn, (4)

where bn ∈ CL is the nth column of the matrix BT , and en is
the nth standard basis vector of RN . Denote Z? = xhT , then (4)
can be regarded as a linear measurement of Z?. Similar, y can be
regarded as a set of linear measurements of Z?, given as

y = X (Z?), (5)

where X : C(2fc+1)×L 7→ C2fc+1 denotes the operator that per-
forms the linear mapping (4). Since Z? can be regarded as a signal
ensemble where each column signal is composed of K complex si-
nusoids with the same frequencies,

Z? = xhT =

K∑
k=1

ãkc(τk)hT ∈ C(2fc+1)×L,

where ãk = (2fc + 1)1/2ak and

c(τ) =
1√

(2fc + 1)

[
ej2πfcτ , . . . , 1, . . . , e−j2πfcτ

]T

represents a complex sinusoid with frequency τ ∈ [0, 1). It is then
proposed in [11] to recover Z? using the following convex optimiza-
tion algorithm, denoted as AtomicLift,

Ẑ = argmin
Z∈C(2fc+1)×L

‖Z‖A s. t. y = X (Z), (6)

where ‖Z‖A is defined in [6] as

‖Z‖A = inf
τk∈[0,1)

uk∈CL:‖uk‖2=1

{∑
k

ck

∣∣∣Z =
∑
k

ckA(τk,uk), ck ≥ 0

}
,

to motivate joint spectral sparsity, where the atomic set A contains
the set of atoms:

A =
{
A(τ,u) = c(τ)uH ∈ C(2fc+1)×L|τ ∈ [0, 1), ‖u‖2 = 1

}
.

Since ‖Z‖A admits an equivalent semidefinite programming (SDP)
characterization [6]:

‖Z‖A = inf
u∈C2fc+1

W∈CL×L

{1

2
Tr(toep(u)) +

1

2
Tr(W )

∣∣∣
[
toep(u) Z
ZH W

]
� 0

}
,

where toep(u) is the Toeplitz matrix with u as the first column, the
AtomicLift algorithm in (6) can be computed efficiently using off-
the-shelf solvers.

3. ATOMICLIFT WITH BOUNDED NOISE

In this section, we propose and analyze a natural extension of Atom-
icLift in the presence of bounded noise, where the corresponding
lifted measurement model (5) becomes

y = X (Z?) + w, (7)

with ‖w‖2 ≤ ε for some ε > 0. We consider the following Atom-
icLift algorithm, which seeks a matrix that minimizes the atomic
norm as well as satisfies the measurement constraint as

Ẑnoisy = argmin
Z∈C(2fc+1)×L

‖Z‖A s.t. ‖y −X (Z)‖2 ≤ ε. (8)

3.1. Spike localization via the dual polynomial

By introducing the dual norm ‖Y ‖∗A = maxτ∈[0,1) ‖Y Hc(τ)‖2,
we write the dual problem of (8) as

p̂ = argmax
p∈C(2fc+1)

〈p,y〉 − ε

2
‖p‖2, s.t. ‖X ∗(p)‖∗A ≤ 1,

where X ∗(·) is the conjugate operator of X (·). Constructing the
dual polynomial as Q(τ) = (X ∗(p̂))Hc(τ), the spikes can then be
localized by the peaks of ‖Q(τ)‖2 as

T̂ = {τ ∈ [0, 1) : ‖Q(τ)‖2 = 1} (9)

following standard arguments as in [4–7]. Since the support set T̂
might contain many spurious peaks, we can find the coefficients of
the spikes by solving another discrete optimization problem based
on group sparsity [14]. Let V T̂ =

{
c(τ)|τ ∈ T̂

}
∈ C(2fc+1)×|T̂ |

be the Vandermonde matrix composed of atoms with frequencies
in T̂ . Then Ẑnoisy admits the atomic decomposition Ẑnoisy =∑|T̂ |
i=1 c(τ̂i)d̂

T

i , where d̂i is the corresponding coefficient vector of
each spike.



3.2. Performance guarantee

Under similar assumptions as in the noiselss case [11], we show that
the precision of spike localizations is proportional to the noise level.
Let the minimum separation ∆ between spikes be defined as

∆ = min
ti 6=tj∈T

|ti − tj |, (10)

where the distance is the wrap-around distance on the unit circle. We
also assume each row of B is sampled independently and identically
from a population F , i.e. bn ∼ F , n = −fc, . . . , fc. Furthermore,
we require F satisfies the following properties:
• Isotropy property: We say F satisfies the isometry property

if for b ∼ F , EbbH = IL.
• Incoherence property: for b = [b1, . . . , bL]T ∼ F , there

exists a coherence parameter µ such that max1≤i≤L |bi|2 ≤
µ holds.

Define a neighborhood of each spike location as Ti = {t :
|t − τi| ≤ 0.1649/fc}, Tnear = ∪Ki=1Ti and Tfar = [0, 1]\Tnear.
Without loss of generality, we assume ‖h‖2 = 1. We have the fol-
lowing theorem whose proof is omitted due to space limits.

Theorem 1. Let B satisfy the isotropy and incoherence properties,
‖h‖2 = 1 and ∆ ≥ 2/fc. Then as long as there exists a constant C
such that fc ≥ CµK2L2 log2(fc/δ), the solution satisfies∣∣∣∣∣∣ãk −

 ∑
τ̂j∈Tk∩T̂

d̂j

T

h∗

∣∣∣∣∣∣ ≤ C1ε, (11a)

∑
τ̂j∈Tk∩T̂

‖d̂
T

j ‖2f2
c (τ̂j − τk)2 ≤ C2ε, (11b)

∑
τ̂j∈Tfar∩T̂

‖d̂
T

j ‖2 ≤ C3ε. (11c)

with probability at least 1−Kδ, whereC1,C2 andC3 are numerical
constants.

Theorem 1 suggests the performance of AtomicLift degenerates
gracefully as the noise level increases. First, (11a) guarantees that if
we sum up the coefficients of the spikes detected within each neigh-
borhood Tk of a true support τk, and then the projection error onto
the true coefficient vector is proportional to the noise level ε. Sec-
ond, (11b) guarantees the sum of `2 norms of the spikes within each
neighborhood Tk of a true support τk, weighted by its quadratic dis-
tance to τk, is proportional to the noise level. Together with (11a),
this indicates most of the detected spikes within Tk corresponding to
large coefficients shall be close to the truth spike τk. Finally, (11c)
indicates the sum of the `2 norms of the spikes that are far from the
true spike is proportional to the noise level. When the noise level is
zero, Theorem 1 recovers the guarantee for the noiseless case, where
AtomicLift exactly recovers the spike signal.

3.3. Source localization via MUSIC

The above procedure is standard for retrieving source locations in
a general multiple measurement vector problem using atomic norm
minimization. However, for our problem, since Z? = xhT is also
rank-one, we could extract the top left singular vector of Ẑnoisy as
x̂, which gives an estimate of x up to scaling ambiguity, and then
retrieve the source locations from x̂ using conventional spectral es-
timation methods, e.g. MUSIC [12]. Our numerical examples in
Section 5 demonstrate this approach achieves similar performance
as the dual polynomial.

4. ATOMICLIFT WITH SPARSE OUTLIERS

In some applications, the measurements in the frequency domain
may be corrupted by sparse outliers, whose amplitudes can be arbi-
trary. We consider the following measurement model:

y = X (Z?) + s, (12)

where s ∈ C2fc+1 is an S-sparse vector. The AtomicLift algorithm
is then modified as

Ẑoutliers = argmin
Z∈C(2fc+1)×L

‖Z‖A + ‖y −X (Z)‖1, (13)

which seeks a matrix that minimizes the sum of its atomic norm and
the `1 norm of the residual. A sufficient condition for (13) to exactly
recover Z? is given in the following proposition.

Proposition 1. Z? is the unique optimizer of (13) if there exists a
dual polynomial Q(τ) = (X ∗(q))Hc(τ) that satisfies

‖Q(τ)‖2 = 1, τ ∈ T ,
‖Q(τ)‖2 < 1, τ /∈ T ,

qi = sign(si), i ∈ supp(s),

|qi| < 1, i /∈ supp(s).

This proposition also suggests how to recover the spike locations
as well as the support of the outliers from the dual polynomial, which
we’ll illustrate in the numerical example.

5. NUMERICAL EXPERIMENTS

We conduct numerical experiments to examine the robustness of
AtomicLift in the presence of noise. Without loss of generality, in
all numerical experiments, we set the index n ∈ {0, . . . , N − 1},
rather than n ∈ {−fc, . . . , fc} as in the previous sections.

5.1. AtomicLift with bounded noise

Let N = 64, K = 6 and L = 3. We first randomly generate the
spike locations uniformly at random, respecting the minimum sepa-
ration ∆ ≥ 1/N , which is about four times smaller than the theoret-
ical requirement, and generate the coefficients of the spikes with a
dynamic range of 10dB and a uniform phase. We next randomly gen-
erate the low-dimensional subspace B with i.i.d. standard Gaussian
entries, and the coefficient vector h with i.i.d. standard Gaussian
entries. We introduce additive white Gaussian noise, where each wn
is i.i.d. generated with CN (0, σ2). The signal-to-noise ratio (SNR)
is defined as 10 log10(‖X (Z?)‖22/(Nσ2))dB. Using a standard tail

bound P
(
‖w‖2 ≤ σ

√
N +

√
2N log 2N

)
≥ 1− 1

2N
[15], we set

ε := σ
√
N +

√
2N log 2N in (8). Let SNR= 15dB. Define the top

left singular vector of Ẑnoisy as x̂. Fig. 1 compares the source local-
ization accuracy of the two approaches, where (a) and (b) depict the
source locations identified using the dual polynomial and the recov-
ered magnitudes; (c) and (d) depict the source locations identified
using the MATLAB command rootmusic(x̂, |T̂ |) and the recov-
ered magnitudes, where |T̂ | is the number of sources identified in
(a). Both procedures achieve similar accuracy in source localization.
It can be seen that the dual polynomial overestimates the number of
spikes, therefore additional model order selection is still necessary.
This may be accomplished by thresholding the coefficients, or using
classical order selection principle.
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Fig. 1. Source localization of AtomicLift with bounded noise. (a) and (b): source locations identified using the dual polynomial and the
recovered magnitudes; (c) and (d): source locations identified using MUSIC and the recovered magnitudes, when K = 6, N = 64, L = 3
and SNR = 15dB.
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Fig. 2. The performance of AtomicLift with bounded noise: (a) the normalized error of the recovered Ẑnoisy; (b) the projection error of the
recovered x̂; and (c) the Hausdorff distance between the true spike locations and their estimates, with respect to the SNR when N = 64,
L = 3, and K = 2, 5, 8.

We next examine the sensitivity of the performance of source
localization with respect to the SNR for various K. For each sim-
ulation, we compute the normalized error ‖Ẑnoisy − Z?‖F/‖Z?‖F,
where Ẑnoisy is the solution of (8), and its projection error of x̂ on
x as |〈x̂,x〉|2/‖x̂‖2‖x‖2. We then use the MATLAB command
rootmusic(x̂,K) to find the source locations, providing the cor-
rect model order K. Fig. 2 shows the normalized error of Ẑnoisy

in (a), the projection error of x̂ in (b), and the Hausdorff distance
between the true spike locations and their estimates in (c) with re-
spect to the SNR, averaged over 100 Monte Carlo runs, for various
K = 2, 5, 8. The performance of AtomicLift degenerates gracefully
as the SNR decreases, and as K increases.

5.2. AtomicLift with sparse outliers

We generate the measurements in the same manner as in Section 5.1
except that sparse outliers are add to noiseless measurements whose
support is selected uniformly at random and the amplitudes are gen-
erated with uniform random variables Unif[−1/2, 1/2] multiplied
by the maximum magnitude of the noiseless measurements. We then
run the algorithm (13). Fig. 3 shows the localization of spikes us-
ing the dual polynomial Q(τ) = (X ∗(q̂))Hc(τ) by examining the
peaks of ‖Q(τ)‖2 in (a), as well as the localization of the outliers
using q̂ by examining the peaks of |q̂i| in (b).

6. CONCLUSIONS

In this paper we analyzed the performance of AtomicLift in the pres-
ence of bounded noise for spike localization both theoretically and
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Fig. 3. AtomicLift with sparse outliers. Localization of the spikes
and outliers in (a) and (b) with K = 4, S = 4 and N = 72.

numerically. It is demonstrated that AtomicLift is stable against
noise and inaccuracy in the estimated source locations is propor-
tional to the noise level under mild conditions. In the future, we will
examine the robustness of AtomicLift with respect to perturbations
in the assumed subspace model of the point spread function, as well
as develop performance guarantees of AtomicLift in the presence of
sparse outliers.
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