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Abstract—This paper is concerned with estimation of two-
dimensional (2-D) frequencies from partial time samples, which
arises in many applications such as radar, inverse scattering, and
super-resolution imaging. Suppose that the object under study is
a mixture of r continuous-valued 2-D sinusoids. The goal is to
identify all frequency components when we only have information
about a random subset of n regularly-spaced time samples. We
demonstrate that under some mild spectral separation condition,
it is possible to exactly recover all frequencies by solving an
atomic norm minimization program, as long as the sample
complexity exceeds the order of r log r logn. We then propose to
solve the atomic norm minimization via a semidefinite program
and provide numerical examples to justify its practical ability.
Our work extends the framework proposed by Tang et. al. for
line spectrum estimation to 2-D frequency models.

Index Terms—atomic norm, basis mismatch, continuous-valued
frequency recovery, sparsity

I. INTRODUCTION

The problem of estimating two-dimensional (2-D) spectrum
is encountered in a variety of signal processing applica-
tions. For instance, the multi-dimensional frequency model
naturally arises in several operational scenarios in multiple-
input multiple-output (MIMO) radars [2], where multiple
components of each frequency correspond respectively to the
direction of arrival, direction of departure, and Doppler shift of
a scatter. Retrieving these parameters is of great importance for
localization and tracking of targets [3]. A second application
concerns channel sensing in wireless communications, where
accurate estimation of channel state information is crucial for
coherent detection in order to ensure high data rate. Physical
arguments and a growing body of experimental evidence
suggest that the number of significant paths in a wireless
channel is typically small [4], [5]. Each path is specified by a
triple of time delay, Doppler shift and attenuation, and can be
mapped to a multi-dimensional frequency. Another example
is super-resolution imaging [6], where any 2-D point source
translates into a 2-D complex sinusoid after passing through
a Fourier imaging system.

One of the essential goals in various applications is to
minimize the number of samples required to recover the
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underlying frequencies. Take wireless communications as an
example, where training pilots are transmitted and extracted
from the received signal to estimate the channel. The smaller
the number of pilots, the higher the data rate. Conventional
channel estimation methods are often based on linear least-
squares estimators [7], which requires the sample size to be
greater than the dimensionality of the signal space determined
by the maximal time delay and Doppler shift. To reduce
the required sample size, conventional approaches are often
based on parametric representation, which directly estimate
2-D frequencies via super-resolution methods such as 2-D
unitary ESPRIT [8], 2-D MUSIC [9], Clark and Scharf’s
IQML method [10], the Matrix Enhancement Matrix Pencil
(MEMP) method [11], etc. However, many of these approaches
require equi-spaced time-domain samples. They also rely on
prior knowledge on the model order – the number of sinusoids.
Moreover, these methods are often sensitive to model order
mismatch and noise.

Pioneered by the work of Candès et. al. [12] and Donoho
[13], Compressive Sensing (CS) suggests that it is possible
to recover a spectrally sparse signal from highly incomplete
time-domain samples. Specifically, consider a time-domain
signal of ambient dimension n = n1 × n2, composed of
r distinct 2-D complex sinusoids. If the frequencies of the
sinusoids lie approximately on the fine DFT grid of the
normalized frequency plane [0, 1) × [0, 1), the signal of in-
terest can be sparsely represented over the DFT basis. It has
been demonstrated that the signal can be recovered from a
random subset of time-domain samples with a sample size of
O(r log n) [14] via basis pursuit [15] or greedy pursuit [16].
The success of CS has inspired a large body of algorithm
and system design enabling sub-Nyquist sampling, notably for
compressive channel sensing [17], [18], high-resolution radar
[19], [20], and multi-user detection [21]. Caution needs to
be exercised, however, when approximating the continuous-
valued frequencies over a discrete (DFT) grid, since the signal
of interest often contains off-the-grid components and might
not enjoy a good sparse approximation over the discrete basis.
This effect has been studied in great details in [22], revealing
considerable performance degradation of conventional CS al-
gorithms when applied to off-the-grid signals. Several possible
remedies have been suggested ever since, see for example
[23]–[27]. Nevertheless, a grid is still assumed in these reme-
dies and therefore the continuous-valued frequencies cannot
be recovered perfectly. In addition, there seems to be little
theoretical understanding of these approaches.

Several recent works have been proposed to deal directly
with continuous-valued frequencies without imposing a dis-
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crete dictionary. In the pioneer work of [28], Candès and
Fernandez-Granda proves that perfect frequency extrapolation
is possible from partial low-end time samples by solving a
total-variation minimization program. This analyses therein
readily extend to multi-dimensional frequency models. Tang
et. al. [29] investigates the problem of 1-D spectral estimation
when one is given randomly observed time-domain sam-
ples, and proves that atomic norm minimization [30] succeds
with O(r log r log n) samples, assuming that the wrap-around
distance between distinct frequencies is at least 4/n. More
precisely, the atomic norm proposed by Chandrasekaran et.
al. [30] is a general recipe for developing convex optimization
solutions for model selection, where the goal is to minimize
the number of selected atoms for a given parsimonious model.
Many well-known problems can be treated as a special case
of atomic norm minimization, including ℓ1-minimization for
sparse recovery where the atoms are unit-norm one-sparse vec-
tors, nuclear norm minimization for low-rank matrix comple-
tion where the atoms are unit-norm rank-one matrices, and so
on. For spectrally sparse signals, the atoms are Vandermonde
vectors with a continuous-valued frequency in [0, 1). It is
worth noting that the atomic norm for spectrally sparse signals
is equivalent to the total-variation norm adopted in [28], [31].
Another line of work has approached the multi-dimensional
harmonic retrieval problem via Enhanced Matrix Completion
(EMaC) [32], [33], namely, to perform nuclear norm mini-
mization over multi-fold Hankel matrices constructed from the
time-domain samples. This algorithm is guaranteed to work
from O(rpolylogn) random samples, provided that the signal
model obeys some mild incoherence properties.

In this paper, we extend the atomic norm minimization
approach by Tang et. al. [29] to 2-D frequency models.
When the sample size exceeds the order of r log r log n, the
proposed atomic norm minimization algorithm is guaranteed
to perfectly recover all 2-D frequency components with high
probability, under a mild frequency separation condition. The
proof is inspired by [29] and [28], that is, to construct
a dual polynomial certifying the optimality of the solution
to the corresponding convex program. We then propose to
solve the atomic norm minimization problem via semidefinite
programming (SDP), which can be performed tractably using
off-the-shelf SDP solvers. However, unlike the case in 1-D
model [29], the equivalence between the atomic norm mini-
mization and our proposed SDP is not guaranteed, primarily
beacuse the Caratheodory’s theorem [34] does not hold in
higher dimensions. Instead, we validate the effectiveness of
the proposed SDP through numerical examples and its noise
robustness is also examined. After the conference version [1]
of this paper was published, Xu et. al. developed a precise SDP
characterization [35] of the 2-D atomic norm minimization
based on the theory of positive trigonometric polynomials
[36], where our proposed SDP can be regarded as a first-order
relaxation in their sum-of-squares relaxation hierarchy.

The rest of the paper is organized as follows. In Section II,
we formulate the problem and review related literature. Sec-
tion III presents the proposed atomic norm minimization al-
gorithm along with its performance guarantee, whose proof is
deferred to the Appendix. Section IV introduces a semidefinite

program to approximate the original atomic norm minimiza-
tion. Numerical experiments are supplied in Section V to
validate the practical applicability of our algorithm. Finally
we conclude in Section VI with a summary of our findings.
Throughout the paper, we use (·)⊤ and (·)∗ to denote the
transpose and the conjugate transpose, respectively.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

Without loss of generality, consider a 2-D square data
matrix X⋆ of size n = (4M + 1) × (4M + 1), where J =
{−2M, . . . , 0, . . . , 2M}×{−2M, . . . , 0, . . . , 2M} denotes the
union of the indices of X⋆. This assumption is imposed
to simplify the development of the theoretical guarantees,
and can be removed with little modifications, see [29] for
a similar treatment. Each entry of X⋆ can be expressed as
a superposition of r complex sinusoids observed at the time
index k = [k1, k2] ∈ J , i.e.

x⋆
k = x⋆

k1,k2
=

1

(4M + 1)

r∑
i=1

die
j2πf⊤

i k, (1)

where di represents the complex amplitude associated with
each 1 ≤ i ≤ r. Let Ω = {f i = (f1i, f2i) ∈ [0, 1)×[0, 1), 1 ≤
i ≤ r} be the set of distinct frequencies. For notational
simplicity, we introduce the following unit-norm atoms:a(f1i) = 1√

(4M+1)

[
y−2M
i , . . . , 1, . . . , y2Mi

]⊤
,

a(f2i) = 1√
(4M+1)

[
z−2M
i , . . . , 1, . . . , z2Mi

]⊤
,

where yi = ej2πf1i , and zi = ej2πf2i . This allows us to write
X⋆ in a matrix form as follows

X⋆ = Y DZ⊤, (2)

where Y is given by

Y = [a(f11), . . . ,a(f1r)] ∈ C(4M+1)×r, (3)

Z = [a(f21), . . . ,a(f2r)] ∈ C(4M+1)×r, (4)

and

D = diag([d1, d2, · · · , dr]) = diag(d) ∈ Cr×r. (5)

Denote by x⋆ = vec((X⋆)⊤) ∈ C(4M+1)2 the vectorized
data matrix, then one has

x⋆ = (Y ⊗Z)d =
r∑

i=1

dia(f1i)⊗ a(f2i)

=
r∑

i=1

dic(f i), (6)

where ⊗ represents Kronecker product, and

c(f i) = c(f1i, f2i) := a(f1i)⊗ a(f2i) ∈ C(4M+1)2 .

satisfying ∥c(f i)∥2 = 1.
In this paper, we assume that m entries of X⋆ are observed

uniformly at random. Specifically, denote by T ⊂ J as the
index set such where x⋆

k1,k2
are observed if and only iff

(k1, k2) ∈ T . Define the operator PT such that PT (M)
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represents the orthogonal projection of M onto the subspace
of matrices supported on T . We shall abuse the notation,
without ambiguity, to let T , J and PT represent the set of
observed entries, all entries, and the observation operator with
respect to the vectorized signal x⋆ as well.

The primary focus of this paper is to recover the unob-
served entries of the original data matrix X⋆. We note that
the frequencies Ω can also be recovered using conventional
approaches such as the MEMP method [11] once the data
matrix is recovered.

B. Conventional CS Approach

To apply conventional CS paradigms, we represents x⋆ as
a sparse signal in a pre-determined basis by discretizing the
2-D plane [0, 1) × [0, 1) with grid points t = [t1, t2] ∈ Ωd,
where t1, t2 ∈

{
0, . . . , 4M

4M+1

}
. Write the resulting DFT basis

as

F = [c(t)|t∈Ωd
] = F 1 ⊗ F 1 ∈ C(4M+1)2×(4M+1)2 ,

where F 1 is a DFT matrix of dimension (4M+1)×(4M+1).
The vectorized signal x⋆ can then be represented using F as

x⋆ = F d̃, (7)

where d̃ is approximately sparse. CS suggests that we could
recover x⋆ using the ℓ1-minimization as

min
d

∥d∥1 subject to PT (Fd) = PT (x
⋆),

where the minimizer is returned as an estimate of d̃. The major
issue with the above approach is that the frequencies f i never
lie perfectly on the grid Ωd, resulting in inevitable mismatch
issue between the true frequencies and the discrete grid. It
has been demonstrated in [22] that the performance of sparse
recovery algorithms can degenerate considerably. In this paper
we will adopt a different approach and attempt to recover the
frequencies directly without imposing a grid.

III. ATOMIC NORM MINIMIZATION FOR 2-D HARMONIC
RETRIEVAL

The atomic norm is proposed in [30] as a general recipe of
designing convex optimization solutions for model selection,
by convexifying the atomic set of the parsimonious models.
The atomic set of a signal model is defined as the simplest
building blocks of the signal, such as unit-norm one-sparse
vectors for sparse recovery, unit-norm rank-one matrices for
low-rank matrix completion, and so on. Interested readers are
referred to [30] for a detailed discussion about the atomic
norm. In the case of 2-D harmonic retrieval, it is straightfor-
ward to define the atomic set as the collection of all normalized
2-D complex sinusoids:

A := {c(f)|f ∈ [0, 1)× [0, 1)} ,

and the atomic norm for a signal x as

∥x∥A := inf
fi∈[0,1)×[0,1)

di∈C

{∑
i

|di|
∣∣∣x =

∑
i

dici(f i)

}
. (8)

This is obtained by convexifying the atomic representation of
x using the smallest number of 2-D frequency spikes:

∥x∥A,0 = inf
fi∈[0,1)×[0,1)

di∈C

{
s
∣∣∣x =

s∑
i=1

dici(f i)

}
.

The above definition generalizes the atomic norm for 1-
D harmonic signals in [29] and allows one to accommodate
higher dimensions. Given partial observations of x⋆ (or equiv-
alently PT (x

⋆)), we attempt recovery via the following atomic
norm minimization program

x̂ = argminx ∥x∥A subject to PT (x) = PT (x
⋆), (9)

namely, to seek a signal with minimal atomic norm satisfy-
ing the observation constraints. This approach is adopted in
[29] for line spectrum estimation when the set of atoms is
A = {a(f)|f ∈ [0, 1)}. In [29], it is shown that a random
subset containing O(r log r log n) samples can ensure exact
frequency recovery under a mild frequency separation condi-
tion.

The following theorem establishes similar performance
guarantees hold in the 2-D case, namely, the proposed al-
gorithm (9) recovers the true data x⋆ perfectly under a
properly defined separation condition, provided that the sample
complexity exceeds the order of r log r log n.

Theorem 1. Let M ≥ 256. Suppose that we observe samples
of a data matrix X⋆ in (1) on the index set T ⊂ J of size
|T | = m uniformly at random, where f i ∈ [0, 1) × [0, 1).
Suppose that the signs of di’s are i.i.d. and uniformly drawn
from {+1,−1}, and the minimum separation between f i’s
satisfies

∆min ≜ min
i ̸=j

∥f i − f j∥∞

= min
i ̸=j

max {|f1i − f1j |, |f2i − f2j |} ≥ 1.19

M
, (10)

where |f1i−f1j |, |f2i−f2j | are the wrap-around distances on
the unit circle. Then there exists a numerical constant C > 0
such that if

m ≥ Cmax

{
log2

M

δ
, r log

r

δ
log

M

δ

}
, (11)

then the solution to (9) is exact and unique with probability
at least 1− δ. The same results hold with a different constant
in (10) when the signs of di’s are i.i.d. uniformly generated
on the complex unit circle.

The proof can be found in Appendix B. Theorem 1 suggests
that as long as the frequencies are minimally separated as in
(10), the recovery via atomic norm minimization is exact once
m is on the order of max{log2 n, r log r log n}. This orderwise
bound agrees with the performance guarantee for line spectrum
estimation as derived in [29].

We compare Theorem 1 with conventional subspace meth-
ods such as ESPRIT. ESPRIT is able to recover the underlying
frequencies from Θ(r) consecutive samples of the data matrix
X⋆. The number of samples required for exact recovery de-
pends only on the underlying degrees of freedom irrespective
of the ambient dimension of X⋆. In contrast, the proposed
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algorithm (9) assumes random subsampling of the data matrix
X⋆ and requires a slightly higher sample complexity about
the order of r log r log n. Moreover, in the absence of noise,
ESPRIT allows recovery without imposing a separation con-
dition like (10). Note, however, that a separation condition
is necessary when noise is present, as detailed in [28], [37].
We will demonstrate through numerical examples that the
proposed algorithm (9) is stable under noisy observations as
well.

We also compare Theorem 1 with standard results in CS
[14]. When the frequencies in Ω are indeed on the DFT grid,
CS allows recovery of r complex sinusoids from a number
O(r log(n/r)) of samples. The proposed algorithm (9) can
be regarded as a remedy of CS for targets off the grid with
slightly larger sample complexity.

IV. APPROXIMATE SEMIDEFINITE PROGRAM TO SOLVE
ATOMIC NORM MINIMIZATION

Theorem 1 indicates that solving the atomic norm minimiza-
tion problem (9) allows perfect recovery of the data matrix
from only a small number of its time samples. However, a
natural question arises as to how to solve (9) in a tractable
manner. Unfortunately, the exact semidefinite programming
characterization of atomic norm minimization in the line spec-
trum case, as proposed in [29], cannot be extended straight-
forwardly to 2-D models, due to the fundamental difficulty
of generalizing the classical Caratheodory’s theorem [34] to
higher dimensions. Nonetheless, in this section we propose
a semidefinite program to approximately solve (9), which
exhibits excellent empirical performance in Section V. We also
provide a sufficient condition when the proposed semidefinite
program returns the solution to (9).

We describe the algorithm in the general case when the
dimension of X⋆ is n1 ×n2, which is not necessarily square.
We will still assume that X⋆ satisfies (2), but slightly abuse
notations by letting

Y = [a(f11), . . . ,a(f1r)]

with a(f1i) = [1, ej2πf1i , . . . , ej2π(n1−1)f1i ]⊤, and

Z = [b(f21), . . . , b(f2r)],

with b(f2i) = [1, ej2πf2i , . . . , ej2π(n2−1)f1i ]⊤, wherever they
are clear from context.

Before presenting the algorithm, we first define a ma-
trix enhancement using two-fold Toeplitz structures. Given a
(2n1−1)×(2n2−1) matrix T = [xl1,l2 ] with −n1 < l1 < n1

and −n2 < l2 < n2, we define an n1 × n1 block Toeplitz
matrix S(T ) from T as

S(T ) =


T 0 T−1 · · · T−(n1−1)

T 1 T 0 · · · T−(n1−2)

...
...

...
...

T n1−1 T n1−2 · · · T 0

 , (12)

where each block T l (−n1 < l < n1) is an n2 × n2 Toeplitz

matrix defined from the lth row of T :

T l =


xl,0 xl,−1 · · · xl,−(n2−1)

xl,1 xl,0 · · · xl,−(n2−2)

...
...

...
...

xl,n2−1 xl,n2−2 · · · xl,0

 .

We use S(T ) ∈ Cn1n2×n1n2 to represent the corresponding
two-fold block Toeplitz matrix constructed from T . It is
straightforward to verify that for any i, an atom in the
form of (a(f1i)a(f1i)

∗) ⊗ (b(f2i)b(f2i)
∗) forms a two-fold

block Toeplitz matrix. The following proposition presents a
semidefinite program that allows approximation of the atomic
norm ∥x∥A.

Proposition 1. Let X be an n1 × n2 matrix and x =
vec(X⊤). Denote

{T̂ , t̂} = argminT ,t

{
1

2
tr (S(T )) +

1

2
t
∣∣∣ [S(T ) x

x∗ t

]
⪰ 0

}
,

(13)

and let ∥x∥T the objective value under {T̂ , t̂}. Then we have

∥x∥A ≥ ∥x∥T .

Furthermore, if S(T̂ ) can be written as

S(T̂ ) = V ΣV ∗, (14)

where

V = [c(f1), . . . , c(fr)],

Σ = diag([σ1, . . . , σr]),

with σi’s being real and positive values, then ∥x∥A = ∥x∥T .

Proof. Let x =
∑

i dic(f i), where di = |di|ejθi , then∑
i

|di|
[

c(f i)
e−jθi

] [
c(f i)
e−jθi

]∗
=

[
S(T ) x
x∗ ∑

i |di|

]
⪰ 0,

where S(T ) =
∑

i |di|c(f i)c(f i)
∗. This indicates that

∥x∥T ≤ 1

2
tr (S(T )) +

1

2

∑
i

|di|

=
∑
i

|di| = ∥x∥A .

Moreover, if the optimal T̂ and t̂ satisfy[
S(T̂ ) x
x∗ t̂

]
⪰ 0,

then we have S(T̂ ) ⪰ 0 and S(T̂ ) ⪰ t̂−1xx∗ by Schur
complement condition. If we can write S(T̂ ) = V ΣV ∗, then
x falls within the column space of S(T̂ ) or, equivalently,
x = V d for some vector d. Let q be any vector such that
V ∗

2q = sign(d), where sign(d) is the sign vector of d, then

tr(Σ) = q∗V ΣV ∗q ≥ 1

t̂
q∗V dd∗V ∗q =

1

t̂

(∑
i

|di|

)2

.
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This implies that

1

2
tr
(
S(T̂ )

)
+

1

2
t̂ =

1

2
tr (Σ) +

1

2
t̂ ≥

√
tr (Σ) t̂

≥
∑
i

|di| ≥ ∥x∥A, (15)

which is equivalent to ∥x∥T ≥ ∥x∥A. Therefore we have
∥x∥T = ∥x∥A.

We propose to approximate the atomic norm minimization
algorithm in (9) via the following semidefinite program

{T̂ , x̂, t̂} = argminT ,x,t

1

2
tr (S(T )) +

1

2
t (16)

subject to
[
S(T ) x
x∗ t

]
⪰ 0,

PT (x) = PT (x
⋆).

Unlike the 1-D algorithm proposed in [29], since it is not
guaranteed to write S(T̂ ) into a form of (14), the semidefinite
program formulation (16) is in general not guaranteed to be
equivalent to (9).

Although the equivalence between (16) and (9) is not
ensured, we can establish that if rank(S(T )) is not greater than
min{n1, n2} for certain matrix T (in general it could be as
large as n1n2), it can indeed be written uniquely in the form of
(14). This is characterized in the following proposition, whose
proof is deferred to Appendix H.

Proposition 2. If r = rank(S(T )) ≤ min{n1, n2}, then S(T )
is PSD if and only if it can be represented as (14).

From the above proposition, it is straightforward that if
the solution to (16) satisfies rank(S(T̂ )) ≤ min{n1, n2}, the
semidefinite characterization of (16) is exact.
Remark 1. The dual problem of (16) can be written as

max
ν,Q

Re(⟨ν,x⋆⟩), subject to
[
Q ν
ν∗ 1

]
⪰ 0,

⟨Q,Θk⟩ = δk,

νT c = 0,

where Θk, k = (k1, k2) is the Knonecker product of the
n1 × n1 symmetric Toeplitz matrix generated by the k1-th
standard basis vector, and the n2 × n2 symmetric Toeplitz
matrix generated by the k2-th standard basis vector; and
δk = 1 if k = (0, 0), and δk = 0 otherwise. This is exactly the
first-order relaxation in sum-of-squares relaxation hierarchy
proposed in [35] for the precise SDP characterization of (19).
Therefore, one can also employ the checking mechanism
proposed in [35] to determine if (16) is exact.

V. NUMERICAL SIMULATIONS

We present numerical examples to verify the performance
of the proposed algorithm (16) for a data matrix X⋆ of size
n1×n2. In the first example, let n1 = n2 = 10. We randomly
generated r = 6 frequency pairs in [0, 1)× [0, 1), with

Ω = [(0.1537, 0.5181), (0.2810, 0.9436), (0.4401, 0.6377),

(0.5271, 0.9577), (0.4574, 0.2407), (0.8754, 0.6761)],

where the coefficient of each frequency was generated with
constant magnitude one and a random phase from U [0, 2π].
In typical applications of interest such as radar or channel
estimation, these frequency pairs correspond to delay, Doppler
and amplitudes of the scatters. The actual frequency locations
are depicted in Fig. 1 (a). Each entry in X⋆ was observed
with probability p = m/(n1n2), with m = 30, which can be
collected using the sub-Nyquist sampling framework described
in [38]. We then implemented (16) using CVX [39]. Notice
that the number of unknown parameters was 3r = 18. Fig. 1
(b) shows the recovered frequency locations using basis pursuit
(BP) by assuming the signal is sparse in a DFT basis, and
Fig. 1 (c) shows the recovered frequency locations using BP by
assuming the signal is sparse in a DFT frame oversampled by
a factor of 4. Finally, the recovered frequency locations using
MEMP [11] from the data matrix recovered from (16) are
depicted in Fig. 1 (d), superimposed on the ground truth. The
reconstruction is perfect using the proposed approach when
the data is noise-free.
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Fig. 1. The recovered signal in the frequency domain for n1 = n2 = 10
from m = 30 measurements.

We also examine the phase transition of the proposed
algorithm (16). Let n1 = n2 = 8. For each pair of m and
the number of modes r, we ran 10 experiments, where in
each experiment r complex sinusoids (a) are generated ran-
domly, or (b) generated randomly until a separation condition
of ∆min = 1.5/n1 is satisfied. The recovery was claimed
successful if the normalized mean squared error (NMSE) error
∥x̂ − x⋆∥2/∥x⋆∥2 ≤ 10−3, where x̂ was the reconstructed
data. Fig. 2 shows the success rate for each pair of m and
r, with the grayscale of each cell reflecting the empirical rate
of success, for the two cases described above respectively in
(a) and (b). Fig. 2 (b) has a much sharper phase transition
compared with (a), indicating that the number of samples
grows approximately linearly with respect to r when the
separation condition is imposed, in line with our theoretical
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analysis.
We further compare the proposed algorithm with the EMaC

algorithm proposed in [33] by setting the pencil parameters
therein to be k1 = 4 and k2 = 5 respectively, which yields a
two-fold Hankel matrix of size 20×20 to be completed. Fig. 2
(c) shows the success rate of EMaC for each pair of m and r
under the same condition as Fig. 2 (a) when the frequencies
are randomly generated. Our numerical examples also indicate
that unlike the atomic norm approach, the phase transition
curve of EMaC is insensitive to the separation condition.
While the EMaC algorithm yields a much sharper phase
transition than that of the proposed algorithm for randomly
generated frequencies, the range of its recoverable (m, r) is
much smaller, partially due to the small dimensionality of the
relevant two-fold Hankel matrix when the data size is small.

We further examine the performance of (16) in the presence
of noise. The noisy data was generated as

Xnoisy = X⋆ + σN ,

where X⋆ was generated in the same way as in Fig. 2 with r =
3 different frequencies, and N was standard additive white
Gaussian noise (AWGN) with each entry i.i.d. from N (0, 1).
The signal-to-noise ratio is defined as SNR = 10 log10

m
nσ2 ,

which has been scaled with respect to the number of samples.
The proposed algorithm was modified to incorporate noise as

{T̂ , x̂, t} = argminT ,x,t

1

2
tr (S(T )) +

1

2
t (17)

subject to
[
S(T ) x
x∗ t

]
⪰ 0, ∥PT (x− x⋆)∥2 ≤

√
mσ.

Fig. 3 illustrates the NMSE against SNR under different
sample complexity. When m = 20, there is a possibility
of failure that x⋆ is not perfectly recovered even without
noise, so the NMSE is relatively large under all SNRs. When
m = 30, 40, and 50, it is with high possibility that x⋆ is
perfectly recovered without noise. When this was the case,
the performance degenerated gracefully as the SNR decreases.
The performance also improved when the number of samples
m increases, but the gain was not as significant as long as it
is above certain threshold.

VI. CONCLUSIONS

In this paper we explore estimation of 2-D frequency
components of a spectrally sparse signal, when we are given
a random subset of its regularly spaced samples. We formu-
late an atomic norm minimization problem, and show that
a sample size of O(r log r log n) is sufficient to guarantee
perfect frequency recovery, provided that a mild separation
condition is satisfied. Our work can be extended to an arbitrary
higher dimension and a similar semidefinite program can be
proposed using a multi-fold block Toeplitz matrix constructed
similar to (14). Finally, it remains to be seen how to develop
more efficient first-order algorithms in solving the semidefinite
program (16), as generic SDP solvers based on interior point
methods are limited to small-dimensionality problems.
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m = 20
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Fig. 3. NMSE vs SNR when n1 = n2 = 8, where frequency locations are
generated randomly with a separation condition ∆min = 1.5/n1 for different
numbers of samples.

APPENDIX A
USEFUL LEMMAS

We first present a few useful inequalities that will be used
in the proofs.

Lemma 1. (Noncommutative Bernstein’s inequality) [40]
Let X1, · · · , XL be independent zero-mean symmetric
random matrices of dimension d × d. Suppose σ2 =∥∥∥∑L

k=1 E[XkX
⊤
k ]
∥∥∥ and ∥Xk∥ ≤ B almost surely for all

k. Then for any 0 < t < σ2/B,

Pr

[∥∥∥∥∥
L∑

k=1

Xk

∥∥∥∥∥ > t

]
≤ 2d exp

(
− 3t2

8σ2

)
. (18)

Lemma 2. (Talagrand’s concentration inequality) [41] Let
{Yj} be a finite sequence of independent random variables
taking values in a Banach space and V be defined as

V = sup
h∈H

∑
j

h(Yj)

for a countable family of real valued functions H. Assume that
|h| ≤ B and E [h(Yj)] = 0 for all h ∈ H and every j. Then
for all t > 0,

Pr (|V − E [V ] | > t)

≤ 16 exp

(
− t

KB
log

(
1 +

Bt

σ2 +BE
[
V̄
])) ,

where σ2 = suph∈H
∑

j E
[
h2(Yj)

]
, V̄ =

suph∈H

∣∣∣∑j h(Yj)
∣∣∣, and K is a numerical constant.

Lemma 3. (Hoeffding’s inequality) [42] Let the components
of u ∈ Cn be sampled i.i.d. from a symmetric distribution
on the complex unit circle, w ∈ Cn, and t be a positive real
number. Then

Pr (|⟨u,w⟩| ≥ t) ≤ 4 exp

(
− t2

4∥w∥22

)
.
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Fig. 2. Phase transition plots when n1 = n2 = 8: (a) the proposed algorithm with randomly generated frequencies; (b) the proposed algorithm with randomly
generated frequencies satisfying a separation condition ∆min = 1.5/n1; (c) the EMaC algorithm [33] with randomly generated frequencies. The success rate
is calculated by averaging over 10 runs.

APPENDIX B
PROOF OF THEOREM 1

This section is dedicated to the proof of Theorem 1 when the
signs of di’s are randomly drawn from {+1,−1}. The proof is
similar for the case where di’s are complex-valued, following
the discussions in [28, Section 1.3]. A road map of the proof
is given below. We will first characterize properties of a dual
polynomial that suffices to certify the optimality and unique-
ness of the solution to (9), and then present a randomized dual
construction scheme. Specifically, the construction scheme
produces a polynomial by randomizing the dual polynomial
in [28] constructed for the full-observation case. Finally, we
will show that this random polynomial satisfies the optimality
and uniqueness conditions with high probability.

A. Optimality Conditions for Dual Polynomial

The dual norm of ∥x∥A is defined as

∥q∥∗A = sup
∥x∥A≤1

Re(⟨q,x⟩) = sup
f∈[0,1)×[0,1)

|⟨q, c(f)⟩| ,

where f = (f1, f2). As a result, the dual problem associated
with (9) is given by

maxq Re(⟨q,x⋆⟩) subject to ∥q∥∗A ≤ 1, qT c = 0, (19)

where T c = J\T is the complement set of T . Following
standard analysis (see [28]), the optimal solution of (9) is
unique if there exists a dual polynomial

Q(f) =
∑
k∈J

qke
−j2πf⊤k

satisfying the following set of conditions

qk = 0, ∀k /∈ T, (20a)
Q(f i) = sign(di), ∀f i ∈ Ω, (20b)
|Q(f)| < 1, ∀f /∈ Ω, (20c)

where sign(·) represents the complex sign. In the sequel we
will produce a dual polynomial satisfying the conditions (20a)-
(20c) with high probability.

B. Fejr’s Kernel

In [28], the dual polynomial is constructed from the squared
Fejr’s kernel [43], which is defined in the 1-D setting as

K(f) =
1

M

2M∑
k=−2M

gM (k)e−j2πfk =

[
sin(πMf)

M sin(πf)

]4
,

for f ∈ [0, 1), where

gM (k) =
1

M

min(k+M,M)∑
s=max(k−M,−M)

(
1−

∣∣∣ s
M

∣∣∣)(1− ∣∣∣∣k − s

M

∣∣∣∣) .

Two important features of K(f) are worth mentioning: 1) it
is nonnegative, and 2) it exhibits rapid decay to zero as f
grows. We note that ∥gM∥∞ = maxk |gM (k)| ≤ 1, which
will be useful in later analysis.

In the 2-D setting, the corresponding Fejr’s kernel is defined
as

K(f) = K(f1)K(f2) =
1

M2

∑
k∈J

gM (k1)gM (k2)e
−j2πf⊤k

for f = [f1, f2] ∈ [0, 1)× [0, 1). Let K(i1i2)(f) be the partial
derivative of K(f) given by

K(i1i2)(f) =
∂i1∂i2K(f)

∂f i1
1 f i2

2

.

C. Construction of Dual Polynomial

Following the argument in [29, Section IV-B], it is sufficient
to consider a Bernoulli observation model such that each entry
in J is observed with probability

p =
m

M2
.

Specifically, we assign an i.i.d. Bernoulli random variable δk
to indicate whether the kth entry is observed, which satisfies

Pr(δk = 1) = p =
m

M2
< 1. (21)

Define a randomized 2-D Fejr’s kernel as

Kr(f) =
1

M2

∑
k∈J

gM (k1)gM (k2)δke
−j2πf⊤k, (22)
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where δk is defined in (21). Let K
(i1i2)
r (f) be the partial

derivative of Kr(f) as

K(i1i2)
r (f) =

∂i1∂i2Kr(f)

∂f i1
1 f i2

2

for any i1, i2 = 0, 1, 2. Then their expected values with respect
to δk can be computed as

E
[
K(i1i2)

r (f)
]
= pK(i1i2)(f).

We propose to construct the dual polynomial of (19) as

Q(f) =
r∑

i=1

αiKr(f − f i) +
r∑

i=1

β1iK
(10)
r (f − f i)+

r∑
i=1

β2iK
(01)
r (f − f i), (23)

i.e. a superposition of the randomized Fejr’s kernel and its
first-order partial derivatives at the frequencies in F .

To establish Theorem 1, we need to verify that Q(f) in
the form of (23) satisfies the hypotheses (20a)-(20c) with
high probability. Apparently, Condition (20a) is satisfied by
the randomized construction scheme. The next step is to
tweak the interpolation coefficients α = [α1, . . . , αr]

⊤, β1 =
[β11, . . . , β1r]

⊤ and β2 = [β21, . . . , β2r]
⊤ to satisfy (20b).

Specifically, let the (ℓ, i)th entry of Ei1i2 be

(Ei1i2)ℓi = Q(i1i2)(f ℓ − f i),

where Q(i1i2)(f) represents the partial derivative of Q(f).
Choose the coefficients α, β1 and β2 such that E00 κE10 κE01

−κE10 −κ2E20 −κ2E11

−κE01 −κ2E11 −κ2E02

 α
κ−1β1

κ−1β2

 =

v0
0

 , (24)

where1 κ−1 =
√
K ′′(0), and v ∈ Rr obeys vk = sign(dk).

Denote by E the matrix on the left-hand side of the above
equation

E =

 E00 κE10 κE01

−κE10 −κ2E20 −κ2E11

−κE01 −κ2E11 −κ2E02

 ∈ C3r×3r,

whose expected value is given by E [E] = pĒ. Here, Ē
denotes

Ē =

 Ē00 κĒ10 κĒ01

−κĒ10 −κ2Ē20 −κ2Ē11

−κĒ01 −κ2Ē11 −κ2Ē02


with each sub-block defined with the (ℓ, i)th entry being

(Ēi1i2)ℓi = Q̄(i1i2)(f ℓ − f i),

where Q̄(i1i2)(f) := E[Q(i1i2)(f)]. In order to find a solution
to (24), one first needs to demonstrate that E is invertible. To
this end, we begin by presenting the following lemma, whose
proof is given in Appendix C.

Lemma 4. Under the conditions of Theorem 1, one has

∥I − Ē∥ ≤ 0.1982.

1K′′(0) is the second-order derivative of K(f) at f = 0.

Lemma 4 immediately implies that Ē is invertible,

∥Ē∥ ≤ 1 + ∥I − Ē∥ ≤ 1.1982, (25)

and ∥∥∥Ē−1
∥∥∥ ≤ 1

1− ∥I − Ē∥
≤ 1.2472.

The matrix E can then be expressed as

E =
1

M2

∑
k∈J

gM (k1)gM (k2)δkeke
∗
k, (26)

where ek is given by

ek =

 1
j2πκk1
j2πκk2

⊗

e
−j2πf⊤

1 k

...
e−j2πf⊤

r k

 ∈ C3r. (27)

Similarly, one can write Ē as

Ē =
1

M2

∑
k∈J

gM (k1)gM (k2)eke
∗
k. (28)

We will establish that the spectral norm of p−1E can be well
controlled, as stated in the following lemma. The proof is
deferred to Appendix D.

Lemma 5. Let 0 ≤ δ ≤ 1. If ∆min ≥ 1.19
M , and m ≥

c1r log
(
6r
δ

)
for some positive constant c1 > 0, then with

probability at least 1− δ,∥∥p−1E − Ē
∥∥ ≤ 1

4
.

Denote by E1 the event E1 =
{
∥p−1E − Ē∥ ≤ 1

4

}
, which

occurs with probability Pr (E1) ≥ 1 − δ. Conditional on E1,
one has∥∥I − p−1E

∥∥ ≤
∥∥I − Ē

∥∥+ ∥∥p−1E − Ē
∥∥ < 1, (29)

revealing the invertibility of E. Writing E−1 = [L R] for
some L ∈ C3r×r, we have∥∥L− p−1L̄

∥∥ ≤ 1

2
p−1

∥∥∥Ē−1
∥∥∥2 , ∥L∥ ≤ 2p−1

∥∥∥Ē−1
∥∥∥ ,

where L̄ = pE[L] follows from [29, Corollary IV.5]. The
interpolation coefficients can thus be written as[

α κ−1β1 κ−1β2

]⊤
= Lv. (30)

With this choice, (20b) is satisfied trivially.

D. Verification of (20c)

What remains to be estalibshed is Condition (20c). We will
first show that it holds on a regular grid Ωg ⊂ [0, 1)× [0, 1),
and then extends it to the continuous domain.
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To proceed, define w(i1i2)(f) as

w(i1i2)(f) = κi1+i2



K
(i1i2)
r (f − f1)

∗

...
K

(i1i2)
r (f − fr)

∗

κK
(i1+1,i2)
r (f − f1)

∗

...
κK

(i1+1,i2)
r (f − fr)

∗

κK
(i1,i2+1)
r (f − f1)

∗

...
κK

(i1,i2+1)
r (f − fr)

∗


=

1

M2

∑
k∈J

(j2πκ)i1+i2ki11 ki22 gM (k1)gM (k2)e
j2πf⊤kδkek,

(31)

then the derivatives of the dual polynomial Q(f) in (23) can
be written as

κi1+i2Q(i1i2)(f) = (w(i1i2)(f))∗Lv.

Define the mean of w(i1i2)(f) such that

E
[
w(i1i2)(f)

]
= pw̄(i1i2)(f).

We have

(w(i1i2)(f))∗Lv

= (w̄(i1i2)(f))∗L̄v + p(w̄(i1i2)(f))∗[L− p−1L̄]v+

[w(i1i2)(f)− pw̄(i1i2)(f)]∗Lv

= κi1+i2Q̄(i1i2)(f) + I
(i1i2)
1 (f) + I

(i1i2)
2 (f),

where

I
(i1i2)
1 (f) = p(w̄(i1i2)(f))∗[L− p−1L̄]v,

I
(i1i2)
2 (f) := [w(i1i2)(f)− pw̄(i1i2)(f)]∗Lv.

We first need to establish that I(i1i2)1 (f) and I
(i1i2)
2 (f) can be

controlled uniformly over all f . To this end, we apply similar
techniques adopted in [29], which first bound I

(i1i2)
1 (f) and

I
(i1i2)
2 (f) on a regular grid Ωg, and then extend the result to all

frequencies. The following lemma quantifies the perturbations
on a regular grid, whose proof is deferred to Appendix E.

Lemma 6. Suppose ∆min ≥ 1.19
M . For a regular grid Ωg, there

exists a numerical constant C such that if

m ≥ C
1

ϵ2
max

{
log2

|Ωg|
δ

, r log
r

δ
log

|Ωg|
δ

}
, (32)

then supf∈Ωg
|I(i1i2)1 (f)| ≤ ϵ/2 and supf∈Ωg

|I(i1i2)2 (f)| ≤
ϵ/2 for i1, i2 = 0, 1, 2, 3 with probability at least 1− δ.

Following Lemma 6, we immediately show that the event

E2 =
{

sup
f∈Ωg

κi1+i2
∣∣∣Q(i1i2)(f)− Q̄(i1i2)(f)

∣∣∣ ≤ ϵ,

0 ≤ i1, i2 ≤ 3
}
.

occurs with probability at least 1− δ on the grid Ωg.

We will first extend E2 to the whole continuous domain by
the following lemma whose proof can be found in Appendix F.

Lemma 7. Suppose that ∆min ≥ 1.19
M . There exists a numer-

ical constant C > 0 such that if m satisfies (32) for some
constant C, then

κi1+i2
∣∣∣Q(i1i2)(f)− Q̄(i1i2)(f)

∣∣∣ ≤ ϵ, i1, i2 = 0, 1, 2, 3

(33)
for f ∈ [0, 1)× [0, 1) with probability at least 1− δ.

Finally, we can establishes (20c) through the following
lemma, where the proof is supplied in Appendix G.

Lemma 8. Suppose that ∆min ≥ 1.19
M . There exists a universal

constant C > 0 such that if

m ≥ Cmax

{
log2

M

δ
, r log

r

δ
log

M

δ

}
, (34)

then with probability at least 1 − δ, one has |Q(f)| < 1 for
f /∈ Ω.

Combining the above lemmas, we have successfully con-
structed a dual polynomial Q(f) when m satisfies (34),
completing the proof of Theorem 1.

APPENDIX C
PROOF OF LEMMA 4

Proof. When ∆min ≥ 1.19/M , using the result in [28, Proof
of Lemma C.2], we have

∥I − Ē0∥∞ ≤ 4.854 · 10−2,

∥κĒ10∥∞ ≤ 4.2580 · 10−2

∥κ2Ē11∥∞ ≤ 4.7905 · 10−2,

∥I − κ2Ē20∥∞ ≤ 0.1076,

where ∥ · ∥∞ is the matrix infinity norm, i.e. the maximum
absolute row sum. Since I − Ē is symmetric and its diagonal
entries are all zero, by the Gershgorin’s circle theorem [44],

∥I − Ē∥ ≤ ∥I − Ē∥∞
≤ max

{
∥I − Ē0∥∞ + ∥κĒ01∥∞ + ∥κĒ10∥∞,

∥κĒ10∥∞ + ∥κ2Ē11∥∞ + ∥I − κ2Ē20∥∞
}
≤ 0.1982.

APPENDIX D
PROOF OF LEMMA 5

Proof. First, write E − pĒ =
∑

k∈J Gk, where

Gk =
1

M2
gM (k1)gM (k2)(δk − p)eke

∗
k

is a random zero-mean self-adjoint matrix. We would like to
apply Lemma 1. Since EGk = 0 and

B : = ∥Gk∥ =
1

M2
∥gM (k1)gM (k2)(δk − p)eke

∗
k∥

≤ 1

M2
∥gM (k1)∥∞∥gM (k2)∥∞∥ek∥2 (35)

≤ 1

M2
27r, (36)
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where (35) follows from |δk − p| ≤ {1 − p, p} < 1, (36)
follows from ∥gM∥∞ ≤ 1 and

∥ek∥2 ≤ r(1 + 2 max
|k1|≤2M

(2πk1κ)
2) ≤ 27r

for M ≥ 4 where the last inequality follows from |2πk1κ|2 ≤
13 in [29]. And

σ2 :=
1

M4

∥∥∥∑
k∈J

g2M (k1)g
2
M (k2)∥ek∥2eke∗kE

[
(δk − p)2

] ∥∥∥
≤ 27rp(1− p)

M4

∥∥∥∥∥∑
k∈J

g2M (k1)g
2
M (k2)eke

∗
k

∥∥∥∥∥
≤ 27rp(1− p)

M2
∥gM (k1)∥∞∥gM (k2)∥∞∥Ē∥

≤ 27rp(1− p)

M2
1.1982

≤ 33rp

M2
,

where the last inequality follows from (25). Applying
Lemma 1 and setting t = 1

4p, one obtains

Pr

[
∥p−1E − Ē∥ >

1

4

]
≤ 6r exp

(
−m

c1

)
≤ δ (37)

for some constant c1, leading to m ≥ c1r log
(
6r
δ

)
.

APPENDIX E
PROOF OF LEMMA 6

Proof. We first write ∥w(i1i2)(f)− pw̄(i1i2)(f)∥2 as

w(i1i2)(f)− pw̄(i1i2)(f)

=
1

M2
·
∑
k∈J

(j2πκ)i1+i2ki11 ki22 gM (k1)gM (k2)

·ej2πf
⊤k(δk − p)ek

≜
∑
k∈J

Y
(i1i2)
k ,

where

Y
(i1i2)
k =

1

M2
(j2πκ)i1+i2ki11 ki22

· gM (k1)gM (k2)e
j2πf⊤k(δk − p)ek.

Write

∥w(i1i2)(f)− pw̄(i1i2)(f)∥2 = sup
h:∥h∥=1

∑
k∈J

⟨Y (i1i2)
k ,h⟩R,

= sup
h:∥h∥=1

∑
k∈J

h(Y
(i1i2)
k ),

where h(Y
(i1i2)
k ) = ⟨Y (i1i2)

k ,h⟩R. To apply Lemma 2, we
compute

|h(Y (i1i2)
k )| ≤ 1

M2
|2πk1κ|i1 |2πk2κ|i2∥gM (k1)∥∞

·∥gM (k2)∥∞∥ek∥2

≤ 1

M2
4i1+i2+2

√
r,

and

E
[∥∥∥w(i1i2)(f)− pw̄(i1i2)(f)

∥∥∥ 2
2

]
≤
∑
k∈J

1

M4
|2πk1κ|2i1 |2πk2κ|2i2

·g2M (k1)g
2
M (k2)p(1− p)∥ek∥22

≤ mr

M4
42(i1+i2)+3,

when M ≥ 4. Then from Jensen’s inequality,

E
[
∥w(i1i2)(f)− pw̄(i1i2)(f)∥2

]
≤

√
mr

M2
22(i1+i2)+3.

We can then upper bound

E
[
h2(Y

(i1i2)
k )

]
≤ 42i1+2i2

M4
∥gM (k1)∥∞∥gM (k2)∥∞

·E
[
(δk − p)2

] ∣∣∣⟨√gM (k1)gM (k2)ek,h⟩
∣∣∣2

≤ 42i1+2i2

M4
p
∣∣∣⟨√gM (k1)gM (k2)ek,h⟩

∣∣∣2 ,
thereafter following similar argument as in [29, Proof of

Lemma IV.6],∑
k∈J

E
[
h2(Y

(i1i2)
k )

]
≤ 42(i1+i2)

m

M4
∥Ē∥

≤ 24(i1+i2)+1 m

M4
,

where we have used p = m/M2 and ∥Ē∥ ≤ 2. By Lemma 2,
if we let

σ̄2
i1i2 = max

{
24(i1+i2)+1 m

M4
,
r
√
m

M4
24(i1+i2)+7

}
= 2 · 16(i1+i2)

m

M2
max

{
1, 24

r√
m

}
.

and

a ≤

{ √
2m1/4 if 24r/

√
m ≥ 1,√

2
16

√
m
s otherwise,

then we have

∥w(i1i2)(f)− pw̄(i1i2)(f)∥2 ≤
√
mr

M2
22(i1+i2)+3 + aσ̄i1i2 ,

with probability at least 1− 64e−γa2

. Consequently∥∥∥[w(i1i2)(f)− p2w̄(i1i2)(f)]∗L
∥∥∥
2

≤ ∥L∥∥w(i1i2)(f)− p2w̄(i1i2)(f)∥

≤ 2p−1∥Ē−1∥
(√

mr

M2
22(i1+i2)+3 + aσ̄i1i2

)
≤ 4

(
22(i1+i2)+3

√
r

m
+

M2

m
aσ̄i1i2

)
≜ λi1i2 .

To bound I
(i1i2)
2 (f) on the set f ∈ Ωg we use Hoeffding’s

inequality and the union bound (see [29, proof of Lemma
IV.8]), which gives

Pr

(
sup
f∈Ωg

|I(i1i2)2 (f)| ≤ ϵ

)
≤ 9|Ωg|e

− ϵ2

4λ2
i1i2 + 64|Ωg|e−γa2

+ Pr(Ec
1), (38)
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where the last term Pr(Ec
1) ≤ δ. Following similar arguments

in [29, Lemma IV.8] to bound each term in (38) we obtain
supf∈Ωg

|I(i1i2)2 (f)| ≤ ϵ under (32) with probability at least
1− δ.

Similarly we can bound I
(i1i2)
1 (f) on the set f ∈ Ωg. From

[29, Lemma IV.9], we can upper bound

∥pw̄(i1i2)(f)∗(L− p−1L̄)∥ ≤ Cτ

under the event E1. Applying the Hoeffding’s inequality and
the union bound we have

Pr

(
sup
f∈Ωg

|I(i1i2)1 (f)| ≤ ϵ

)
≤ 9|Ωg|e−

ϵ2

4Cτ2 + Pr(Ec
1), (39)

following similar arguments in [29, proof of Lemma IV.9] to
bound each term in (39) we obtain supf∈Ωg

|I(i1i2)1 (f)| ≤ ϵ
under (32) with probability at least 1− δ.

APPENDIX F
PROOF OF LEMMA 7

First we have |κi1K(f1)| ≤ CM2 from [29] for some
constant C. Then using Bernstein’s polynomial inequality [45],
we have

κi1+i2 |Q(fa)−Q(f b)|
≤ κi1+i2 (|Q(fa)−Q(fa1, fb2)|+ |Q(fa1, fb2)−Q(f b)|)
≤ C2M5|fa2 − fb2|+ C2M5|fa1 − fb1|
≤ 2C2M5∥fa − f b∥∞.

If we select the grid such that for any f ∈ [0, 1) × [0, 1),
there exists a point fd ∈ Ωg such that

max {|fd1 − f1|, |fd2 − f2|} = ∥f − fd∥∞ ≤ ϵ

6C2M5
.

The size of the grid is no smaller than 6C2M5/ϵ.
Conditioned on E1 ∩ E2 we have

κi1+i2
∣∣∣Q(i1i2)(f)− Q̄(i1i2)(f)

∣∣∣
≤ κi1+i2

∣∣∣Q(i1i2)(f)−Q(i1i2)(fd)
∣∣∣

+ κi1+i2
∣∣∣Q(i1i2)(fd)− Q̄(i1i2)(fd)

∣∣∣
+ κi1+i2

∣∣∣Q̄(i1i2)(fd)− Q̄(i1i2)(f)
∣∣∣

≤ C2M5∥f − fd∥∞ +
ϵ

3
+ C2M5∥f − fd∥∞

= ϵ.

Using the relationship |Ωg| ≈ 6C2M5/ϵ, we can modify the
constant in the bound (32) accordingly.

APPENDIX G
PROOF OF LEMMA 8

Proof. We divide the whole frequency domain as

Ωnear = ∪r
i=1{f : 0 < ∥f − f i∥∞ ≤ 0.1224/M}

and Ωfar = [0, 1) × [0, 1)\(Ωnear ∪ Ω). From [28], we have
|Q̄(f)| ≤ 0.9850 for f ∈ Ωfar. By Lemma 7 and let ϵ =
10−3, using triangle inequality, it is straightforward to show
Q(f) < 1, for f ∈ Ωfar with probability 1− δ/2.

On the other hand, for f ∈ Ωnear, from [28] we have
|Q̄(f)| < 1, and the Hessian matrix

H̄(f) =

[
Q̄(20)(f) Q̄(11)(f)
Q̄(11)(f) Q̄(02)(f)

]
is negative definite. In particular, we have Q̄(20)(f) ≤
−0.3544, Q̄(02)(f) ≤ −0.3544, and |Q̄(11)(f)| ≤ 0.3219.
Let ϵ = 10−3, with probability at least 1− δ/2,

Q(20)(f) ≤ −0.3543, |Q(11)(f)| ≤ 0.322,

following Lemma 7, hence tr(H(f)) < 0 and det(H(f)) >
0, the matrix H(f) is also negative definite. Therefore
Q(f) < 1 for f ∈ Ωnear. Combining the above, we have
Q(f) < 1 for f /∈ Ω with probability at least 1− δ.

APPENDIX H
PROOF OF PROPOSITION 2

Proof. The sufficient condition is trivial. We now prove the
necessary condition. Since T 0 ⪰ 0, the (1, 1)-th block in (12),
is a PSD Toeplitz matrix, by the Vandermonde decomposition
lemma in 1-D, there exists a decomposition

T 0 = V 2ΣV ∗
2, (40)

where V 2 is an n2 × r Vandermonde matrix with the ith
column specified by b(f1i), and

Σ = diag([σ̃1, . . . , σ̃r]),

where σ̃i ≥ 0 for 1 ≤ i ≤ r. Given that S(T ) is a PSD
matrix of rank r, then T ∗

l = T−l, and each block admits a
decomposition from [46, Proposition 1] as

T l = V U lV ∗, 0 ≤ l ≤ n1 − 1, (41)

where V ∈ Cn2×r and U is a unitary matrix. Write U as
U = SΛS∗, where S is a unitary matrix, Λ is a diagonal
matrix as Λ = diag([z1, . . . , zr]), with zi = ej2πf2i . Then T l

can be rewritten as

T l = V SΛlS∗V ∗ = V 1Λ
lV ∗

1 (42)

with V 1 = V S. Combining with (40), V 1 can be written as
V 1 = V 2Σ

1/2O for some unitary matrix O = [o1, . . . ,or] ∈
Cr×r. On the other hand, the principal submatrix of S(T )
with entries from the first column of T is also a PSD Toeplitz
matrix, which can be written as

S0 =


v∗
0v0 v∗

0Λ
−1v0 · · · v∗

0Λ
−(n1−1)v0

v∗
0Λv0 v∗

0v0
. . .

...
...

. . . . . . v∗
0Λ

−1v0

v∗
0Λ

n1−1v0 · · · v∗
0Λv0 v∗

0v0

 ,

where v∗
0 = [σ̃

1/2
1 , . . . , σ̃

1/2
r ]O ≜ σ̃∗O is the first row of V 1.

The (ℓ1, ℓ2)th entry of S0 can be written as

S0(ℓ1, ℓ2) = v∗
0Λ

ℓ1−ℓ2v0

=

r∑
i=1

zℓ1−ℓ2
i [σ̃

1/2
1 , . . . , σ̃1/2

r ]oio
∗
i [σ̃

1/2
1 , . . . , σ̃1/2

r ]∗

=

r∑
i=1

zℓ1−ℓ2
i |o∗

i σ̃|2.
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Therefore we can write S0 as

S0 = V 3diag([|o∗
1σ̃|2, . . . , |o∗

rσ̃|2])V
∗
3, (43)

and V 3 ∈ Cn1×r is a Vandermonde matrix with the ith column
a(f2i) = [1, zi, . . . , z

n1−1
i ]T . Then S(T ) can be written as

S(T ) =

r∑
i=1

|o∗
i σ̃|2(a(f1i)⊗ b(f2i))(a(f1i)⊗ b(f2i))

∗

=

r∑
i=1

|o∗
i σ̃|2c(f i)c(f i)

∗, (44)

where σi = |o∗
i σ̃|2. Therefore we have established Proposi-

tion 2.
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