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Abstract—This paper proposes a simple sensing and estimation
framework, called one-bit sketching, to faithfully recover the
principal subspace of a data stream or dataset from a set of
one-bit measurements collected at distributed sensors. Each bit
indicates the comparison outcome between energy projections
of the local sample covariance matrix over a pair of random
directions. By leveraging low-dimensional structures, the top
eigenvectors of a properly designed surrogate matrix is shown
to recover the principal subspace as soon as the number of bit
measurements exceeds certain threshold. The sample complexity
to obtain reliable comparison outcomes is also obtained. We
further develop a low-complexity algorithm to estimate the
principal subspace in an online fashion when the bits arrive
sequentially at the fusion center. Numerical examples on line
spectrum estimation are provided to validate the proposed
approach.

Index Terms—one-bit measurements, principal subspace esti-
mation, streaming data

I. INTRODUCTION

Many practical datasets exhibit low-dimensional structures,
such that a significant proportion of the variance can be cap-
tured by their top principal components; and that the subspace
spanned by these principal components is the recovery object
of interest rather than the datasets themselves. Consider a data
stream which generates a zero-mean data sample xt ∈ Cn at
each time t. The covariance matrix of the data Σ = E[xtx

H
t ]

is assumed to be of low rank with rank(Σ) = r � n. This
assumption is widely applicable to data such as network traffic,
wideband spectrum, images, and so on.

This paper is motivated by the challenge of estimating the
principal subspace of the covariance matrix Σ in a networked
sensing environment, where each sensor is distributed and
has access to only a subset or substream of the whole data.
Furthermore, the sensors are resource-limited to completely
observe, store, and transmit any entire data sample. For
example, the data samples may be processed on the fly at the
sensor with only one pass or two passes without being stored.
Therefore, it is necessary to first process the data locally at
the sensor, and then transmit only enough information to the
fusion center for inferring the principal subspace to minimize
the communication overhead.

A. Our Contribution

We propose a simple yet efficient framework, called one-bit
sketching, to estimate the principal subspace from a single bit
per sensor with provable near-optimal performance guarantees,
which has applications in wideband power spectrum estimation
[1], [2], crowd-sensing [3] and many others. At the sensing

stage, each sensor computes the accumulated energy projec-
tions of the local data samples onto two randomly selected
directions with i.i.d. Gaussian entries, called sketching vectors.
It then transmits a one-bit comparison outcome to the fusion
center indicating the direction onto which it has a higher
accumulated energy. This corresponds to comparing the energy
projection of the local sample covariance matrix onto two
randomly selected rank-one subspaces. A key observation is
that, as long as the number of local samples is not too small,
the comparison outcome will be exactly the same as if it
is derived using the population covariance matrix with high
probability, which is denoted as an exact bit measurement.
By only transmitting the comparison outcome rather than the
actual energy measurements or the data samples themselves,
the communication overhead is minimized to a single bit and
the bit measurements are more robust to communication chan-
nel errors. Moreover, as will be shown, the energy projections
can be computed extremely simple without storing history data
samples, and are always nonnegative, making them suitable for
wideband and optical applications.

At the fusion center, the principal subspace of the covariance
matrix is estimated as the top eigenvectors of a carefully
designed surrogate matrix using the collected one-bit mea-
surements, which can be efficiently computed via a truncated
Eigen Value Decomposition (EVD) or power iteration with low
complexity. Assuming all the bit measurements are exact, it is
established that the principal subspace of a rank-r covariance
matrix can be universally estimated with high accuracy as soon
as the number of collected bits is on the order of Θ(nr2 log n).
This is much smaller than the ambient dimension of the
covariance matrix, and is order-wise near-optimal since at least
nr measurements are required.

The above batch computation requires the fusion center to
construct an n×n surrogate matrix with the knowledge of all
sketching vectors, taking a memory space of at least Θ(n2).
To ease this requirement as well as handle streaming data,
we further develop an online subspace estimation algorithm
at the fusion center, which updates its estimate as new bit
measurements and their associated sketching vectors (or their
seeds) arrive sequentially. The online algorithm is based on
incremental SVD [4], [5], and has a reduced memory space
of Θ(nr) without storing all the sketching vectors.

B. Related Work

Parameter estimation from one-bit quantizations has been
considered for scalar parameter estimation problems, such as



the sample mean [6]–[9], sigma-delta quantization [10], and a
single direction-of-arrival from direct one-bit quantizations of
the data samples [11]. Recent work on frugal sensing [2], [12]
has considered estimation of the power spectral density, which
is a vector-valued functional, from one-bit measurements. Our
approach is fundamentally different, which aims to estimate
matrix functionals, i.e. a low-dimensional subspace, from bi-
nary measurements with finite-sample guarantees. The design
of pairwise comparisons through aggregations to produce one-
bit measurements is critical in our proposed framework, as
direct one-bit quantizations of the data samples in general fail
to inform an underlying subspace without additional structures
[13].

The proposed framework is inspired by our recent work
in [14]–[16], where a quadratic sampling scheme is designed
for low-rank covariance estimation. It is shown in [14] that a
number of Θ(nr) quadratic (energy) measurements suffices to
exactly recover a rank-r covariance matrix via nuclear norm
minimization, assume the measurement vectors are composed
of i.i.d. sub-Gaussian entries. However, communicating these
energy measurements with high precision may cause unwanted
overhead in practice. Moreover, in the presence of finite
samples, it is usually difficult to estimate the noise level which
is an input to the convex optimization algorithm in [14].

A related line of research is on one-bit compressed sens-
ing [17]–[20], where the authors aim to recover the signal
with low-dimensional structures from the signs of random
linear measurements up to a scaling factor. In contrast, our
measurements are signs of random quadratic measurements.
Mroueh and Rosasco first proposed the one-bit phase retrieval
framework in [21], which is a highly non-trivial extension of
one-bit compressed sensing with phaseless measurements. Our
estimation algorithm subsumes the scenario in [21] as a special
case when the covariance matrix is assumed to be of rank one,
in which case the number of local samples can also be reduced
to one.

Paper Organization: The rest of this paper is organized
as follows. Section II describes the sensing framework and
formulates the subspace estimation problem using one-bit
measurements. Section III presents the algorithm, and its
performance guarantees regarding sample complexities. Sec-
tion IV presents an online algorithm to estimate the low-
rank principal subspace with sequential one-bit measurements.
The numerical examples are given in Section V. Finally, we
conclude in Section VI.

II. ONE-BIT SKETCHING SCHEME

Let xt ∈ Cn be a data stream that satisfies E[xt] = 0 and
its covariance matrix Σ = E[xtx

H
t ] ∈ Cn×n is a low-rank

positive semidefinite (PSD) matrix with rank(Σ) = r � n.
Consider a collection of m sensors that are deployed dis-
tributively to measure the data stream. Each sensor can either
access the complete data stream or a substream. At the ith
sensor, define a pair of sketching vectors ai ∈ Cn and bi ∈ Cn,
1 ≤ i ≤ m, where their entries are i.i.d. standard Gaussian.
Without loss of generality, we assume the local data samples

accessed by the ith sensor are indexed by t = 1, . . . , T .
At the tth sample time, the ith sensor takes the quadratic
measurements:

ui,t = |aHi xt|2, vi,t = |bHi xt|2,

which are phaseless and more reliable in optical and high
frequency applications [22]. These quadratic measurements are
then averaged over T samples to obtain

Ui,T =
1

T

T∑
t=1

ui,t = aHi ΣTai, Vi,T =
1

T

T∑
t=1

vi,t = bHi ΣT bi,

where ΣT = 1
T

∑T
t=1 xtx

H
t is the local sample covariance

matrix. It is easy to see that Ui,T = T−1
T Ui,T−1 + 1

T ui,T ,
which can be updated adaptively without storing all the history
data. At the end of the sample time T , the ith sensor compares
the average energy Ui,T and Vi,T , and transmit to the fusion
center a single bit yi,T to indicate the outcome:

yi,T =

{
1, if Ui,T > Vi,T
−1, otherwise . (1)

Depending on whether the fusion center has prior knowledge
of the sketching vectors, the sensors may also need to transmit
ai and bi, or their seeds. The communication overhead is min-
imized when only the bit indicating the comparison outcome
is transmitted.

Since the sample covariance matrix ΣT converges to the
true covariance matrix as T approaches infinity, the bit mea-
surement at the ith sensor also approaches to the following

yi =

{
1, if aHi Σai > bHi Σbi
−1, otherwise , (2)

when T goes to infinity. Let Wi = aia
H
i − bibHi , we can then

compactly represent (2) as

yi = sign(〈Wi,Σ〉), (3)

where sign(·) is the sign function. The above operation can be
regarded as comparing the energy projections of the covariance
matrix onto two random selected directions. We denote the ith
bit measurement is exact if yi = yi,T , which happens with high
probability as soon as T is not too small, as will shown later.

Apparently not all information about Σ can be recovered
from one-bit measurements, such as its Frobenius norm ‖Σ‖F.
Assuming all the bit measurements are exact, i.e. {yi,T }mi=1

given in (1) agree with {yi}mi=1, our goal is to recover the prin-
cipal subspace of Σ from the one-bit measurements {yi}mi=1

given in (3) and characterize the reconstruction accuracies in
terms of the number of bit measurements m. The sample
complexity T to guarantee that {yi,T }mi=1 given in (1) agree
with {yi}mi=1 with high probability is also derived. Together
they guarantee the performance of the proposed scheme.

III. PRINCIPAL SUBSPACE ESTIMATION FROM ONE-BIT
MEASUREMENTS AND PERFORMANCE GUARANTEES

We propose an extremely simple and low-complexity es-
timator whose complexity amounts to computing a few top



eigenvectors of a surrogate matrix. Specifically, define a sym-
metric matrix Jm ∈ Rn×n as

Jm =
1

m

m∑
i=1

yiWi =
1

m

m∑
i=1

yi(aia
H
i − bibHi ). (4)

Our estimate is the subspace spanned by the top r eigenvectors
of Jm, denoted as Û . This can be found via computing a
truncated EVD or using the power iteration methods [23] with
very low computational cost.

A. Performance Guarantee with respect to m

Let the covariance matrix Σ =
∑r
k=1 λkuku

H
k , with λ1 ≥

λ2 ≥ · · · ≥ λr and U = [u1, . . . , ur] denoting its principal
subspace. We have the following theorem.

Theorem 1. Let 0 < δ < 1. With probability at least 1 − δ,
there exists a r × r orthogonal matrix Q such that

‖Û − UQ‖F ≤ α−1

√
c1n

m
log

(
2n

δ

)

≤ min
{

(1 + κ(Σ))
r−1

, 9eκ(Σ)r
}√c1n

m
log

(
2n

δ

)
,

where c1 is an absolute constant, and κ(Σ) = λ1/λr is the
conditioning number of Σ.

For not too small r and small κ(Σ), the second term in
the upper bound dominates and we have that as soon as
the number of one-bit measurements exceeds the order of
Θ(nr2 log n), it is sufficient to recover to recover the principal
subspace U with high accuracy. Since there are at least nr
degrees of freedom to describe the subspace U , our bound is
near-optimal up to a polynomial factor with respect to r and a
logarithmic factor with respect to n. It is worth emphasizing
that a highlight of our result indicates that a number of bit
measurements that is much smaller than the ambient dimension
of the covariance matrix could still yield reliable subspace
estimate.

B. Sample Complexity for Exact Bit Measurements

In practice, instead of directly measuring the energy pro-
jection of the covariance matrix Σ, we measure the energy
projection of the sample covariance matrix in (1). Therefore it
is necessary to derive the sample complexity required to obtain
faithful bit measurements through (1). Note that the measured
energy difference before taking its sign is

zi = 〈Wi,ΣT 〉 =
1

T

T∑
t=1

〈Wi, xtx
H
t 〉, (5)

Under additional assumptions on the data samples, we have
the following proposition to bound the local sample size to
guarantee exact bit measurements with high probability.

Proposition 1. Let 0 < δ ≤ 1. Assume xt are i.i.d. Gaussian
satisfying xt ∼ CN (0,Σ). Then

P [sign(zi) 6= sign(〈Wi,Σ〉)] ≤ δ

as soon as T > cTr(Σ)
‖Σ‖F log2(1/δ) for some sufficiently large

constant c.

In order to guarantee that all the bits are exact, we need to
further apply a union bound on Proposition 1, which yields
the following theorem.

Theorem 2. Let xt be zero-mean with xt ∼ CN (0,Σ). Let
0 < δ ≤ 1. With probability at least 1−δ, all bit measurements
are exact, given that the number of samples observed by each
sensor satisfies

T > c
Tr(Σ)

‖Σ‖F
log2

(m
δ

)
for some sufficiently large constant c.

Recall that Tr(Σ) ≤
√
r‖Σ‖F, then as soon as T is on the

order of
√
r log2m all bit measurements are accurate with

high probability.

IV. ONLINE PRINCIPAL SUBSPACE ESTIMATION FROM
ONE-BIT ENERGY MEASUREMENTS

In this section, we develop an online subspace estimation
algorithm for the fusion center to update the principal subspace
estimate as new bit measurements arrive sequentially. This
is particularly useful when the fusion center is also memory
limited so that it is incapable to store all sketching vectors up to
a memory space of Θ(n2). The proposed online algorithm has
a memory space of Θ(nr) to implement, which is comparable
to the size of the principal subspace, and does not require
storing all the sketching vectors. In the online setting, the
sensors transmit both the bit measurement and the sketching
vectors or their seeds (hence resulting in an increase in
communications overhead), while the fusion center assumes
no prior knowledge about the sketching vectors.

We now describe an online algorithm to estimate the princi-
pal subspace based on a modification of the incremental SVD
algorithm in [4], [5] to allow fast rank-two updates of the
EVD of a symmetric matrix. Denote the rank-two update of
the surrogate matrix Jm in (4) as

Jm =
m− 1

m
Jm−1 +

ym
m

(
ama

H
m − bmbHm

)
, (6)

where ym is a new bit measurement. We can rewrite (6) using
more general notations as

Jm = ηmJm−1 +KmΛmK
H
m , (7)

by letting ηm = m−1
m , Km = [am, bm] ∈ Cn×2, Λm =

diag([ym/m,−ym/m]).
A key difference from [4], [5] is that we fix the size of

the principal subspace as r. In the update we first compute
an expanded principal subspace of rank (r + 2) for Jm and
then only keep its r largest principal components. Assume the
EVD of Jm−1 as Jm−1 = Um−1Πm−1U

H
m−1, where Um−1 ∈

Cn×r is orthonormal and Πm−1 ∈ Rr×r is diagonal. The goal
is to find the best rank-r approximation of Jm by updating
Um−1 and Πm−1. Let Rm = (I−Um−1U

H
m−1)Km and Pm =

orth(Rm) be the orthonormal columns spanning Rm. We can



rewrite Jm as

Jm :=
[
Um−1 Pm

]
Γ′m

[
UTm−1

PTm

]
,

where Γ′m is a small (r+ 2)× (r+ 2) matrix whose EVD can
be computed easily and it yields Γm = U ′mΠ′mU

′
m. Set Πm be

the top r× r sub-matrix of Π′m assuming the eigenvalues are
given in a descending order in absolute values, the principal
subspace of Jm can be updated correspondingly as

Um :=
[
Um−1 Pm

]
U ′mIr,

where Ir is the first r columns of the (r+2)×(r+2) identity
matrix.

V. NUMERICAL EXPERIMENTS

In the numerical experiments, we first examine the perfor-
mance of the proposed framework in a batch setting in terms
of reconstruction accuracy as a function of the number of
bits. We then examine the performance of the online subspace
estimation algorithm in Section IV and apply it to the problem
of line spectrum estimation.
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Fig. 1. NMSE with respect to the number of bit measurements for estimating
the principal subspace of the covariance matrix with n = 40, 100, 200 when
r = 3.

A. Performance Evaluation with Batch Measurements

We generate the covariance matrix as Σ = XXT , where
X ∈ Rn×r is composed of standard Gaussian entries. The
sketching vectors ai’s and bi’s are also generated with stan-
dard Gaussian entries. Assuming all the bit measurements
are collected perfectly, we compute the top-r eigenvectors
of the surrogate matrix Jm in (4) and obtain an estimate
of the principal subspace X̂ . The error metric is calculated
as the Normalized Mean Squared Error (NMSE) given as
‖(I − X̂X̂T )X‖2F/‖X‖2F. Fig. 1 shows the average NMSE
with respect to the number of bit measurements for different
dimensions n = 40, 100, 200 when r = 3, averaged over 10
Monte Carlo runs. We can see that the recovery accuracy in-
creases gracefully as more bit measurements become available.
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Fig. 2. Online line spectrum estimation: the estimated frequency values
against the number of bit measurements when n = 40 and r = 3. Each time
5 frequencies are estimated with the color bar indicates their amplitudes. The
true frequencies are F = [0.1, 0.7, 0.725] with unit variance.

B. Online Line Spectrum Estimation

We consider the problem of line spectrum estimation from
its power spectral density, where we assume the covariance
matrix Σ is a low-rank Toeplitz PSD matrix with n = 40 and
r = 3. Let the set of frequencies be F = [0.1, 0.7, 0.725] with
unit variance σ2 = 1. At each new one-bit measurement, we
first use the online subspace estimation algorithm proposed in
Section IV to estimate a principal subspace of rank rest = 5,
then apply ESPRIT [24] to the reconstructed principal sub-
space to recover the set of frequencies. Fig. 2 shows the
estimates of frequency locations, which are plotted vertically
with respect to the index of each new bit measurement. The
color indicates the amplitudes of the estimated frequencies.
The algorithm successfully estimated all the frequencies even
when the frequencies are closely located from a moderate
number of one-bit measurements.

VI. CONCLUDING REMARKS

In this paper, we presented a simple distributed sensing and
central estimation framework to recover the principal subspace
of a low-rank covariance matrix from a small number of one-
bit energy comparisons, and described the sample complexities
for its guaranteed performance. We also develop an online
subspace estimation algorithm to ease the memory requirement
at the fusion center with a slight increase in communication
overhead. Numerical examples are provided to validate the
proposed approach. In the future work, we will examine
the performance of the proposed approach to more general
scenarios with noise and imperfect model assumptions, as well
as develop subspace tracking algorithms [25] from one-bit
measurements.
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