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Main Reference

• Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky. ”The
convex geometry of linear inverse problems.” Foundations of Computational
Mathematics 12, no. 6 (2012): 805-849.
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Recap

• We start with an under-determined linear system:

b = Ax

• Estimate x ∈ Rn from linear measurements b = Ax ∈ Rm, where m� n.
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Recap

Hope?

• Constrain the set of interesting signals: looking for x with additional
structures:

– sparsity: ‖x‖0 is small;
– low-rankness: rank(reshape(x)) is small;

• Constrain the measurement operator:

– The measurement matrix A has to be “incoherent” to the postulated
structure: for example, A cannot be a partial identity matrix for sparse x;

– More generically, this incoherence can be provided if we choose “random”
measurement matrix, e.g. A composed of iid Gaussian entries provides
“universal” guarantees.
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• Efficient algorithms based on convex relaxations:

min ‖x‖1, s.t. b = Ax,

and nuclear norm minimization for rank minimization;

• advantages:

– computationally efficient, many solvers have been developed to handle
large-scale convex problems;

– provable near-optimal performance in terms of sample complexity through
the machinery of convex analysis;

• Question: can we extend this framework to other low-dimensional structures?
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The Atomic Norm Approach

• The atomic norm is proposed by Chandrasekaran et.al. to find tightest
convex relaxations of general parsimonious models.

• “Parsimony” refers to the fact that the signal of interest x can be described
by a much small number of parameters than its ambient dimension;

– For a known room, the image of the room is determined by the location
and orientation of the camera, rather than the number of pixels of the
image;

– For an K-sparse vector x, it can be described by 2K parameters;

• This models the signal of interest x as composed of atoms in an atomic set:

A = {ai}

which could be infinite;
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• The signal x can be written as a superposition of a small number of atoms
in an atomic set A:

x =

r∑
i=1

ciai, ai ∈ A, ci > 0.

Known examples:

– Sparse case: A is composed of normalized vectors of sparsity one;
– Low-rank case: A is composed of normalized matrices of rank one;

• Define the atomic norm (a.k.a. the “guage of A”) as

‖x‖A = inf {t > 0 : x ∈ tconv(A)}

= inf

{∑
i

ci

∣∣∣x =
∑
i

ciai, ai ∈ A, ci > 0

}
.

if A is centrally symmetric about the origin (i.e., a ∈ A if and only if
−a ∈ A) we have that ‖ · ‖A is a norm. It is also a convex function.
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Special cases of atomic norm

The atomic norm minimization recovers the `1 and nuclear norm:

• Sparse signals: an atom for sparse signals is a normalized vector of sparsity
one, and the atomic norm is `1 norm;

• Low-rank matrices: an atom for low-rank matrices is a normalized rank-one
matrix; and the atomic norm is nuclear norm;

unit ball of `1 norm unit ball of nuclear norm
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Atomic norm minimization

... for underdetermined linear systems:

• For a given atomic set A, define the atomic norm ‖x‖A;

• Run the convex program:

min
x
‖x‖A s.t. b = Ax

• For noisy measurements:

min
x
‖x‖A s.t. ‖b−Ax‖2 ≤ ε
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Examples of atomic norm

• “democratic” signal representations via `∞ norm;

• “joint sparsity” or “group sparsity” via `1/`2 norm;
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Democratic representations

• Signal representations x that have the same amplitudes for every entry;

– motivated by integer programming x ∈ {+1,−1}n;
– peak-to-average power ratio reduction in OFDM communication;
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• The atomic set contains all sign vectors A = {{+1,−1}n};

• The atomic norm becomes ‖x‖A = ‖x‖∞
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Joint sparsity

Consider sparse recovery with multiple snapshots:

B = AX

where X ∈ Rn×T , where T is the number of snapshots.

• Different snapshots X = [x1, . . . ,xT ] share the same support but have
different coefficients;

Page 13



• motivated by multi-task learning, array processing ,etc...
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• The atoms in A can be written as rank-one matrix as

A = {eiuT
i |‖ui‖2 = 1}

where ei is the ith standard basis vector, and ‖ui‖2 = 1.

• The atomic norm becomes

‖X‖A = inf {t > 0 : X ∈ tconv(A)}

= inf

{∑
i

ci

∣∣∣X =
∑
i

cieiu
T
i , ‖ui‖2 = 1, ci > 0

}

=

n∑
i=1

 T∑
j=1

|xij|2
1/2

:= ‖X‖1,2

which is the `1/`2 norm of X.
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Group sparsity

The joint sparsity for multiple snapshots problem is related to the so-called
group sparsity/structured sparsity.

We can group the coefficients into overlapping/non-overlapping groups, such
that we motivate sparsity between groups, but not within the groups.
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Performance with Gaussian measurements

If A is composed of i.i.d. Gaussian entries, how many measurements do we
need to guarantee success recovery?

x̂ = argmin
x
‖x‖A s.t. b = Ax

Surprisingly, this can be answered with a single notion called “Gaussian width”
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• A convex set is a cone if it is closed under positive linear combinations.

• The tangent cone at x with respect to the scaled unit ball ‖x‖Aconv(A) is

TA(x) = cone{z − x : ‖z‖A ≤ ‖x‖A}

which is the set of descent directions of the atomic norm at the point x,
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• Proposition: We have that x̂ = x? is the unique optimal solution if and
only if null(A) ∩ TA(x?) = {0}.

Page 19



Gaussian width

• Definition: The Gaussian width of a set S ⊂ Rn is defined as:

w(S) := Eg

[
sup
z∈S

gTz

]
, g ∼ N (0, I)

• Related to the “mean width”:
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• Gordon’s escape through the mesh theorem: Let Ω be a closed subset of
Sn−1. Let A ∈ Rm×n be composed of i.i.d. standard Gaussian entries. Then

E
[
min
z∈Ω
‖Az‖2

]
≥ λm − w(Ω)

where λm = E[‖g‖2] ≤
√
m.

• Immediately, we have the number of measurements we need is m & w(Ω)2+1:
to guarantee

null(A) ∩ TA(x?) = {0}

by setting Ω = TA(x?) ∩ Sn−1.
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Measurement bound with Gaussian width

Page 22


