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Main Reference

e Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky. "The
convex geometry of linear inverse problems.” Foundations of Computational
Mathematics 12, no. 6 (2012): 805-849.
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Recap

e \We start with an under-determined linear system:

b= Ax

e Estimate x € R"™ from linear measurements b = Ax € R™, where m < n.
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Recap

Hope?

e Constrain the set of interesting signals: looking for x with additional
structures:

— sparsity: ||x||o is small;
— low-rankness: rank(reshape(x)) is small;

e Constrain the measurement operator:

— The measurement matrix A has to be “incoherent” to the postulated
structure: for example, A cannot be a partial identity matrix for sparse «x;

— More generically, this incoherence can be provided if we choose “random”
measurement matrix, e.g. A composed of iid Gaussian entries provides
“universal’ guarantees.
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e Efficient algorithms based on convex relaxations:
min ||x||;, st. b= Ax,
and nuclear norm minimization for rank minimization;

e advantages:

— computationally efficient, many solvers have been developed to handle

large-scale convex problems;
— provable near-optimal performance in terms of sample complexity through

the machinery of convex analysis;

e Question: can we extend this framework to other low-dimensional structures?
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The Atomic Norm Approach

e The atomic norm is proposed by Chandrasekaran et.al. to find tightest
convex relaxations of general parsimonious models.

e "“Parsimony” refers to the fact that the signal of interest  can be described
by a much small number of parameters than its ambient dimension;

— For a known room, the image of the room is determined by the location
and orientation of the camera, rather than the number of pixels of the
Image;

— For an K-sparse vector x, it can be described by 2K parameters;

e This models the signal of interest x as composed of atoms in an atomic set:
.A - {az}

which could be infinite:
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e The signal x can be written as a superposition of a small number of atoms
in an atomic set A:

r

CB:ZCZ'G,@', a; € A, ¢; >0.

1=1

Known examples:

— Sparse case: A is composed of normalized vectors of sparsity one;
— Low-rank case: A is composed of normalized matrices of rank one;

e Define the atomic norm (a.k.a. the “guage of A") as

|z]| 4 =1inf{t > 0:x € tconv(A)}

— inf Zci :U:ZCiCLi, a; € A,¢c; >0

7 )

if A is centrally symmetric about the origin (i.e., a € A if and only if
—a € A) we have that || - || 4 is a norm. It is also a convex function.
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Special cases of atomic norm

The atomic norm minimization recovers the ¢; and nuclear norm:

e Sparse signals: an atom for sparse signals is a normalized vector of sparsity
one, and the atomic norm is 1 norm;

e Low-rank matrices: an atom for low-rank matrices is a normalized rank-one
matrix;: and the atomic norm is nuclear norm;

4.5

0.5

unit ball of /1 norm unit ball of nuclear norm
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Atomic norm minimization

... for underdetermined linear systems:

e For a given atomic set A, define the atomic norm ||x|| 4;

e Run the convex program:

min ||z||4 st. b= Ax
£

e For noisy measurements:

min ||x||4 st ||b— Ax|s <€
T
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Examples of atomic norm

e ‘democratic” signal representations via /o, norm:;

e “joint sparsity” or “group sparsity” via £1/¢s norm;
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Democratic representations

e Signal representations x that have the same amplitudes for every entry;

— motivated by integer programming x € {+1,—1}";
— peak-to-average power ratio reduction in OFDM communication;
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e The atomic set contains all sign vectors A = {{+1,—1}"};

e The atomic norm becomes ||x||4 = |2/

{"1;1:' 1:1}

(-1,-1) (1,-1)
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Joint sparsity

Consider sparse recovery with multiple snapshots:
B=AX

where X € R™ 7' where T is the number of snapshots.

e Different snapshots X = [x1,...,xp| share the same support but have
different coefficients;
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e motivated by multi-task learning, array processing ,etc...

(a) Sparse (b) Group sparse
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e The atoms in A can be written as rank-one matrix as
A= {ewu]||luilla =1}
where e; is the ith standard basis vector, and ||u;||2 = 1.

e [he atomic norm becomes

| X ||4a=inf{t > 0: X € tconv(A)}

inf {Z C; X = Zcieiuzr, HUZHQ = 1,07; > O}

7 7
" T 1/2
= D |zl = || X|l1,2
i=1 \ j=1

which is the ¢1/¢5 norm of X.
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Group sparsity

The joint sparsity for multiple snapshots problem is related to the so-called
group sparsity/structured sparsity.

We can group the coefficients into overlapping/non-overlapping groups, such
that we motivate sparsity between groups, but not within the groups.
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Performance with Gaussian measurements

If A is composed of i.i.d. Gaussian entries, how many measurements do we
need to guarantee success recovery?

£ = argmin||x||4 st. b= Ax
€T

Surprisingly, this can be answered with a single notion called “Gaussian width”
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e A convex set is a cone if it is closed under positive linear combinations.

e The tangent cone at x with respect to the scaled unit ball ||x||_4conv(A) is
Ta(x) = cone{z —x : [|z]l4 < [lz|.a}

which is the set of descent directions of the atomic norm at the point x,

ﬂ;’gt—cone
_—\_x

Ficure 1. The tangent cone
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e Proposition: We have that £ = x* is the unique optimal solution if and
only if null(A) N T 4(x*) = {0}.

Xp +null(A) Xxp +null(A)

Xp

{x: f(x) = flxo)} {x: f(x) = flxo)}

xﬂ"'@{frxﬂ] x[]"'—@{f:xﬂ]

FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone 2(f, xp) and the null space null(4) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.
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Gaussian width

e Definition: The Gaussian width of a set S C IR" is defined as:

w(S) = E, [supgTz] , g~N(0,1I)
zeS

e Related to the “mean width”:

_‘:I‘F" T . T _ P
E(S]_?.[Ep—l (]‘.;‘g%{u z —minu z) du_?b{ﬁ'}
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e Gordon's escape through the mesh theorem: Let () be a closed subset of
S*=1. Let A € R™*™ be composed of i.i.d. standard Gaussian entries. Then

. oy
E[gggIlAZ\b] > A — w(Q)

where A = E[[|g|l2] < /m.

e Immediately, we have the number of measurements we need is m > w()?+1:
to guarantee

null(A) N Ty(x*) = {0}

by setting Q = T4 (x*) N S* 1.
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Measurement bound with Gaussian width

Corollary 3.3. Let @ : RP — R" be a random map with i.i.d. zero-mean Gaussian entries having
variance 1/n. Further let 0 = T 4(x*) NSP~! denote the spherical part of the tangent cone T 4(x*).

1. Suppose that we have measurements y = ®x* and solve the conver program (5). Then x* is

the unique optimum of (5) with probability at least 1 — exp (—% [An — -w[ﬂj]z) provided

n>w()?+1.
Underlying model Convex heuristic # Gaussian measurements
s-sparse vector in R” /1 norm 2slog(p/s) + 5s/4
m X m rank-r matrix nuclear norm 3r(2m —r)
sign-vector {—1,+1}7 /s norm p/2
m X m permutation matrix | norm induced by Birkhoff polytope 9m log(m)
m X m orthogonal matrix spectral norm (3m?* —m)/4

Table 1: A summary of the recovery bounds obtained using Gaussian width arguments.
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