ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

Lecture 8: Robust PCA

Yuejie Chi
The Ohio State University

Main Reference

- E. J. Candès, X. Li, Y. Ma, and J. Wright. "Robust Principal Component Analysis?" Journal of ACM 58(1), 1-37.
- V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. "Rank-sparsity incoherence for matrix decomposition." SIAM Journal on Optimization 21, no. 2 (2011): 572-596.

Outline

- Motivating applications
- Mathematical formulation

Sparse+ Low-rank Matrix Decomposition

Suppose we are given a matrix of data observations:

$$
M=L+S
$$

where L is low-rank and S is sparse. We do not know the rank of L nor the sparsity level of \boldsymbol{S}.

Question: Can we recover both L and S from M ? What if we only partially observe M ?

This problem has many applications in data-intensive problems.

Principal Component Analysis

Consider p data samples $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{p}\right]$ that are centered, $\boldsymbol{x}_{i} \in \mathbb{R}^{n}$. PCA seeks the direction that explains most of the variance of the data. Mathematically, we seek the direction $a \in \mathbb{R}^{n}$ (principal component) that maximizes

$$
\boldsymbol{a}=\underset{\|\boldsymbol{a}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{a}=\underset{\|\boldsymbol{a}\|_{2}=1}{\operatorname{argmin}} \min _{\boldsymbol{b}}\left\|\boldsymbol{X}-\boldsymbol{a} \boldsymbol{b}^{T}\right\|_{F}^{2}
$$

corresponding to seek the rank-one matrix approximation of \boldsymbol{X}.

Principal Component Analysis

In general, PCA is useful because the first few principal components (PCs) explains most of the variance of the data. This amounts to finding the low-rank approximation of \boldsymbol{X}, i.e.

$$
\min _{\operatorname{rank}(\boldsymbol{L})=r}\|\boldsymbol{X}-\boldsymbol{L}\|_{F}^{2}
$$

where r is the number of PCs.

Many applications of PCA:

- feature extraction;
- dimensionality reduction;

PCA justifies the approximate low-rank assumption on \boldsymbol{X}.

Corruptions

What if the data samples $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{p}\right]$ are corrupted?

- Outliers/Gross errors due to sensor errors/attacks/etc: each entry in \boldsymbol{x}_{i} corresponds to a sensor,

$$
\boldsymbol{y}_{i}=\boldsymbol{x}_{i}+\boldsymbol{s}_{i}
$$

where s_{i} is a sparse vector with the nonzero entries corresponds to outliers.
The corrupted data can be written as

$$
\boldsymbol{Y}=\boldsymbol{X}+\boldsymbol{S}
$$

- The nominal PCA fails even with a few outliers:

$$
\min _{\operatorname{rank}(\boldsymbol{L})=r}\|\boldsymbol{Y}-\boldsymbol{L}\|_{F}^{2}
$$

Illustration

The nominal PCA could fail even with one outlier:

Video surveillance

Separation of background (low-rank) and foreground (sparse) in video:

$$
M=L+S
$$

Graphical modeling

Consider a collection of random variables that are jointly Gaussian $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$:

$$
p(\boldsymbol{x}) \propto \frac{1}{|\boldsymbol{\Sigma}|} \exp \left\{-\boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}\right\}:=|\boldsymbol{P}| \exp \left\{-\boldsymbol{x}^{T} \boldsymbol{P} \boldsymbol{x}\right\}
$$

where $\boldsymbol{P}=\boldsymbol{\Sigma}^{-1}$ is the precision matrix.

- The nonzero entries of \boldsymbol{P} describes the conditional independence between the variables, which can be depicted in a graphical model.
- Graphical model learning: Given i.i.d. samples of $\boldsymbol{x}_{i} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$, we want to learn the support of \boldsymbol{P}.
- An interesting case is when \boldsymbol{P} is sparse, corresponding to the case that most of the pairs of random variables are conditionally independent.

Graphical modeling with latent factors

What if we only observe a subset of the variables?

- denote \boldsymbol{x}_{o} as the observed variables;
- denote \boldsymbol{x}_{h} as the hidden variables (latent factors);

The precision matrix of all data can be written as

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\boldsymbol{P}_{o} & \boldsymbol{P}_{o, h} \\
\boldsymbol{P}_{h, o} & \boldsymbol{P}_{h}
\end{array}\right]
$$

We only observe the marginal precision matrix on the observed variables \boldsymbol{x}_{0} :

$$
\boldsymbol{\Sigma}_{o}^{-1}=\boldsymbol{P}_{o}-\boldsymbol{P}_{o, h} \boldsymbol{P}_{h}^{-1} \boldsymbol{P}_{h, o}
$$

- \boldsymbol{P}_{o} is sparse due to conditional independence;
- $\boldsymbol{P}_{o, h} \boldsymbol{P}_{h}^{-1} \boldsymbol{P}_{h, o}$ is low-rank if the number of hidden variables is small;

Structure from motion

In the pipeline of performing SFM, assume we've found a set of good feature points with their corresponding 2D locations in the images.

Tomasi and Kanade's factorization: Given n points $\boldsymbol{x}_{i, j}^{T} \in \mathbb{R}^{2}$ corresponding to the location of the i th point in the j th frame, define the matrix

$$
\boldsymbol{M}=\left[\begin{array}{ccc}
\boldsymbol{x}_{1,1} & \cdots & \boldsymbol{x}_{1, m} \\
\vdots & \ddots & \vdots \\
\boldsymbol{x}_{n, 1} & \cdots & \boldsymbol{x}_{n, m}
\end{array}\right] \in \mathbb{R}^{n \times 2 m}, \quad \text { and } \quad \operatorname{rank}(\boldsymbol{M})=3
$$

- Occlusions: missing entries in M;
- Wrong feature point/correspondence: sparse corruptions in \boldsymbol{M};

Sparse+ Low-rank Decomposition: when is it possible?

Identifiability issues: a matrix can be simultaneously low-rank and sparse!

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \text { vs }\left[\begin{array}{ccccc}
1 & 0 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & 1 & & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Would the sparse component to be spread. we assume its support is uniformly at random.

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & & \\
1 & 1 & 1 & \cdots & 1
\end{array}\right] \text { vs }\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Would the low-rank component to be incoherent.

Low-rank component: Coherence

Let \boldsymbol{M} be a rank- r matrix with the SVD $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, where $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{n \times r}$.

Definition 1. [Coherence] Smallest scalar μ_{1} obeying

$$
\max _{1 \leq i \leq n}\left\|\boldsymbol{U}^{T} \boldsymbol{e}_{i}\right\|_{2}^{2} \leq \mu_{1} \frac{r}{n}, \quad \max _{1 \leq i \leq n}\left\|\boldsymbol{V}^{T} \boldsymbol{e}_{i}\right\|_{2}^{2} \leq \mu_{1} \frac{r}{n}
$$

where \boldsymbol{e}_{i} is the i th standard basis vector.

We would like $\mu_{1}=O(1)$.

- Geometric condition: $\boldsymbol{U}=\operatorname{colspan}(\boldsymbol{M})$
- Since $\sum_{i=1}^{n}\left\|\boldsymbol{U}^{T} \boldsymbol{e}_{i}\right\|_{2}^{2}=r, \mu_{1} \geq 1$.
- If $\boldsymbol{e}_{i} \in \boldsymbol{U}, \mu_{1}=n / r$;
- If $\frac{1}{\sqrt{n}} \mathbf{1}=\boldsymbol{U}, \mu_{1}=1$.

Low-rank component: Joint Coherence

Definition 2. [Joint Coherence] Smallest scalar μ_{2} obeying

$$
\left\|\boldsymbol{U} \boldsymbol{V}^{T}\right\|_{\infty} \leq \sqrt{\frac{\mu_{2} r}{n^{2}}}
$$

This avoids $\boldsymbol{U} \boldsymbol{V}^{T}$ to be too peaky.

- $\mu_{1} \leq \mu_{2} \leq \mu_{1}^{2} r$, since

$$
\begin{gathered}
\left|\left(\boldsymbol{U} \boldsymbol{V}^{T}\right)_{i j}\right|=\left|\boldsymbol{u}_{i}^{T} \boldsymbol{v}_{j}\right| \leq \frac{\mu_{1} r}{n} \\
\left\|\boldsymbol{U} \boldsymbol{V}^{T}\right\|_{\infty} \geq \frac{1}{n} \sum_{i}\left(\boldsymbol{U} \boldsymbol{V}^{T}\right)_{i j}^{2}=\frac{1}{n}\left\|\boldsymbol{V}^{T} \boldsymbol{e}_{j}\right\|_{2}^{2}
\end{gathered}
$$

- The incoherence parameter μ_{1} is sufficient and necessary for MC, while μ_{2} is necessary for Robust PCA (connection to the planted clique problem [c.f. Chen, 2015]).

Algorithm

Non-convex heuristic:

$$
(\hat{\boldsymbol{L}}, \hat{\boldsymbol{S}})=\underset{\boldsymbol{L}, \boldsymbol{S}}{\operatorname{argmin}} \operatorname{rank}(\boldsymbol{L})+\lambda\|\boldsymbol{S}\|_{0}, \quad \text { s.t. } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S} .
$$

Convex relaxation: Principal Component Pursuit (PCP)

$$
(\hat{\boldsymbol{L}}, \hat{\boldsymbol{S}})=\underset{\boldsymbol{L}, \boldsymbol{S}}{\operatorname{argmin}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}, \quad \text { s.t. } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S}
$$

where $\|\cdot\|_{*}$ is the nuclear norm, and $\|\cdot\|_{1}$ is the entry-wise ℓ_{1} norm.

- $\lambda>0$ is some regularization parameter that balances the two terms.
- The algorithm is convex.

Performance Guarantee

Theorem

- L_{0} is $n \times n$ of $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2}$
- S_{0} is $n \times n$, random sparsity pattern of cardinality $m \leq \rho_{s} n^{2}$

Then with probability $1-O\left(n^{-10}\right), P C P$ with $\lambda=1 / \sqrt{n}$ is exact:

$$
\hat{L}=L_{0}, \quad \hat{S}=S_{0}
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{\max \operatorname{dim}}$

Remark:

- No tuning parameters: $\lambda=1 / \sqrt{n}$ is prefixed by the theorem.
- Essentially optimal: $\operatorname{rank}(\boldsymbol{L})=O(n),\|\boldsymbol{S}\|_{0}=O\left(n^{2}\right)$
- Arbitrary magnitudes and sign patterns of L and S !

Phase transition

(a) Robust PCA, Random Signs

(b) Robust PCA, Coherent Signs

(c) Matrix Completion

Figure 1: Correct recovery for varying rank and sparsity. Fraction of correct recoveries across 10 trials, as a function of $\operatorname{rank}\left(L_{0}\right)$ (x-axis) and sparsity of S_{0} (y-axis). Here, $n_{1}=n_{2}=$ 400. In all cases, $L_{0}=X Y^{*}$ is a product of independent $n \times r$ i.i.d. $\mathcal{N}(0,1 / n)$ matrices. Trials are considered successful if $\left\|\hat{L}-L_{0}\right\|_{F} /\left\|L_{0}\right\|_{F}<10^{-3}$. Left: low-rank and sparse decomposition, $\operatorname{sgn}\left(S_{0}\right)$ random. Middle: low-rank and sparse decomposition, $S_{0}=\mathcal{P}_{\Omega} \operatorname{sgn}\left(L_{0}\right)$. Right: matrix completion. For matrix completion, ρ_{s} is the probability that an entry is omitted from the observation.

Connections with Matrix Completion

Comparison with Matrix Completion:

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
\times & ? & ? & ? & \times & ? \\
? & ? & \times & \times & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & \times \\
\times & ? & ? & ? & ? & ? \\
? & ? & \times & \times & ? & ?
\end{array}\right]} \\
& \text { MC: missing } \\
& \text { RPCA: corrupted }
\end{aligned}
$$

- In MC we know where the entries are missing; while in RPCA we do not know the locations of corruptions.

MC with Corruptions

What if we have both missing data and corruptions?

- Consider we only have partial observations of a low-rank matrix L on the index set Ω, and the observed matrix M satisfies

$$
M_{i j}=L_{i j}+S_{i j}, \quad(i, j) \in \Omega
$$

where $S=\left(S_{i j}\right)$ is a sparse matrix supported on Ω.

- A natural extension of RPCA:

$$
(\hat{\boldsymbol{L}}, \hat{\boldsymbol{S}})=\underset{\boldsymbol{L}, \boldsymbol{S}}{\operatorname{argmin}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}, \quad \text { s.t. } \quad \boldsymbol{M}=\mathcal{P}_{\Omega}(\boldsymbol{L}+\boldsymbol{S})
$$

MC with Corruptions: Guarantee

Theorem

- L_{0} is $n \times n$ as before, $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2}$
- $\Omega_{\text {obs }}$ random set of size ${ }^{a} m=0.1 n^{2}$
- each observed entry is corrupted with probability $\tau \leq \tau_{s}$

Then with probability $1-O\left(n^{-10}\right)$, PCP with $\lambda=1 / \sqrt{0.1 n}$ is exact:

$$
\hat{L}=L_{0}
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{0.1 \text { max dim }}$

${ }^{a}$ missing fraction is arbitrary

- No tuning parameters: $\lambda=1 / \sqrt{n}$ is prefixed by the theorem.
- Essentially optimal: $\operatorname{rank}(\boldsymbol{L})=O(n),\|\boldsymbol{S}\|_{0}=O(m)$
- Arbitrary magnitudes and sign patterns of L and S !

Application in Accelerated MRI

[Otazo et.al. 2014]: "The combination of compressed sensing and low-rank matrix completion represents an attractive proposition for further increases in imaging speed..."

$L+S$ decomposition of fully-sampled 2D cardiac cine data corresponding to the central \times location. The low-rank component captures the correlated background among temporal frames and the sparse component S the remaining dynamic information (heart motion).

Application in Accelerated MRI

$\mathrm{L}+\mathrm{S}$ decomposition improves the performance of CS in accelerated MRI significantly with lower residual aliasing artifacts.

Constructing betters priors on the signals helps performance!

