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Outline

Matrix completion

• Motivation

• Theoretical aspects:

– nuclear norm
– low-rank matrix sensing
– low-rank matrix completion

• efficient algorithm
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The Netflix problem

The Netflix problem, or collaborative filtering

• How to estimate the missing ratings?

• About a million users, and 25,000 movies, with sparsely sampled ratings
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Solution: low-rank matrix completion

• Matrix completion problem: consider M ∈ Rn1×n2 to represent the Netflix
data set, we may model it through factorization:

• The rank r of M is much smaller than its dimension r � min{n1, n2}.
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Sensor localization

• Given n points {xj}nj=1 ∈ R3

• Observe partial information about distances:

Mi,j = ‖xi − xj‖22

e.g. in wireless sensor network, each sensor can measure the distance to its
neighbors, would like to globally locate all sensors.
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Solution: low-rank matrix completion

• Write the matrix

X =


xT1
xT2

...
xTn

 ∈ Rn×3

then
Mi,j = xTi xi + xTj xj − 2xTi xj

• Matrix completion problem: Let Y = XXT . The distance matrix M ∈
Rn×n between points can be written as

M = diag(Y )eT + ediag(Y )T − 2Y

• The rank r of M is much smaller than its dimension r � n.
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Structure from motion

Structure from motion: reconstruct scene geometry and camera motion from
multiple images.

Unknown 
camera 

viewpoints 

In the pipeline of performing SFM, assume we’ve found a set of good feature
points with their corresponding 2D locations in the images.
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Structure from motion - continued

Tomasi and Kanade’s factorization: Given n points xTi,j ∈ R2 corresponding to
the location of the ith point in the jth frame, define the matrix

M =

x1,1 · · · x1,m
... . . . ...

xn,1 · · · xn,m

 ∈ Rn×2m

In the absence of noise, this matrix admits a low-rank factorization:

M =

sT1...
sTn


︸ ︷︷ ︸

3D structure matrix

[
w1 w2 · · · w2m

]︸ ︷︷ ︸
camera motion matrix

where si ∈ R3, which gives rank(M) = 3.

Due to occlusions, there are many missing entries in the matrix M . Can we
complete the missing entries?
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Many more...

Many more applications:

• spatial-temporal data: low-rank due to correlations, e.g. MRI video, network
traffic, etc..

• quantum space tomography

• linear system identification

Problem of interest: Can we recover the matrices of interest from “incomplete”
observations, using efficient algorithms?

• the problem is ill-posed without additional constraints
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Low-rank matrices

• Let M ∈ Rn×n (square case for simplicity) be a matrix of rank r � n.

• The Singular Value Decomposition (SVD) of M is given as

M =

r∑
i=1

σiuiv
T
i

where {σi}ri=1 are the singular values; and {ui}ri=1, {vi}ri=1 are the singular
vectors.

• M has (2n− r)r degrees of freedom.
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Linear measurements of low-rank matrices

We make linear measurements of M :

yi = 〈Ai,M〉 = Tr(AT
i M), i = 1, . . .m,

which can be written more concisely in an operator form:

y = A(M)

where A : Rn×n 7→ Rm denotes the measurement process. Its adjoint operator
A∗ : Rm 7→ Rn×n is defined as

A∗(y) =

m∑
i=1

yiAi.

The problem of rank minimization:

M̂ = argmin
X

rank(X) s.t. y = A(X).
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Nuclear norm

Just as `1 norm provides a convex relaxation to cardinality minimization, we use
the nuclear norm which give a convex relaxation to rank minimization.

Definition 1. The nuclear norm of X is defined as

‖X‖∗ =

n∑
i=1

σi(X)

where σi(X) is the ith largest singular value of X.

• Since the rank is
∑n
i=1 1(σi(X) 6= 0), the nuclear norm can be thought as

an `1 norm relaxation of the vector of singular values.

• This is a norm. Relationships between different norms:

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F ≤ r‖X‖.

• Tightest convex relaxation: {X : ‖X‖∗ ≤ 1} is the convex hull of rank-1
matrices obeying ‖xyT‖ ≤ 1.
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Additivity of the nuclear norm

Lemma 1. Let A and B be matrices of the same dimensions. If ABT = 0
and ATB = 0, then ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗.

Remark: this implies that, if the row and column spaces of A and B are
orthogonal, then ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗.

This is similar to the `1 norm when x and y have disjoint support:

‖x + y‖1 = ‖x‖1 + ‖y‖1

which is essentially all we need to get the proof of `1 minimization with RIP...

Page 14



Compute the nuclear norm via SDP

Lemma 2.

‖X‖∗ = min
W 1,W 2

{
1

2
Tr(W 1) +

1

2
Tr(W 2)

∣∣∣ [W 1 X

XT W 2

]
� 0

}
.

This means we can compute the nuclear norm efficient via semidefinite
programming (SDP).

Proof: on the blackboard.

Page 15



Dual norm

Definition 2. For a given norm ‖ · ‖A in an inner product space 〈·, ·〉, the dual
norm is defined as

‖X‖?A := max{〈X,Y 〉 : ‖Y ‖A ≤ 1}.

By definition, this gives a general version of Cauchy-Schwarz inequality:

〈X,Y 〉 ≤ ‖X‖A‖Y ‖?A.

Examples:

• The dual norm of ‖ · ‖F is ‖ · ‖F ;

• The dual norm of ‖ · ‖1 is ‖ · ‖∞;

• The dual norm of ‖ · ‖∗ is ‖ · ‖;
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Summary

rank minimization vs cardinality minimization:
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Low-rank matrix recovery via nuclear norm minimization

• The rank minimization problem:

M̂ = argmin
X

rank(X) s.t. y = A(X).

• We pose the following nuclear norm minimization algorithm:

M̂ = argmin
X

‖X‖∗ s.t. y = A(X),

which can be solved efficiently via SDP:

M̂ = argmin
X,W 1,W 2

1

2
Tr(W 1) +

1

2
Tr(W 2)

s.t. y = A(X),

[
W 1 X

XT W 2

]
� 0.
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Low-rank matrix sensing

• If A satisfies the restricted isometry property for low-rank matrices:

Definition 3. The operator A satisfies the RIP of rank-r, if for any rank-r
matrix, we have

(1− δr)‖X‖2F ≤ ‖A(X)‖2F ≤ (1 + δr)‖X‖2F

for 0 ≤ δr ≤ 1.

• If {Ai}mi=1 are composed of i.i.d. Gaussian entries, then it satisfies the matrix
RIP of order r with high probability, as soon as m & nr.

• This allows us to develop almost parallel results to compressed sensing.
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Theoretical guarantees

Theorem 3. If A satisfies the RIP of rank 4r with δ4r ≤
√

2− 1, then for all
rank-r matrices, the nuclear norm minimization algorithm recovers M exactly.

Exact recovery from O(nr) measurements!!

• For the noisy case,

y = A(M) + w

where w is composed of i.i.d. N (0, σ2) entries. We could similarly propose
the matrix LASSO algorithm:

M̂ = argmin
X

1

2
‖y −A(X)‖22 + λ‖X‖∗,

where λ is a regularization parameter.
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• If ‖A∗(w)‖ ≤ λ/2 and δ4r < (3
√

2− 1)/17, then

‖M̂ −M‖F ≤ C
√
rλ

for some constant C. For the Gaussian case,

‖A∗(w)‖ ≤ c1
√
nσ := λ

for some large enough constant c1 with probability at least 1− 2e−cn.

• If M is an approximately low-rank matrix, we further have

‖M̂ −M‖F ≤ C1
‖M −M r‖∗√

r
+ C2

√
nrσ

with probability at least 1− 2e−cn, in the Gaussian sampling case.
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Low-rank matrix completion

In the matrix completion setting, we are given partial observations of the entries
of M , and wish to recover the missing entries.

• Denote Ω = {(i, j) ∈ [n]× [n]} as the index set of observed entries.

• The observation can be written as

Y = PΩ(M)

where Yij = Mij if (i, j) ∈ Ω and Yij = 0 otherwise.

• Consider the following algorithm:

min ‖X‖∗ s.t. Y = PΩ(X)

• The observation operator doesn’t satisfy RIP!
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Which sampling pattern?

Consider a rank-one matrix M = xyT with the following sampling pattern:

If single row (or column) is not sampled, recovery is not possible.

Fix the number of observed entries m = |Ω|, would like to get performance
bound that holds for almost all sampling patterns.

=⇒ We’ll consider subset of m entries selected uniformly at random.
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Which low-rank matrices can we recover?

Compare the following two rank-one matrices:


1 0 0 · · · 0
0 0 0 · · · 0
... ... ...
0 0 0 · · · 0

 vs


1 1 1 · · · 1
1 1 1 · · · 1
... ... ...
1 1 1 · · · 1

 vs


1 1 1 · · · 1
0 0 0 · · · 0
... ... ...
0 0 0 · · · 0



The middle one would be “easier” to complete.

Column and row spaces cannot be aligned with basis vectors.
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We would like µ = O(1).

• Geometric condition: U = colspan(M)

• Since
∑n
i=1 ‖U

Tei‖22 = r, µ ≥ 1.

• If ei ∈ U , µ = n/r;

• If 1√
n
1 = U , µ = 1.

Coherence

Let M be a rank-r matrix with the SVD M = UΣV T , where U ,V ∈ Rn×r.

Definition 4. [Coherence] Smallest scalar µ obeying

max
1≤i≤n

‖UTei‖22 ≤ µ
r

n
, max

1≤i≤n
‖V Tei‖22 ≤ µ

r

n
,

where ei is the ith standard basis vector.

Page 25



Information-theoretic lower bound

Theorem 4. [Candes and Tao, 2009] No method can succeed with

m . µ× nr × log n ≈ dof× µ log n

Remarks:

• When µ = O(1), we need m . nr log n.

• Need at least one observation /row and column – related to the coupon
collector’s problem: Suppose that there is an urn of n different coupons,
from which coupons are being collected, equally likely, with replacement.
How many trials do we need to collect all n coupons?

• The adjacency graph needs to be fully connected
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Performance Guarantee

Theorem 5. [Chen, Gross, Recht, Candes and Tao, etc..] There exists
universal constant c0, c1, c2 > 0 such that if

m ≥ c0µnr log2 n,

then M is the unique optimal solution to the nuclear norm minimization problem
with probability at least 1− c1n−c2.

Remark:

• This result is optimal up to a logarithmic factor in n. See [Chen, Incoherence-
Optimal Matrix Completion].
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Geometry
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A few notations

• PU is the orthogonal projection to the column space of M ;

• P V is the orthogonal projection to the row space of M ;

• Let T be the span of matrices of the form:

T = {UXT + Y V T : X,Y ∈ Rn×r}

• Let PT be the orthogonal projection onto T :

PT (X) = PUX + XP V − PUXP V

• The complement projection PT⊥ = I − PT :

PT⊥(X) = (I − PU)X(I − P V )
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Subgradient of the nuclear norm

The subgradient of ‖ · ‖∗ at M can be written as

∂‖M‖∗ =
{
UV T + W : PT (W ) = 0, ‖W ‖ ≤ 1

}
Z ∈ ∂‖M‖∗ if and only if

PT (Z) = UV T , ‖PT⊥(Z)‖ ≤ 1.

The subgradient doesn’t depend on the singular values of M .
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Basic consequence of incoherence

For any (i, j) ∈ [n]× [n]:

∥∥PT (eie
T
j )
∥∥2

F
≤ 2µr

n
.

The sampling basis is incoherent to the tangent space T .
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Sampling with replacement

It turns out it is easier to use a sampling with replacement model, where we
assume each observed entry (ik, jk), k = 1, . . . ,m is i.i.d. observed uniformly
at random from [n]× [n].

This is much easier to analyze, however it is different from the sampling without
replacement model stated earlier because we may sample the same entry several
times.

Proposition 1. The probability that the nuclear norm heuristic fails when the
set of observed entries is sampled uniformly from the collection of sets of size
m is less than or equal to the probability that the heuristic fails when m entries
are sampled independently with replacement.
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Bound the number of repetitions

Proposition 2. With probability at least 1− n2−2β, the maximum number of
repetitions of any entry in Ω is less than 8

3β log(n) for n ≥ 9 and β > 1.

Define the operator

RΩ(X) =

m∑
k=1

〈
X, eike

T
jk

〉
eike

T
jk

=

m∑
k=1

Xik,jkeike
T
jk

where (ik, jk) is uniformly drawn from [n] × [n]. From the above proposition,
we have

‖RΩ‖ ≤
8

3
β log(n)

with probability at least 1− n2−2β.
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Optimality condition

Proposition 3. [Exact Dual Certificate] M is the unique minimizer of the
nuclear norm minimization problem if the following holds:

• the sampling operator PΩ restricted to elements in T is injective;

• there exists Y supported on Ω such that Y ∈ ∂‖M‖∗, i.e.

PT (Y ) = UV T , ‖PT⊥(Y )‖ ≤ 1.

The first equality constraint is not easy to satisfy, see [Candes and Tao, 2009].
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Dual certificate

Under a stronger injectivity requirement, we can relax the second requirement a
bit, which much simplifies the analysis.

Proposition 4. [Inexact Dual Certificate] Suppose that

n2

m

∥∥∥PTRΩPT −
m

n2
PT
∥∥∥ ≤ 1

2
,

and there exists Y supported on Ω such that

∥∥∥PT (Y )−UV T
∥∥∥
F
≤
√

r

2n
, ‖PT⊥(Y )‖ < 1

2
,

then M is the unique minimizer of the nuclear norm minimization problem if
the following holds:
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Injectivity of RΩ on T

Proposition 5. For all β > 1,

n2

m

∥∥∥PTRΩPT −
m

n2
PT
∥∥∥ ≤√32βµ0nr log n

3m

with probability at least 1− 2n2−2β provided m ≥ 32
3 βµ0nr log n.

Remark: Provided
√

32βµ0nr logn
3m ≤ 1

2, i.e.

m ≥ 128βµ0nr log n

3

we have with probability at least 1− 2n2−2β,

n2

m

∥∥∥PTRΩPT −
m

n2
PT
∥∥∥ ≤ 1

2
.
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Constructing the dual certificate

We introduce the clever golfing scheme proposed by David Gross.
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Computational aspect using FISTA

Recall the FISTA algorithm we discussed to solve

M̂ = argmin
X

1

2
‖y −A(X)‖22 + λ‖X‖∗

• Initialization: x0 = x−1 ∈ Rn, θ0 = 1,

• For k = 1, 2, . . . ,

θk =
1 +

√
1 + 4θ2

k−1

2

Y k = Xk−1 +

(
θk−1 − 1

θk

)
(Xk−1 −Xk−2)

Xk = proxtkλ‖X‖∗ (Y k − tkA∗(A(Y k)− y))

• What is the proximal operator for ‖ · ‖∗?
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Proximal operator for ‖ · ‖∗

Proposition 6.

proxtkλ‖·‖∗(X) = argmin
Z

{
1

2
‖Z −X‖22 + tkλ‖Z‖∗

}
= Ttkλ(X)

where
Tτ(X) = UTτ(Σ)V T ,

where the SVD of X is given as X = UΣV T , Σ = diag({σi}), and

Tτ(Σ) = diag({(σi − τ)+}).
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