ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

Lecture 5: FISTA

Yuejie Chi
The Ohio State University

Reference

- Beck, A., \& Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202.

See also:

- Nesterov, Y. (2007). Gradient methods for minimizing composite objective function.
- Lecture notes by L. Vandenberghe. http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf.

How to solve composite optimization problems?

General composite optimization problem:

$$
(\mathrm{COP}): \quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\{F(\boldsymbol{x})=f(\boldsymbol{x})+g(\boldsymbol{x})\}
$$

- $f(\boldsymbol{x})$ is convex and differentiable,
- $g(\boldsymbol{x})$ is convex, possibly non-differentiable

Examples:

- LASSO: $f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$, and $g(\boldsymbol{x})=\lambda\|\boldsymbol{x}\|_{1}$. (focus of this lecture)
- Nuclear norm minimization (later for matrix completion):

$$
f(\boldsymbol{X})=\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{X})\right\|_{\mathrm{F}}^{2}, \quad g(\boldsymbol{X})=\lambda\|\boldsymbol{X}\|_{*}
$$

where $\|\boldsymbol{X}\|_{*}=\sum_{i=1}^{\min (m, n)} \sigma_{i}(\boldsymbol{X})$, the sum of the singular values of $\boldsymbol{X} \in$ $\mathbb{R}^{m \times n}$.

Motivation

Standard methods (e.g. subgradient methods) for solving COP has very slow convergence rate (need $O\left(1 / \epsilon^{2}\right)$ iterations to reach ϵ accuracy).

We would discuss an algorithm called FISTA that

- is iterative, and has low computational cost (first-order algorithm, which requires computation of a single gradient per iteration);
- has quadratic convergence rate;
- performs well in practice and works for a large class of problems.

FISTA stands for Fast Iterative Shrinkage-Thresholding Algorithm.

Gradient descent

Consider the unconstrained minimization of a continuously differentiable function $f(\boldsymbol{x})$ as

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x})
$$

using gradient descent: start with an initialization $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, and iterate

$$
\boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)
$$

where t_{k} is a suitable step-size at step k.

Key observation: we can view the gradient descent step as solving a proximal regularization of the linearized function f at \boldsymbol{x}_{k-1},

$$
\boldsymbol{x}_{k}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\{f\left(\boldsymbol{x}_{k-1}\right)+\left\langle\boldsymbol{x}-\boldsymbol{x}_{k-1}, \nabla f\left(\boldsymbol{x}_{k-1}\right)\right\rangle+\frac{1}{2 t_{k}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k-1}\right\|_{2}^{2}\right\} .
$$

Generalized gradient descent

In the COP,

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x})+g(\boldsymbol{x})
$$

we would like to generalize the proximal regularization idea, by extending the update rule as

$$
\boldsymbol{x}_{k}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\{f\left(\boldsymbol{x}_{k-1}\right)+\left\langle\boldsymbol{x}-\boldsymbol{x}_{k-1}, \nabla f\left(\boldsymbol{x}_{k-1}\right)\right\rangle+\frac{1}{2 t_{k}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k-1}\right\|_{2}^{2}+g(\boldsymbol{x})\right\} .
$$

This can be simplified (by ignoring constant terms) as

$$
\begin{equation*}
\boldsymbol{x}_{k}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\{\frac{1}{2 t_{k}}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})\right\} \tag{*}
\end{equation*}
$$

Proximal mapping

Definition 1. The proximal mapping (operator) of a convex function $g(\boldsymbol{x})$ is written as

$$
\operatorname{prox}_{g}(\boldsymbol{x})=\underset{\boldsymbol{u}}{\operatorname{argmin}}\left\{\frac{1}{2}\|\boldsymbol{u}-\boldsymbol{x}\|_{2}^{2}+g(\boldsymbol{u})\right\} .
$$

- $g(\boldsymbol{x})=0: \operatorname{prox}_{g}(\boldsymbol{x})=\boldsymbol{x}$.
- $g(\boldsymbol{x})=I_{C}(\boldsymbol{x})$ is an indicator function of a convex set C, then

$$
\operatorname{prox}_{g}(\boldsymbol{x})=\underset{\boldsymbol{u} \in C}{\operatorname{argmin}}\|\boldsymbol{u}-\boldsymbol{x}\|_{2}^{2}
$$

- $g(\boldsymbol{x})=\lambda\|\boldsymbol{x}\|_{1}: \operatorname{prox}_{g}(\boldsymbol{x})$ is the shrinkage (soft-thresholding) operator and can be decomposed entry-wise:

$$
\operatorname{prox}_{g}\left(x_{i}\right):=\mathcal{T}_{\lambda}\left(x_{i}\right)=\left\{\begin{array}{cc}
x_{i}-\lambda, & x_{i} \geq \lambda \\
0, & \left|x_{i}\right|<\lambda \\
x_{i}+\lambda, & x_{i} \leq-\lambda
\end{array}\right.
$$

Generalized gradient descent and ISTA

- The generalized gradient descent $\left(^{*}\right)$ can be regarded as a proximal mapping:

$$
\begin{aligned}
\boldsymbol{x}_{k} & =\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\{\frac{1}{2 t_{k}}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})\right\} \\
& =\operatorname{prox}_{t_{k} g}\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right)
\end{aligned}
$$

- When $f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$, and $g(\boldsymbol{x})=\lambda\|\boldsymbol{x}\|_{1}$, this gives the update rule for ISTA (Iterative Shrinkage-Thresholding Algorithm), or proximal gradient descent:

$$
\begin{aligned}
\boldsymbol{x}_{k} & =\operatorname{prox}_{\lambda t_{k}\|\boldsymbol{x}\|_{1}}\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right) \\
& =\operatorname{prox}_{\lambda t_{k}\|\boldsymbol{x}\|_{1}}\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right) \\
& =\mathcal{T}_{\lambda t_{k}}\left(\boldsymbol{x}_{k-1}-t_{k} \nabla f\left(\boldsymbol{x}_{k-1}\right)\right)
\end{aligned}
$$

where $\nabla f\left(\boldsymbol{x}_{k-1}\right)=\boldsymbol{A}^{\top}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y})$. This can be efficiently computed.

Choice of step size

- Constant step-size: $t_{k}=t$
- Backtracking line search: start with t_{0} and do $t=\beta t$ until

$$
f(\boldsymbol{x}-t \nabla f(\boldsymbol{x})) \leq f(\boldsymbol{x})-\alpha t\|\nabla f(\boldsymbol{x})\|_{2}^{2}
$$

with $0<\alpha, \beta<1$, e.g. $\alpha=1 / 2$.

Assumptions

- $g: \mathbb{R}^{n} \mapsto \mathbb{R}$ is a continuous convex function, possibly nonsmooth;
- $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is a smooth convex function that is continuously differentiable with Lipschitz constant:

$$
\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{y})\| \leq L_{f}\|\boldsymbol{x}-\boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

Example: For LASSO problems, we have $L_{f}=\sigma_{\max }\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.

- The optimal value of $F=f+g$ is F^{\star} with optimal solution \boldsymbol{x}^{\star}.

Convergence of ISTA

Theorem 1. [Convergence for generalized gradient descent] Fix step size $t_{k}=t \leq 1 / L$,

$$
F\left(\boldsymbol{x}_{k}\right)-F^{*} \leq \frac{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2}}{2 t k}
$$

Similar results hold with backtracking for step size.

- Similar to the convergence of gradient descent
- The best possible is $O\left(1 / k^{2}\right)$ for first-order methods - can we achieve it?

The answer is yes, with minimal additional computational cost.

Accelerated Gradient Descent

ISTA reaches an accuracy within $O(1 / k)$ after k steps; this is not optimal (which is $O\left(1 / k^{2}\right)$. The methods of Nesterov meet the optimal bound with the same computational cost (one gradient computation per iteration).

- We will first examine Nesterov's acceleration method (1983) for smooth convex functions;
- We then extend it to optimizing composite functions, using FISTA (Beck and Teboulle, 2009), which extends Nesterov's method.

Nesterov's ACG for convex smooth function

Consider minimizing a convex smooth function $f(\boldsymbol{x})$ with Lipschitz constant L :

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x})
$$

Nesterov's Accelerated Gradient Descent performs attains a rate of $O\left(1 / k^{2}\right)$. It proceeds as below:

- Start with an initialization $\boldsymbol{x}_{0}=\boldsymbol{x}_{-1}, \theta_{0}=0$;
- for $k=1,2, \ldots$,

$$
\begin{aligned}
\theta_{k} & =\frac{1+\sqrt{1+4 \theta_{k-1}^{2}}}{2} \\
\boldsymbol{y}_{k} & =\boldsymbol{x}_{k-1}+\left(\frac{\theta_{k-1}-1}{\theta_{k}}\right)\left(\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k-2}\right) \\
\boldsymbol{x}_{k} & =\boldsymbol{y}_{k}-t_{k} \nabla f\left(\boldsymbol{y}_{k}\right)
\end{aligned}
$$

Remark: other choice of the momentum term with $\theta_{k}=\frac{k+1}{2}$:

$$
\boldsymbol{y}_{k}=\boldsymbol{x}_{k-1}+\frac{k-2}{k+1}\left(\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k-2}\right)
$$

Theorem 2. [Nesterov 1983] The Nesterov's AGD satisfies

$$
f\left(\boldsymbol{y}_{k}\right)-f\left(\boldsymbol{x}^{\star}\right) \leq \frac{2\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2}}{L k^{2}}
$$

Achieves the optimal rate!

The FISTA algorithm with step size t_{k} (e.g. $t_{k}=\frac{1}{L}$, where L_{f} is the Lipschitz constant of f):

- Initialization: $\boldsymbol{x}_{0}=\boldsymbol{x}_{-1} \in \mathbb{R}^{n}, \theta_{0}=1$,
- For $k=1,2, \ldots$,

$$
\begin{aligned}
\theta_{k} & =\frac{1+\sqrt{1+4 \theta_{k-1}^{2}}}{2} \\
\boldsymbol{y}_{k} & =\boldsymbol{x}_{k-1}+\left(\frac{\theta_{k-1}-1}{\theta_{k}}\right)\left(\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k-2}\right) \\
\boldsymbol{x}_{k} & =\operatorname{prox}_{t_{k} g}\left(\boldsymbol{y}_{k}-t_{k} \nabla f\left(\boldsymbol{y}_{k}\right)\right)
\end{aligned}
$$

FISTA is computationally efficient when the proximal operator can be computed efficiently (e.g. LASSO).

Interpretation

- first iteration is a proximal gradient step at $\boldsymbol{y}_{1}=\boldsymbol{x}_{0}$
- next iterations are proximal gradient steps at extrapolated points $\boldsymbol{y}_{k}, k \geq 2$, with the linear combinations carefully chosen.

Case Study: LASSO

For LASSO: set $\boldsymbol{y}_{1}=\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \theta_{1}=0$, and $t_{k}=1 / \sigma_{\max }\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$ (constant step-size), iterate

$$
\begin{aligned}
\theta_{k} & =\frac{1+\sqrt{1+4 \theta_{k-1}^{2}}}{2} \\
\boldsymbol{y}_{k} & =\boldsymbol{x}_{k-1}+\left(\frac{\theta_{k-1}-1}{\theta_{k}}\right)\left(\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k-2}\right) \\
\boldsymbol{x}_{k} & =\mathcal{T}_{\lambda t_{k}}\left(\boldsymbol{y}_{k}-t_{k} \boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{y}_{k}-\boldsymbol{y}\right)\right)
\end{aligned}
$$

The main computation cost to apply \boldsymbol{A} and \boldsymbol{A}^{\top}; no matrix inversion is needed.

Convergence of FISTA

Theorem 3.

$$
F\left(\boldsymbol{x}_{k}\right)-F\left(\boldsymbol{x}^{\star}\right) \leq \frac{2 L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2}}{(k+1)^{2}} \sim O\left(\frac{1}{k^{2}}\right)
$$

Figure 5. Comparison of function value errors $F\left(\mathbf{x}_{k}\right)-F\left(\mathbf{x}^{*}\right)$ of ISTA, MTWIST, and FISTA.

Proof of Theorem 3

- Introduce another sequence \boldsymbol{v}_{k}, which satisfies

$$
\begin{aligned}
\boldsymbol{v}_{k} & :=\boldsymbol{x}_{k-1}+\theta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right) \\
\boldsymbol{y}_{k} & =\frac{1}{\theta_{k}} \boldsymbol{v}_{k-1}+\left(1-\frac{1}{\theta_{k}}\right) \boldsymbol{x}_{k-1}
\end{aligned}
$$

- Two useful facts:

1. $\boldsymbol{v}_{k}=\boldsymbol{v}_{k-1}+\theta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right)$
2. $\left(1-\frac{1}{\theta_{k}}\right) \theta_{k}^{2}=\theta_{k-1}^{2}$

Important inequalities

Upper bound of f from Lipschitz property:

$$
\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{y})\| \leq L_{f}\|\boldsymbol{x}-\boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

we have

$$
f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{\top}(\boldsymbol{y}-\boldsymbol{x})+\frac{L_{f}}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}, \quad \forall \boldsymbol{x}, \boldsymbol{y}
$$

Important inequalities

Upper bound of g from definition of proximal operator:

$$
g(\boldsymbol{y}) \leq g(\boldsymbol{z})+\frac{1}{t}(\boldsymbol{w}-\boldsymbol{y})^{\top}(\boldsymbol{y}-\boldsymbol{z}), \quad \forall \boldsymbol{w}, \boldsymbol{z}, \boldsymbol{y}=\operatorname{prox}_{t g}(\boldsymbol{w})
$$

Proof: since $\boldsymbol{y}=\operatorname{prox}_{t g}(\boldsymbol{w})$ minimizes $\operatorname{tg}(\boldsymbol{u})+\frac{1}{2}\|\boldsymbol{w}-\boldsymbol{u}\|_{2}^{2}$ by definition, we have

$$
0 \in t \partial g(\boldsymbol{y})+(\boldsymbol{y}-\boldsymbol{w})
$$

i.e.

$$
\frac{1}{t}(\boldsymbol{w}-\boldsymbol{y}) \in \partial g(\boldsymbol{y})
$$

By the definition of subgradient we have $\forall \boldsymbol{z}$,

$$
g(\boldsymbol{z}) \geq g(\boldsymbol{y})+\frac{1}{t}(\boldsymbol{w}-\boldsymbol{y})^{\top}(\boldsymbol{z}-\boldsymbol{y})
$$

Progress in one iteration

Define $\boldsymbol{x}^{+}=\boldsymbol{x}_{k}, \boldsymbol{x}=\boldsymbol{x}_{k-1}, \boldsymbol{y}=\boldsymbol{y}_{k}, \theta=\theta_{k}, \boldsymbol{v}=\boldsymbol{v}_{k-1}, \boldsymbol{v}^{+}=\boldsymbol{v}_{k}$,

- upper bound from Lipschitz property: if $0<t \leq 1 / L$,

$$
f\left(\boldsymbol{x}^{+}\right) \leq f(\boldsymbol{y})+\nabla f(\boldsymbol{y})^{\top}\left(\boldsymbol{x}^{+}-\boldsymbol{y}\right)+\frac{1}{2 t}\left\|\boldsymbol{y}-\boldsymbol{x}^{+}\right\|_{2}^{2}
$$

- upper bound from the definition of prox-operator $\left(\boldsymbol{x}^{+}=\operatorname{prox}_{t g}(\boldsymbol{y}-t \nabla f(\boldsymbol{y}))\right)$:

$$
g\left(\boldsymbol{x}^{+}\right) \leq g(\boldsymbol{z})+\nabla f(\boldsymbol{y})^{\top}\left(\boldsymbol{z}-\boldsymbol{x}^{+}\right)+\frac{1}{t}\left(\boldsymbol{x}^{+}-\boldsymbol{y}\right)^{\top}\left(\boldsymbol{z}-\boldsymbol{x}^{+}\right), \quad \forall \boldsymbol{z}
$$

- add the upper bounds and use convexity of f :

$$
F\left(\boldsymbol{x}^{+}\right) \leq F(\boldsymbol{z})+\frac{1}{t}\left(\boldsymbol{x}^{+}-\boldsymbol{y}\right)^{\boldsymbol{\top}}\left(\boldsymbol{z}-\boldsymbol{x}^{+}\right)+\frac{1}{2 t}\left\|\boldsymbol{y}-\boldsymbol{x}^{+}\right\|_{2}^{2}, \quad \forall \boldsymbol{z}
$$

- make convex combination of upper bounds for $\boldsymbol{z}=\boldsymbol{x}$ and $\boldsymbol{z}=\boldsymbol{x}^{\star}$:

$$
\begin{aligned}
F\left(\boldsymbol{x}^{+}\right)- & F^{\star}-\left(1-\frac{1}{\theta}\right)\left(F(\boldsymbol{x})-F^{\star}\right)=F\left(\boldsymbol{x}^{+}\right)-\frac{1}{\theta} F^{\star}-\left(1-\frac{1}{\theta}\right) F(\boldsymbol{x}) \\
& \leq \frac{1}{t}\left(\boldsymbol{x}^{+}-\boldsymbol{y}\right)^{\top}\left(\frac{1}{\theta} \boldsymbol{x}^{\star}+\left(1-\frac{1}{\theta}\right) \boldsymbol{x}-\boldsymbol{x}^{+}\right)+\frac{1}{2 t}\left\|\boldsymbol{y}-\boldsymbol{x}^{+}\right\|_{2}^{2} \\
& =\frac{1}{2 t}\left(\left\|\boldsymbol{y}-\frac{1}{\theta} \boldsymbol{x}^{\star}+\left(1-\frac{1}{\theta}\right) \boldsymbol{x}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{+}-\frac{1}{\theta} \boldsymbol{x}^{\star}+\left(1-\frac{1}{\theta}\right) \boldsymbol{x}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 \theta^{2} t}\left(\left\|\boldsymbol{v}-\boldsymbol{x}^{\star}\right\|_{2}^{2}-\left\|\boldsymbol{v}^{+}-\boldsymbol{x}^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

We now have, at the k th iteration:

$$
\begin{aligned}
\theta_{k}^{2} t\left(F\left(\boldsymbol{x}_{k}\right)-F^{\star}\right)+\frac{1}{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{x}^{\star}\right\|_{2}^{2} & \leq\left(\theta_{k}^{2}-\theta_{k}\right) t\left(F\left(\boldsymbol{x}_{k-1}\right)-F^{\star}\right)+\frac{1}{2}\left\|\boldsymbol{v}_{k-1}-\boldsymbol{x}^{\star}\right\|_{2}^{2} \\
& =\theta_{k-1}^{2} t\left(F\left(\boldsymbol{x}_{k-1}\right)-F^{\star}\right)+\frac{1}{2}\left\|\boldsymbol{v}_{k-1}-\boldsymbol{x}^{\star}\right\|_{2}^{2}
\end{aligned}
$$

Applying the above relationship recursively, we obtain

$$
\begin{aligned}
\theta_{k}^{2} t\left(F\left(\boldsymbol{x}_{k}\right)-F^{\star}\right)+\frac{1}{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{x}^{\star}\right\|_{2}^{2} & \leq \theta_{0}^{2} t\left(F\left(\boldsymbol{x}_{0}\right)-F^{\star}\right)+\frac{1}{2}\left\|\boldsymbol{v}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2}
\end{aligned}
$$

therefore, plug in $t=\frac{1}{L}$,

$$
F\left(\boldsymbol{x}_{k}\right)-F^{\star} \leq \frac{1}{2 \theta_{k}^{2} t}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2} \leq \frac{2 L}{(k+1)^{2}}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{\star}\right\|_{2}^{2} .
$$

Alternative formulation

Alternative formulation:

- Initialization: $\boldsymbol{y}_{1}=\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, and L_{f} is the Lipschitz constant;
- Fix step size $t_{k}=\frac{1}{L}$.
- For $k=1,2, \ldots$,

$$
\begin{aligned}
\boldsymbol{x}_{k} & =\operatorname{prox}_{t_{k} g}\left(\boldsymbol{y}_{k}-t_{k} \nabla f\left(\boldsymbol{y}_{k}\right)\right) \\
\boldsymbol{y}_{k+1} & =\boldsymbol{x}_{k}+\left(\frac{k-2}{k+1}\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
\end{aligned}
$$

Convergence speed $O\left(1 / k^{2}\right)$ in k steps.

Computational-Statistical Trade-off

If there is indeed a ground truth \boldsymbol{x}^{\star} and we wish $\hat{\boldsymbol{x}}$ is close to \boldsymbol{x}^{\star}; we have a sequence of $\left\{\boldsymbol{x}_{k}\right\}$ and hope \boldsymbol{x}_{k} converges to $\hat{\boldsymbol{x}}$. At a fixed k, we may bound

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{\star}\right\|_{2} \leq \underbrace{\left\|\boldsymbol{x}_{k}-\hat{\boldsymbol{x}}\right\|_{2}}_{\text {computational error }}+\underbrace{\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{\star}\right\|_{2}}_{\text {statistical error }}
$$

Active research in studying the computational-statistical trade-offs in statistical estimation.

