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Outline

• A RIPless theory for CS using `1 minimization recovery

Reference: E. J. Candes and Y. Plan. A probabilistic and RIPless theory of
compressed sensing. 2010.
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Subgradient of `1 function

Consider a convex function f(x).

Definition 1. [Subgradient] u ∈ ∂f(x0) is a subgradient of a convex f at
x0 if for all x:

f(x) ≥ f(x0) + u
T (x− x0)

Remark: if f is differentiable at x0, the only subgradient is the gradient
∇f(x0).

Example: For the scalar absolute function f(t) = |t|, t ∈ R, u ∈ ∂f(t) iff{
u = sgn(t), t 6= 0
u ∈ [− 1, 1], t = 0

For f(x) = ‖x‖1, x ∈ Rn, u ∈ ∂f(x) iff{
ui = sgn(xi), xi 6= 0
ui ∈ [− 1, 1], xi = 0
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Characterization of `1 solution: an optimization viewpoint

Proposition 1. [Necessary and Sufficient condition for `1 recovery] Denote
the support of x as T . x is the solution to BP if for all h ∈ Null(A),

∑
i∈T

sign(xi)hi ≤
∑
i∈T c
|hi|.

Furthermore, x is the unique solution if the equality holds iff h = 0.

Remark: Recovery property only depends on the sign pattern of x, not the
magnitudes!

Proof of Proposition 1: We first show it is a sufficient condition. Denote the
solution of BP as x̂ = x+ h. We have

Ah = A(x̂− x) = 0,

i.e. h ∈ Null(A).
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Since x is supported on T , we have

‖x‖1 ≥ ‖x̂‖1 = ‖x+ h‖1 =
∑
i∈T

|xi + hi|+
∑
i∈T c
|hi|

≥
∑
i∈T

|xi|+ sign(xi)hi +
∑
i∈T c
|hi| ≥

∑
i∈T

|xi| = ‖x‖1.

Therefore h = 0 and x̂ = x. Next we show it is also a necessary condition. If
there exists h ∈ Null(A) such that∑

i∈T

sign(xi)hi >
∑
i∈T c
|hi|

then we can verify

‖x− h‖1 =
∑
i∈T

|xi − hi|+
∑
i∈T c
|hi| <

∑
i∈T

(|xi| − sign(xi)hi) +
∑
i∈T c
|hi|

<
∑
i∈T

|xi| = ‖x‖1.
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Dual certificate

Denote the support of x as T .

Proposition 2. x is an optimal solution of BP iff there exists u = ATλ such
that {

ui = sgn(xi), i ∈ T
ui ∈ [− 1, 1], i ∈ T c

In addition, if |ui| < 1 for i ∈ T c and AT has full columns rank, x is the unique
solution.

Remarks:

• We call u or λ the (exact) dual certificate. If we can find such a dual
certificate, we can verify the optimality of BP.

• Note that u ⊥ Null(A)), which is also a subgradient of ‖x‖1 at x.
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Dual certificate: geometric interpretation

Geometric interpretation of the dual certificate: there exists a subgradient u of
the objective function ‖x‖1 at the ground truth x such that

u ⊥ Null(A)
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Unicity

If supp(x) ⊂ T , Ax = ATxT .

Note for any h ∈ Null(A),∑
i∈T

sgn(xi)hi =
∑
i∈T

uihi = 〈u,h〉 −
∑
i∈T c

uihi

= −
∑
i∈T c

uihi (since u ⊥ Null(A))

<
∑
i∈T c
|hi| (since |ui| < 1for i ∈ T c)

unless hT c 6= 0. If hT c = 0, since AT has full column rank,

Ah = AThT = 0

which indicates hT = 0 as well. In summary h = hT + hT c = 0, and x is the
unique solution.
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A Probabilistic Approach with Gaussian matrices

Our goal is to develop a theory of compressed sensing that 1) does not require
RIP; and 2) admits near-optimal performance guarantees.

Let A be composed of i.i.d. N (0, 1) entries.

Question: How well does BP perform for an arbitrary but fixed sparse signal?

(BP:) x̂ = argmin
x

‖x‖1 subject to y = Ax.

Theorem 1. Let x ∈ Rn be an arbitrary fixed vector that is k-sparse. Assume
A is composed of i.i.d. N (0, 1) entries. As long as m ≥ C1k log n for some
large enough constant C1, x is the unique solution to BP with probability at
least 1− n−C2 for some constant C2.

Remark: Compare this result with the earlier RIP-based result.
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Proof by certifying the dual certificate

Denote the support of x as T .

We first verify that AT is full column rank with high probability.

Since AT is a fixed m × k matrix with i.i.d. N (0, 1) entries, random matrix
theory tells us (we’ll just take for granted)

P

(
1√
m
σmax(A) > 1 +

√
k

m
+ t

)
≤ e−mt

2/2

P

(
1√
m
σmin(A) < 1−

√
k

m
− t

)
≤ e−mt

2/2.

Then as long as m ≥ c1k for some large constant c1, we have∥∥∥∥ 1mAT
TAT − I

∥∥∥∥ ≤ 1

2

with probability at least 1− e−c2m for some c2. Call this event A.
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Construction of the dual certificate

We need to find a dual certificate u = ATλ such that{
ui = sgn(xi), i ∈ T
|ui| < 1, i ∈ T c

Consider the solution to the following `2 minimization problem:

min ‖u‖2 s.t. u = ATλ, ui = sgn(xi), i ∈ T

which can be written explicitly as

u = ATAT (AT
TAT )

−1sgn(xT ).

Note that under event A, AT
TAT is invertible, and

∥∥(AT
TAT )

−1∥∥ ≤ 2

m
.

We will show the above choice is a valid dual certificate.
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Validation of the dual certificate

The only condition that needs extra work is to establish

|ui| < 1, ∀i ∈ T c.

This amounts to bound

max
i∈T c
|ui| = max

i∈T c

∣∣∣∣∣∣
〈
ai,AT (AT

TAT )
−1sgn(xT )︸ ︷︷ ︸

w

〉∣∣∣∣∣∣
where ai is the ith column of A.

Note that ai and w are independent for i ∈ T c. For a fixed index i ∈ T c,

• Conditioned on w, ui ∼ N (0, ‖w‖22), we have the Chernoff bound for the
tail of a Gaussian rv:

P(|ui| ≥ 1|w) ≤ 2 exp

(
− 1

2‖w‖22

)
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• Under the event A, we could also bound ‖w‖2 as

‖w‖2 ≤ ‖AT (AT
TAT )

−1‖ · ‖sgn(xT )‖2
≤ ‖(AT

TAT )
−1‖1/2 · ‖sgn(xT )‖2

≤
√

2k

m

since (AT (AT
TAT )

−1)TAT (AT
TAT )

−1 = (AT
TAT )

−1.

We have

P(max
i∈T c
|ui| ≥ 1) ≤ |T c| · P(|ui| > 1) union bound

≤ n
∫
w

P(|ui| ≥ 1|w)dµ(w).
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Note that∫
w

P(|ui| ≥ 1|w)dµ(w)

=

∫
‖w‖2≤

√
2k
m

P(|ui| ≥ 1|w)dµ(w) +

∫
‖w‖2>

√
2k
m

P(|ui| ≥ 1|w)dµ(w)

≤
∫
‖w‖2≤

√
2k
m

P(|ui| ≥ 1|w)dµ(w) + P

(
‖w‖2 >

√
2k

m

)

≤
∫
‖w‖2≤

√
2k
m

2e
− 1

2‖w‖22dµ(w) + P (Ac)

≤ 2e−
m
4k + e−c2m ≤ 3e−

m
4k ,

which gives

P(max
i∈T c
|ui| ≥ 1) ≤ 3ne−

m
4k

Set m = 4(γ + 1)k log n for some γ > 0, we have ‖uT c‖∞ < 1 with probability
at least 1− n−γ.
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A General RIPless Theory for CS

Approach: Consider a sampling model that allows dependent entries across the
row entries.

Let the signal be denoted as x ∈ Rn. The ith measurement is given as

yi = 〈ai,x〉, i = 1, . . . ,m,

where each sampling/measurement vector is drawn from a distribution F :

ai ∼ F, i.i.d.

We will make a few assumptions on F such that it provides the incoherent
sampling we want.
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Incoherence sampling

We define F to satisfy two key properties:

• Isometry property: for a ∼ F ,

EaaT = I

• Incoherence property: we let µ to be the smallest number such at a =
[a1, . . . , an]T ∼ F ,

max
1≤i≤n

|ai|2 ≤ µ.

Remark:

• Both conditions may be relaxed a little, see [Candes and Plan, 2010]. In
particular, we could allow the incoherence property holds with high probability,
to accommodate the case a ∼ N (0, I).

• µ ≥ 1 since E|ai|2 = 1. On the other hand, µ could be as large as n. To get
good performance, we would like to have µ small.
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Examples of incoherence sampling

• Denote the (scaled) DFT matrix Φ with entries φl,i = ej2πli/n. Let a ∼ F
be obtained by sampling a row of Φ uniformly at random, we have

E[aaH] =

n∑
l=1

1

n
φH
l φl = I

and maxi |ai|2 = 1 := µ .
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Other Examples of incoherent sampling

• Binary sensing: P(ai = ±1) = 1
2,

E[aaT] = I, max
i
|ai|2 = 1.

• Gaussian sensing: ai ∼ N (0, 1), we have

E[aaT] = I, max
i
|ai|2 ≈ 2 log n.

• Partial Fourier transform (useful in MRI): pick a frequency ω ∼ Unif[0, 1],
and set ai = ej2πωi. We have

E[aaT] = I, max
i
|ai|2 = 1.
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Performance Guarantees for BP

Theorem 2. [Noise-free, Basis Pursuit] Let x ∈ Rn be an arbitrary fixed
vector that is k-sparse. Then x is the unique solution to BP with high
probability, as long as

m ≥ Cµk log n
for some constant C.

• The proof is based on slightly different methods, by constructing an inexact
dual certificate using the golfing scheme. This technique is developed first
by D. Gross for analyzing matrix completion. We will discuss this method
later in the course in more details.

• The result is near-optimal for the general class of incoherence sampling
models. It is clear that the “oversampling ratio” depends on the coherence
parameter µ.

• When specializing to the Gaussian case, this result is sub-optimal by log n.
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Performance Guarantees for the General Case using LASSO

Consider noisy observation with Gaussian noise:

y = Ax+w

where w ∼ N (0, σ2I). Consider the LASSO algorithm:

x̂ = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖1

Theorem 3. [Candes and Plan, 2010] Set λ = 10σ
√
log n. Then with high

probability, we have

‖x̂− x‖2 .
‖x− xk‖1√

k
+ σ

√
k log n

m

provided m & µk log n.
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