ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

Lecture 3: Sparse signal recovery: A RIPless analysis of ℓ_{1} minimization

Yuejie Chi
The Ohio State University

(0) The Ohio State University

Outline

- A RIPless theory for CS using ℓ_{1} minimization recovery

Reference: E. J. Candes and Y. Plan. A probabilistic and RIPless theory of compressed sensing. 2010.

Subgradient of ℓ_{1} function

Consider a convex function $f(\boldsymbol{x})$.
Definition 1. [Subgradient] $\boldsymbol{u} \in \partial f\left(\boldsymbol{x}_{0}\right)$ is a subgradient of a convex f at \boldsymbol{x}_{0} if for all \boldsymbol{x} :

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{0}\right)+\boldsymbol{u}^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

Remark: if f is differentiable at x_{0}, the only subgradient is the gradient $\nabla f\left(\boldsymbol{x}_{0}\right)$.
Example: For the scalar absolute function $f(t)=|t|, t \in \mathbb{R}, u \in \partial f(t)$ iff

$$
\left\{\begin{array}{cc}
u=\operatorname{sgn}(t), & t \neq 0 \\
u \in[-1,1], & t=0
\end{array}\right.
$$

For $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}, \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{u} \in \partial f(\boldsymbol{x})$ iff

$$
\begin{cases}u_{i}=\operatorname{sgn}\left(x_{i}\right), & x_{i} \neq 0 \\ u_{i} \in[-1,1], & x_{i}=0\end{cases}
$$

Characterization of ℓ_{1} solution: an optimization viewpoint

Proposition 1. [Necessary and Sufficient condition for ℓ_{1} recovery] Denote the support of \boldsymbol{x} as $T . \boldsymbol{x}$ is the solution to $B P$ if for all $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{A})$,

$$
\sum_{i \in T} \operatorname{sign}\left(x_{i}\right) h_{i} \leq \sum_{i \in T^{c}}\left|h_{i}\right| .
$$

Furthermore, \boldsymbol{x} is the unique solution if the equality holds iff $\boldsymbol{h}=0$.
Remark: Recovery property only depends on the sign pattern of \boldsymbol{x}, not the magnitudes!

Proof of Proposition 1: We first show it is a sufficient condition. Denote the solution of BP as $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{h}$. We have

$$
\boldsymbol{A} \boldsymbol{h}=\boldsymbol{A}(\hat{\boldsymbol{x}}-\boldsymbol{x})=0
$$

i.e. $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{A})$.

Since \boldsymbol{x} is supported on T, we have

$$
\begin{aligned}
\|\boldsymbol{x}\|_{1} \geq\|\hat{\boldsymbol{x}}\|_{1}=\|\boldsymbol{x}+\boldsymbol{h}\|_{1} & =\sum_{i \in T}\left|x_{i}+h_{i}\right|+\sum_{i \in T^{c}}\left|h_{i}\right| \\
& \geq \sum_{i \in T}\left|x_{i}\right|+\operatorname{sign}\left(x_{i}\right) h_{i}+\sum_{i \in T^{c}}\left|h_{i}\right| \geq \sum_{i \in T}\left|x_{i}\right|=\|\boldsymbol{x}\|_{1} .
\end{aligned}
$$

Therefore $\boldsymbol{h}=0$ and $\hat{\boldsymbol{x}}=\boldsymbol{x}$. Next we show it is also a necessary condition. If there exists $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{A})$ such that

$$
\sum_{i \in T} \operatorname{sign}\left(x_{i}\right) h_{i}>\sum_{i \in T^{c}}\left|h_{i}\right|
$$

then we can verify

$$
\begin{aligned}
\|\boldsymbol{x}-\boldsymbol{h}\|_{1}=\sum_{i \in T}\left|x_{i}-h_{i}\right|+\sum_{i \in T^{c}}\left|h_{i}\right| & <\sum_{i \in T}\left(\left|x_{i}\right|-\operatorname{sign}\left(x_{i}\right) h_{i}\right)+\sum_{i \in T^{c}}\left|h_{i}\right| \\
& <\sum_{i \in T}\left|x_{i}\right|=\|\boldsymbol{x}\|_{1} .
\end{aligned}
$$

Dual certificate

Denote the support of \boldsymbol{x} as T.
Proposition 2. \boldsymbol{x} is an optimal solution of $B P$ iff there exists $\boldsymbol{u}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}$ such that

$$
\begin{cases}u_{i}=\operatorname{sgn}\left(x_{i}\right), & i \in T \\ u_{i} \in[-1,1], & i \in T^{c}\end{cases}
$$

In addition, if $\left|u_{i}\right|<1$ for $i \in T^{c}$ and \boldsymbol{A}_{T} has full columns rank, \boldsymbol{x} is the unique solution.

Remarks:

- We call \boldsymbol{u} or $\boldsymbol{\lambda}$ the (exact) dual certificate. If we can find such a dual certificate, we can verify the optimality of BP.
- Note that $\boldsymbol{u} \perp \operatorname{Null}(\boldsymbol{A}))$, which is also a subgradient of $\|\boldsymbol{x}\|_{1}$ at \boldsymbol{x}.

Dual certificate: geometric interpretation

Geometric interpretation of the dual certificate: there exists a subgradient \boldsymbol{u} of the objective function $\|\boldsymbol{x}\|_{1}$ at the ground truth \boldsymbol{x} such that

$$
\boldsymbol{u} \perp \operatorname{Null}(\boldsymbol{A})
$$

Unicity

If $\operatorname{supp}(\boldsymbol{x}) \subset T, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}_{T} \boldsymbol{x}_{T}$.
Note for any $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{A})$,

$$
\begin{aligned}
\sum_{i \in T} \operatorname{sgn}\left(x_{i}\right) h_{i}=\sum_{i \in T} u_{i} h_{i} & =\langle\boldsymbol{u}, \boldsymbol{h}\rangle-\sum_{i \in T^{c}} u_{i} h_{i} \\
& =-\sum_{i \in T^{c}} u_{i} h_{i} \quad(\text { since } \boldsymbol{u} \perp \operatorname{Null}(\boldsymbol{A})) \\
& <\sum_{i \in T^{c}}\left|h_{i}\right| \quad\left(\text { since }\left|u_{i}\right|<1 \text { for } i \in T^{c}\right)
\end{aligned}
$$

unless $\boldsymbol{h}_{T^{c}} \neq 0$. If $\boldsymbol{h}_{T^{c}}=0$, since \boldsymbol{A}_{T} has full column rank,

$$
\boldsymbol{A} \boldsymbol{h}=\boldsymbol{A}_{T} \boldsymbol{h}_{T}=0
$$

which indicates $\boldsymbol{h}_{T}=0$ as well. In summary $\boldsymbol{h}=\boldsymbol{h}_{T}+\boldsymbol{h}_{T^{c}}=0$, and \boldsymbol{x} is the unique solution.

A Probabilistic Approach with Gaussian matrices

Our goal is to develop a theory of compressed sensing that 1) does not require RIP; and 2) admits near-optimal performance guarantees.

Let \boldsymbol{A} be composed of i.i.d. $\mathcal{N}(0,1)$ entries.
Question: How well does BP perform for an arbitrary but fixed sparse signal?

$$
\text { (BP:) } \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} .
$$

Theorem 1. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be an arbitrary fixed vector that is k-sparse. Assume \boldsymbol{A} is composed of i.i.d. $\mathcal{N}(0,1)$ entries. As long as $m \geq C_{1} k \log n$ for some large enough constant C_{1}, \boldsymbol{x} is the unique solution to $B P$ with probability at least $1-n^{-C_{2}}$ for some constant C_{2}.

Remark: Compare this result with the earlier RIP-based result.

Proof by certifying the dual certificate

Denote the support of \boldsymbol{x} as T.
We first verify that \boldsymbol{A}_{T} is full column rank with high probability.
Since \boldsymbol{A}_{T} is a fixed $m \times k$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries, random matrix theory tells us (we'll just take for granted)

$$
\begin{aligned}
& \mathbb{P}\left(\frac{1}{\sqrt{m}} \sigma_{\max }(\boldsymbol{A})>1+\sqrt{\frac{k}{m}}+t\right) \leq e^{-m t^{2} / 2} \\
& \mathbb{P}\left(\frac{1}{\sqrt{m}} \sigma_{\min }(\boldsymbol{A})<1-\sqrt{\frac{k}{m}}-t\right) \leq e^{-m t^{2} / 2}
\end{aligned}
$$

Then as long as $m \geq c_{1} k$ for some large constant c_{1}, we have

$$
\left\|\frac{1}{m} \boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}-\boldsymbol{I}\right\| \leq \frac{1}{2}
$$

with probability at least $1-e^{-c_{2} m}$ for some c_{2}. Call this event \mathcal{A}.

Construction of the dual certificate

We need to find a dual certificate $\boldsymbol{u}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}$ such that

$$
\left\{\begin{array}{l}
u_{i}=\operatorname{sgn}\left(x_{i}\right), \quad i \in T \\
\left|u_{i}\right|<1, \quad i \in T^{c}
\end{array}\right.
$$

Consider the solution to the following ℓ_{2} minimization problem:

$$
\min \|\boldsymbol{u}\|_{2} \quad \text { s.t. } \quad \boldsymbol{u}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}, \quad u_{i}=\operatorname{sgn}\left(x_{i}\right), \quad i \in T
$$

which can be written explicitly as

$$
\boldsymbol{u}=\boldsymbol{A}^{\top} \boldsymbol{A}_{T}\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1} \operatorname{sgn}\left(\boldsymbol{x}_{T}\right) .
$$

Note that under event $\mathcal{A}, \boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}$ is invertible, and

$$
\left\|\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}\right\| \leq \frac{2}{m} .
$$

We will show the above choice is a valid dual certificate.

Validation of the dual certificate

The only condition that needs extra work is to establish

$$
\left|u_{i}\right|<1, \quad \forall i \in T^{c}
$$

This amounts to bound

$$
\max _{i \in T^{c}}\left|u_{i}\right|=\max _{i \in T^{c}}|\langle\boldsymbol{a}_{i}, \underbrace{\boldsymbol{A}_{T}\left(\boldsymbol{A}_{T}^{\mathrm{T}} \boldsymbol{A}_{T}\right)^{-1} \operatorname{sgn}\left(\boldsymbol{x}_{T}\right)}_{\boldsymbol{w}}\rangle|
$$

where \boldsymbol{a}_{i} is the i th column of \boldsymbol{A}.

Note that \boldsymbol{a}_{i} and \boldsymbol{w} are independent for $i \in T^{c}$. For a fixed index $i \in T^{c}$,

- Conditioned on $\boldsymbol{w}, u_{i} \sim \mathcal{N}\left(0,\|\boldsymbol{w}\|_{2}^{2}\right)$, we have the Chernoff bound for the tail of a Gaussian rv:

$$
\mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) \leq 2 \exp \left(-\frac{1}{2\|\boldsymbol{w}\|_{2}^{2}}\right)
$$

- Under the event \mathcal{A}, we could also bound $\|\boldsymbol{w}\|_{2}$ as

$$
\begin{aligned}
\|\boldsymbol{w}\|_{2} & \leq\left\|\boldsymbol{A}_{T}\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}\right\| \cdot\left\|\operatorname{sgn}\left(\boldsymbol{x}_{T}\right)\right\|_{2} \\
& \leq\left\|\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}\right\|^{1 / 2} \cdot\left\|\operatorname{sgn}\left(\boldsymbol{x}_{T}\right)\right\|_{2} \\
& \leq \sqrt{\frac{2 k}{m}}
\end{aligned}
$$

$$
\text { since }\left(\boldsymbol{A}_{T}\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}\right)^{\top} \boldsymbol{A}_{T}\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}=\left(\boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right)^{-1}
$$

We have

$$
\begin{aligned}
\mathbb{P}\left(\max _{i \in T^{c}}\left|u_{i}\right| \geq 1\right) & \leq\left|T^{c}\right| \cdot \mathbb{P}\left(\left|u_{i}\right|>1\right) \quad \text { union bound } \\
& \leq n \int_{\boldsymbol{w}} \mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) d \mu(\boldsymbol{w})
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \int_{\boldsymbol{w}} \mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) d \mu(\boldsymbol{w}) \\
= & \int_{\|\boldsymbol{w}\|_{2} \leq \sqrt{\frac{2 k}{m}}} \mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) d \mu(\boldsymbol{w})+\int_{\|\boldsymbol{w}\|_{2}>\sqrt{\frac{2 k}{m}}} \mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) d \mu(\boldsymbol{w}) \\
\leq & \int_{\|\boldsymbol{w}\|_{2} \leq \sqrt{\frac{2 k}{m}}} \mathbb{P}\left(\left|u_{i}\right| \geq 1 \mid \boldsymbol{w}\right) d \mu(\boldsymbol{w})+\mathbb{P}\left(\|\boldsymbol{w}\|_{2}>\sqrt{\frac{2 k}{m}}\right) \\
\leq & \int_{\|\boldsymbol{w}\|_{2} \leq \sqrt{\frac{2 k}{m}}} 2 e^{-\frac{1}{2\|\boldsymbol{w}\|_{2}^{2}}} d \mu(\boldsymbol{w})+\mathbb{P}\left(\mathcal{A}^{c}\right) \\
\leq & 2 e^{-\frac{m}{4 k}}+e^{-c_{2} m} \leq 3 e^{-\frac{m}{4 k}}
\end{aligned}
$$

which gives

$$
\mathbb{P}\left(\max _{i \in T^{c}}\left|u_{i}\right| \geq 1\right) \leq 3 n e^{-\frac{m}{4 k}}
$$

Set $m=4(\gamma+1) k \log n$ for some $\gamma>0$, we have $\left\|\boldsymbol{u}_{T^{c}}\right\|_{\infty}<1$ with probability at least $1-n^{-\gamma}$.

A General RIPless Theory for CS

Approach: Consider a sampling model that allows dependent entries across the row entries.

Let the signal be denoted as $\boldsymbol{x} \in \mathbb{R}^{n}$. The i th measurement is given as

$$
y_{i}=\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle, \quad i=1, \ldots, m
$$

where each sampling/measurement vector is drawn from a distribution F :

$$
\boldsymbol{a}_{i} \sim F, \quad \text { i.i.d }
$$

We will make a few assumptions on F such that it provides the incoherent sampling we want.

Incoherence sampling

We define F to satisfy two key properties:

- Isometry property: for $\boldsymbol{a} \sim F$,

$$
\mathbb{E} \boldsymbol{a} \boldsymbol{a}^{\top}=\boldsymbol{I}
$$

- Incoherence property: we let μ to be the smallest number such at $\boldsymbol{a}=$ $\left[a_{1}, \ldots, a_{n}\right]^{\top} \sim F$,

$$
\max _{1 \leq i \leq n}\left|a_{i}\right|^{2} \leq \mu
$$

Remark:

- Both conditions may be relaxed a little, see [Candes and Plan, 2010]. In particular, we could allow the incoherence property holds with high probability, to accommodate the case $\boldsymbol{a} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.
- $\mu \geq 1$ since $\mathbb{E}\left|a_{i}\right|^{2}=1$. On the other hand, μ could be as large as n. To get good performance, we would like to have μ small.

Examples of incoherence sampling


```
incoherent measurements
```


- Denote the (scaled) DFT matrix $\boldsymbol{\Phi}$ with entries $\phi_{l, i}=e^{j 2 \pi l i / n}$. Let $\boldsymbol{a} \sim F$ be obtained by sampling a row of $\boldsymbol{\Phi}$ uniformly at random, we have

$$
\mathbb{E}\left[\boldsymbol{a} \boldsymbol{a}^{\mathrm{H}}\right]=\sum_{l=1}^{n} \frac{1}{n} \boldsymbol{\phi}_{l}^{\mathrm{H}} \boldsymbol{\phi}_{l}=\boldsymbol{I}
$$

and $\max _{i}\left|a_{i}\right|^{2}=1:=\mu$.

Other Examples of incoherent sampling

- Binary sensing: $\mathbb{P}\left(a_{i}= \pm 1\right)=\frac{1}{2}$,

$$
\mathbb{E}\left[\boldsymbol{a} \boldsymbol{a}^{\top}\right]=\boldsymbol{I}, \quad \max _{i}\left|a_{i}\right|^{2}=1
$$

- Gaussian sensing: $a_{i} \sim \mathcal{N}(0,1)$, we have

$$
\mathbb{E}\left[\boldsymbol{a} \boldsymbol{a}^{\top}\right]=\boldsymbol{I}, \quad \max _{i}\left|a_{i}\right|^{2} \approx 2 \log n
$$

- Partial Fourier transform (useful in MRI): pick a frequency $\omega \sim \operatorname{Unif}[0,1]$, and set $a_{i}=e^{j 2 \pi \omega i}$. We have

$$
\mathbb{E}\left[\boldsymbol{a} \boldsymbol{a}^{\top}\right]=\boldsymbol{I}, \quad \max _{i}\left|a_{i}\right|^{2}=1
$$

Performance Guarantees for BP

Theorem 2. [Noise-free, Basis Pursuit] Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be an arbitrary fixed vector that is k-sparse. Then \boldsymbol{x} is the unique solution to $B P$ with high probability, as long as

$$
m \geq C \mu k \log n
$$

for some constant C.

- The proof is based on slightly different methods, by constructing an inexact dual certificate using the golfing scheme. This technique is developed first by D. Gross for analyzing matrix completion. We will discuss this method later in the course in more details.
- The result is near-optimal for the general class of incoherence sampling models. It is clear that the "oversampling ratio" depends on the coherence parameter μ.
- When specializing to the Gaussian case, this result is sub-optimal by $\log n$.

Performance Guarantees for the General Case using LASSO

Consider noisy observation with Gaussian noise:

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}
$$

where $\boldsymbol{w} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}\right)$. Consider the LASSO algorithm:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1}
$$

Theorem 3. [Candes and Plan, 2010] Set $\lambda=10 \sigma \sqrt{\log n}$. Then with high probability, we have

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_{2} \lesssim \frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}}{\sqrt{k}}+\sigma \sqrt{\frac{k \log n}{m}}
$$

provided $m \gtrsim \mu k \log n$.

