ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

Lecture 2: Sparse signal recovery: Analysis of ℓ_{1} minimization via RIP

Yuejie Chi
The Ohio State University

Outline

- Definition of sparse and compressible signals

Reference: S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing, Chapter 1.

- Uniqueness and identifiability using spark and coherence

Reference: Donoho, D. L., \& Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_{1} minimization. 2003.

- ℓ_{1} minimization, and sufficient condition for recovery using RIP

Reference: E. J. Candès. The restricted isometry property and its implications for compressed sensing. 2008.

Signals that are exactly sparse

Consider a signal $\boldsymbol{x} \in \mathbb{R}^{n}$.
Definition 1. [Support] The support of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is the index set of its nonzero entries, i.e.

$$
\operatorname{supp}(\boldsymbol{x}):=\left\{j \in[n]: x_{j} \neq 0\right\}
$$

where $[n]=\{1, \ldots, n\}$.

Definition 2. [k-sparse signal] The signal \boldsymbol{x} is called k-sparse, if

$$
\|\boldsymbol{x}\|_{0}:=|\operatorname{supp}(\boldsymbol{x})| \leq k
$$

Note: $\|\boldsymbol{x}\|_{0}$ is called the sparsity level of \boldsymbol{x}.

Sparse signals belong to union-of-subspace models

There're $\binom{n}{k}$ subspaces of dimension k.

Compressible signals

We're also interested in signals that are approximately sparse. This is measured by how well they can be approximated by sparse signals.

Definition 3. [Best k-term approximation] Denote the index set of the k largest entries of $|\boldsymbol{x}|$ as S_{k}. The best k-term approximation \boldsymbol{x}_{k} of \boldsymbol{x} is defined as

$$
\boldsymbol{x}_{k}(i)=\left\{\begin{array}{cc}
x_{i}, & i \in S_{k} \\
0, & i \notin S_{k}
\end{array}\right.
$$

The k-term approximation error in ℓ_{p} norm is then given as

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{p}=\left(\sum_{i \notin S_{k}}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Compressibility: A signal is called compressible if $\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{p}$ decays fast in k.

Example of compressible signals

Proposition 1. [Compressibility] For any $q>p>0$ and $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{q} \leq \frac{1}{k^{1 / p-1 / q}}\|\boldsymbol{x}\|_{p}
$$

Example: set $q=2$ and $0<p<1$, we have

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{2} \leq \frac{1}{k^{1 / p-1 / 2}}\|\boldsymbol{x}\|_{p} .
$$

Consider a signal $\boldsymbol{x} \in B_{p}^{n}:=\left\{\boldsymbol{z} \in \mathbb{R}^{n}:\|\boldsymbol{z}\|_{p} \leq 1\right\}$. Then \boldsymbol{x} is compressible when $0<p<1$. [Geometrically, the ℓ_{p}-ball is pointy when $0<p<1$ in high dimension.]

Proof of Proposition 1: Without loss of generality we assume the coefficients of \boldsymbol{x} is ordered in descending order of magnitudes. We then have

$$
\begin{aligned}
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{q}^{q} & =\sum_{j=k+1}^{n}\left|x_{j}\right|^{q} \quad(\text { by definition }) \\
& =\left|x_{k}\right|^{q-p} \sum_{j=k+1}^{n}\left|x_{j}\right|^{p}\left(\left|x_{j}\right| /\left|x_{k}\right|\right)^{q-p} \\
& \leq\left|x_{k}\right|^{q-p} \sum_{j=k+1}^{n}\left|x_{j}\right|^{p} \quad\left(\left|x_{j}\right| /\left|x_{k}\right| \leq 1\right) \\
& \leq\left(\frac{1}{k} \sum_{j=1}^{k}\left|x_{j}\right|^{p}\right)^{\frac{q-p}{p}}\left(\sum_{j=k+1}^{n}\left|x_{j}\right|^{p}\right) \\
& \leq\left(\frac{1}{k}\|\boldsymbol{x}\|_{p}^{p}\right)^{\frac{q-p}{p}}\|\boldsymbol{x}\|_{p}^{p}=\frac{1}{k^{q / p-1}}\|\boldsymbol{x}\|_{p}^{q}
\end{aligned}
$$

Compressive acquisition of sparse signals

- Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ be the measurement/sensing matrix. Consider, for start, noise-free measurements:

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^{m}
$$

where $m \ll n$. We are interested in reconstructing \boldsymbol{x} from \boldsymbol{y}.

- Since we want to motivate sparse solutions, we could seek the sparsest signal satisfying the observation:

$$
(\mathrm{P} 0:) \quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}\|_{0} \quad \text { subject to } \quad \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} .
$$

where $\|\cdot\|_{0}$ counts the number of nonzero entries.

- Although this algorithm is NP-hard, we can still analyze when it is expected to work.

Spark and uniqueness

Question: What properties do we seek in \boldsymbol{A} regardless of complexity of reconstruction algorithms?

Definition 4. [Spark] Let Spark(A) be the size of the smallest linearly dependent subset of columns of \boldsymbol{A}.

Basic Fact: $2 \leq \operatorname{Spark}(\boldsymbol{A}) \leq m+1$.
Theorem 1. [Uniqueness, Donoho and Elad 2002] A representation $\boldsymbol{y}=$ $\boldsymbol{A} \boldsymbol{x}$ is necessarily the sparsest possible if $\|\boldsymbol{x}\|_{0}<\operatorname{Spark}(\boldsymbol{A}) / 2$.

Proof: If \boldsymbol{x} and \boldsymbol{x}^{\prime} satisfy $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}^{\prime}$, with $\left\|\boldsymbol{x}^{\prime}\right\|_{0} \leq\|\boldsymbol{x}\|_{0}$, then

$$
\boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)=0
$$

for $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{0}<\operatorname{Spark}(\boldsymbol{A})$, which contradicts with definition of Spark. Therefore, $\boldsymbol{x}=\boldsymbol{x}^{\prime}$ and \boldsymbol{x} is the sparsest solution of $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$.

Mutual coherence

Definition 5. [Mutual Coherence] Let

$$
\mu=\mu(\boldsymbol{A}):=\max _{i \neq j}\left|\left\langle\boldsymbol{a}_{i}, \boldsymbol{a}_{j}\right\rangle\right|
$$

. where \boldsymbol{a}_{i} and \boldsymbol{a}_{j} are normalized columns of \boldsymbol{A}.

- $\mu(\boldsymbol{A}) \leq 1$ if the columns of \boldsymbol{A} are pairwise independent.
- Spark $(\boldsymbol{A})>1 / \mu(\boldsymbol{A})$ [can be shown by the Gershgorin circle's theorem].
- Welch bound asserts

$$
\mu^{2} \geq \frac{m-n}{n(m-1)}
$$

which roughly gives $\mu=O(1 / \sqrt{m})$ for a "well-behaved" \boldsymbol{A}.

Gershgorin circle's theorem

Lemma 2. [Gershgorin circle's theorem] The eigenvalues of an $n \times n$ matrix \boldsymbol{M} with entries $m_{i j}, 1 \leq i, j \leq n$, lie in the union of n discs $d_{i}=d_{i}\left(c_{i}, r_{i}\right)$, $1 \leq i \leq n$, centered at $c_{i}=m_{i i}$ and with radius $r_{i}=\sum_{j \neq i}\left|m_{i j}\right|$.

Example : take $\boldsymbol{M}=\left[\begin{array}{ccc}4 & 2 & 3 \\ -2 & -5 & 8 \\ 1 & 0 & 3\end{array}\right]$

Sufficient condition using mutual coherence

Theorem 3. [Equivalence, Donoho and Elad 2002] The sparsest solution to $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ is unique if $\|\boldsymbol{x}\|_{0}<\frac{1}{2}+\frac{1}{2 \mu(\boldsymbol{A})}$.

- The largest recoverable sparsity of \boldsymbol{x} is $k \sim O(1 / \mu)=O(\sqrt{m})$, which is square-root in the number of measurements.
- This result is deterministic.
- Requires the signal to be exactly sparse, which is not always practical.

Sparse Recovery via ℓ_{1} Minimization

Since the above ℓ_{0} minimization is NP-hard. We would like to take its convex relaxation, which leads to the ℓ_{1} minimization, or basis pursuit:

$$
(\mathrm{BP}:) \quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} .
$$

- The BP algorithm does not assume knowledge of the sparsity level to perform.
- Compare this with the usual wisdom of ℓ_{2} minimization:

$$
\hat{\boldsymbol{x}}_{\ell_{2}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}\|_{2} \quad \text { subject to } \quad \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} .
$$

which has a closed form solution

$$
\hat{\boldsymbol{x}}_{\ell_{2}}=\boldsymbol{A}^{\dagger} \boldsymbol{y},
$$

where ${ }^{\dagger}$ denotes pseudo-inverse.

A numerical example

Let's run an example using CVX (http://cvxr.com/cvx/).

Geometry of basis pursuit

$p=1$

$p=2$

Restricted isometry property

Definition 6. [Restricted Isometry Property (RIP)] If \boldsymbol{A} satisfies the restricted isometry property (RIP) with $\delta_{2 k}$, then for any two k-sparse vectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2} :

$$
1-\delta_{2 k} \leq \frac{\left\|\boldsymbol{A}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2}}{\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}} \leq 1+\delta_{2 k} .
$$

If $\delta_{2 k}<1$, this implies the ℓ_{0} problem has a unique k-sparse solution.

RIP matrices preserve orthogonality between sparse vectors

Proposition 2.

$$
\left|\left\langle\boldsymbol{A} \boldsymbol{x}_{1}, \boldsymbol{A} \boldsymbol{x}_{2}\right\rangle\right| \leq \delta_{s_{1}+s_{2}}\left\|\boldsymbol{x}_{1}\right\|_{2}\left\|\boldsymbol{x}_{2}\right\|_{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ that are supported on disjoint subsets $T_{1}, T_{2} \subset[n]$ with $\left|T_{1}\right| \leq s_{1}$ and $\left|T_{2}\right| \leq s_{2}$.
Proof: Without loss of generality assume $\left\|\boldsymbol{x}_{1}\right\|_{2}=\left\|\boldsymbol{x}_{2}\right\|_{2}=1$. Applying the parallelogram identity, which says

$$
\begin{aligned}
\left|\left\langle\boldsymbol{A} \boldsymbol{x}_{1}, \boldsymbol{A} \boldsymbol{x}_{2}\right\rangle\right| & =\frac{1}{4}\left|\left\|\boldsymbol{A} \boldsymbol{x}_{1}+\boldsymbol{A} \boldsymbol{x}_{2}\right\|_{2}^{2}-\left\|\boldsymbol{A} \boldsymbol{x}_{1}+\boldsymbol{A} \boldsymbol{x}_{2}\right\|_{2}^{2}\right| \\
& \leq \frac{1}{4}\left|2\left(1+\delta_{s_{1}+s_{2}}\right)-2\left(1-\delta_{s_{1}+s_{2}}\right)\right| \leq \delta_{s_{1}+s_{2}} .
\end{aligned}
$$

Restricted isometry property

Theorem 4. [Performance of BP via RIP, Candès, Tao, Romberg, 2006] If $\delta_{2 k}<\sqrt{2}-1$, then for any vector \boldsymbol{x}, the solution to basis pursuit satisfies

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_{2} \leq C_{0} k^{-1 / 2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1} .
$$

where \boldsymbol{x}_{k} is the best k-term approximation of \boldsymbol{x} for some constant C_{0}.

- exact recovery if \boldsymbol{x} is exactly k-sparse.
- Many random ensembles (e.g. Gaussian, sub-Gaussian, partial DFT) satisfies the RIP as soon as (we'll return to this point)

$$
m \sim \Theta(k \log (n / k))
$$

- The proof of theorem is particularly elegant.

Proof of Theorem 4

Proof of Theorem 4: Set $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{h}$. We already show $\boldsymbol{A} \boldsymbol{h}=0$. The goal is to establish that $\boldsymbol{h}=0$ when \boldsymbol{A} satisfies the desired RIP.

The first step is to decompose \boldsymbol{h} into a sum of vectors $\boldsymbol{h}_{T_{0}}, \boldsymbol{h}_{T_{1}}, \boldsymbol{h}_{T_{2}}, \ldots$, each of sparsity at most k. Here, T_{0} corresponds to the locations of the k largest coefficients of $\boldsymbol{x} ; T_{1}$ to the locations of the k largest coefficients of $\boldsymbol{h}_{T_{0}^{c}}, T_{2}$ to the locations of the next k largest coefficients of $\boldsymbol{h}_{T_{0}^{c}}$, and so on.

The proof proceeds in two steps:

1. the first step shows that the size of \boldsymbol{h} outside of $T_{0} \cup T_{1}$ is essentially bounded by that of \boldsymbol{h} on $T_{0} \cup T_{1}$.
2. the second step shows that $\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}$ is appropriately small.

Proof continued

Step 1: Note that for each $j \geq 2$,

$$
\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \leq \sqrt{k}\left\|\boldsymbol{h}_{T_{j}}\right\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{j-1}}\right\|_{1}
$$

therefore

$$
\sum_{j \geq 2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \leq \frac{1}{\sqrt{k}} \sum_{j \geq 1}\left\|\boldsymbol{h}_{T_{j}}\right\|_{1}=\frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1} .
$$

This allows us to bound

$$
\left\|\boldsymbol{h}_{\left(T_{0} \cup T_{1}\right)^{c}}\right\|_{2} \leq\left\|\sum_{j \geq 2} \boldsymbol{h}_{T_{j}}\right\|_{2} \leq \sum_{j \geq 2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1} .
$$

Given $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{h}$ is the optimal solution, we have

$$
\begin{align*}
\|\boldsymbol{x}\|_{1} \geq\|\boldsymbol{x}+\boldsymbol{h}\|_{1} & =\sum_{i \in T_{0}}\left|x_{i}+h_{i}\right|+\sum_{i \in T_{0}^{c}}\left|x_{i}+h_{i}\right| \\
& \geq\left\|\boldsymbol{x}_{T_{0}}\right\|_{1}-\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1}-\left\|\boldsymbol{x}_{T_{0}^{c}}\right\|_{1} \tag{*}
\end{align*}
$$

which gives

$$
\begin{aligned}
\left\|\boldsymbol{h}_{T_{0}^{c}}^{c}\right\|_{1} & \leq\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+\|\boldsymbol{x}\|_{1}-\left\|\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{x}_{T_{0}^{c}}\right\|_{1} \\
& \leq\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+2\left\|\boldsymbol{x}_{T_{0}^{c}}\right\|_{1}:=\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+2\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1} .
\end{aligned}
$$

Combining with (*), we have

$$
\left\|\boldsymbol{h}_{\left(T_{0} \cup T_{1}\right)}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1} \leq \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+\frac{2}{\sqrt{k}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1} .
$$

Step 2: We next bound $\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}$. Note that

$$
0=\boldsymbol{A} \boldsymbol{h}=\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}+\sum_{j \geq 2} \boldsymbol{A} \boldsymbol{h}_{T_{j}},
$$

we have by RIP

$$
\left(1-\delta_{2 k}\right)\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq\left\|\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}^{2}=\left|\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}, \sum_{j \geq 2} \boldsymbol{A} \boldsymbol{h}_{T_{j}}\right\rangle\right| .
$$

Using Proposition 2, we have for $j \geq 2$

$$
\begin{aligned}
\left|\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}, \boldsymbol{A} \boldsymbol{h}_{T_{j}}\right\rangle\right| & \leq\left|\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{0}}, \boldsymbol{A} \boldsymbol{h}_{T_{j}}\right\rangle\right|+\left|\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{1}}, \boldsymbol{A} \boldsymbol{h}_{T_{j}}\right\rangle\right| \\
& \leq \delta_{2 k}\left(\left\|\boldsymbol{h}_{T_{0}}\right\|_{2}+\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}\right)\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \\
& \leq \delta_{2 k} \sqrt{2}\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2},
\end{aligned}
$$

which gives

$$
\begin{aligned}
\left(1-\delta_{2 k}\right)\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}^{2} & \leq \sum_{j \geq 2} \mid\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}, \boldsymbol{A} \boldsymbol{h}_{T_{j}}\right\rangle \\
& \leq \sqrt{2} \delta_{2 k}\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2} \sum_{j \geq 2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \\
& \leq \sqrt{2} \delta_{2 k}\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2} \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1},
\end{aligned}
$$

therefore

$$
\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2} \leq \frac{\sqrt{2} \delta_{2 k}}{\left(1-\delta_{2 k}\right)} \frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1} \leq \rho \frac{1}{\sqrt{k}}\left(\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+2\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}\right)
$$

where $\rho:=\frac{\sqrt{2} \delta_{2 k}}{\left(1-\delta_{2 k}\right)}$. Since $\left\|\boldsymbol{h}_{T_{0}}\right\|_{1} \leq \sqrt{k}\left\|\boldsymbol{h}_{T_{0}}\right\|_{2} \leq \sqrt{k}\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}$, we can bound

$$
\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2} \leq \frac{2 \rho}{1-\rho} \frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}}{\sqrt{k}}
$$

Finally,

$$
\begin{aligned}
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_{2}=\|\boldsymbol{h}\|_{2} & \leq\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}+\left\|\boldsymbol{h}_{\left(T_{0} \cup T_{1}\right)^{c}}\right\|_{2} \\
& \leq\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}+\frac{1}{\sqrt{k}}\left\|\boldsymbol{h}_{T_{0}}\right\|_{1}+\frac{2}{\sqrt{k}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1} \\
& \leq 2\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}+\frac{2}{\sqrt{k}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1} \\
& \leq \frac{2(1+\rho)}{1-\rho} \frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}}{\sqrt{k}} .
\end{aligned}
$$

Therefore, $C_{0}:=\frac{2(1+\rho)}{1-\rho}$. The requirement on $\delta_{2 k}$ comes from the fact that we need $1-\rho>0$ to avoid the bound to blow up.

ℓ_{1} recovery in the noisy case

In the presence of additive measurement noise,

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}
$$

where $\|\boldsymbol{w}\|_{2} \leq \epsilon$ is assumed to be bounded.
We can modify the BP algorithm in the following manner:

$$
\text { (BP-noisy:) } \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}\|_{1} \text { subject to }\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2} \leq \epsilon .
$$

Theorem 5. [Performance of BP via RIP, noisy case] If $\delta_{2 k}<\sqrt{2}-1$, then for any vector \boldsymbol{x}, the solution to basis pursuit (noisy case) satisfies

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_{2} \leq C_{0} k^{-1 / 2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}+C_{1} \epsilon
$$

where \boldsymbol{x}_{k} is the best k-term approximation of \boldsymbol{x} for some constants C_{0} and C_{1}.

Proof of Theorem 5

Again let's start by assuming $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{h}$. The key difference from the noiseless case is that in Step 2, we now have

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{h}\|_{2}=\|\boldsymbol{A}(\hat{\boldsymbol{x}}-\boldsymbol{x})\|_{2} & =\|(\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}})-(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x})\|_{2} \\
& \leq\|\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}+\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2} \leq 2 \epsilon
\end{aligned}
$$

Therefore, we need to bound

$$
\begin{aligned}
\left\|\boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}^{2} & =\left\langle\boldsymbol{A} \boldsymbol{h}-\sum_{j \geq 2} \boldsymbol{A} \boldsymbol{h}_{T_{j}}, \boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}\right\rangle \\
& \leq \underbrace{\left\langle\boldsymbol{A} \boldsymbol{h}, \boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}\right\rangle}_{\leq 2 \epsilon \delta_{2 k}\left\|\boldsymbol{h}_{T_{0} \cup T_{1}}\right\|_{2}} \underbrace{-\sum_{j \geq 2}\left\langle\boldsymbol{A} \boldsymbol{h}_{T_{j}}, \boldsymbol{A} \boldsymbol{h}_{T_{0} \cup T_{1}}\right\rangle}_{\text {bounded as before }}
\end{aligned}
$$

By plugging in this modification, we show

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_{2}=\|\boldsymbol{h}\|_{2} \leq \frac{2(1+\rho)}{1-\rho} \frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{1}}{\sqrt{k}}+\frac{2 \alpha}{1-\rho} \epsilon
$$

where

$$
\alpha=\frac{2 \sqrt{1+\delta_{2 k}}}{1-\delta_{2 k}}
$$

Remarks

- The theorems are quite strong, in the sense it holds for all signals once \boldsymbol{A} satisfies RIP.
- The reconstruction quality relies on two quantities: the best k-term approximation error and the noise level.
- Our generalization of the performance guarantee from the noise-free case to the noisy case is essentially effortless. However, we do need an upper bound of the noise level in order to perform the algorithm.
- A related algorithm is called LASSO, which has the form of

$$
\hat{\boldsymbol{x}}_{l a s s o}=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1},
$$

where $\lambda>0$ is called a regularization parameter. Another related algorithm is called Dantizg selector. Both can be analyzed in a similar manner as the BP using RIP.

Which matrices satisfy RIP?

- Random matrices with i.i.d. Gaussian entries satisfy RIP with high probability, as long as

$$
m \gtrsim k \log (n / k)
$$

- Random Partial DFT matrices, $\boldsymbol{A}=\boldsymbol{I}_{\Omega} \boldsymbol{F}$, where \boldsymbol{I}_{Ω} is an partial identity matrix with rows indexed by the random subset Ω, and \boldsymbol{F} is the DFT matrix, satisfy RIP with high probability, as long as

$$
m=|\Omega| \gtrsim k \log ^{4} n
$$

- Similar results hold for random Partial Circulant/Toeplitz matrices, random matrices with i.i.d. sub-Gaussian entries, etc...
- All these are probabilistic, in the sense if we draw a random matrix following the stated distribution, it will satisfy the RIP with high probability (i.e. $1-\exp (-c m))$.

Deterministic matrices satisfying RIP

Constructing deterministic matrices that satisfy RIP is difficult.

There're many benefits of having deterministic constructions: fast computation, less storage, etc..

\section*{Math Research
 Wiki
 | On the Wiki | Wiki Content | Community |
| :--- | :--- | :--- |
| Wiki Activity | Random page | Videos |
 Photos
 Deterministic RIP Matrices
 (f) (3) t $2_{\text {THIS WIKI }}^{\text {PAGES ON }}$}

\triangle Edit
Comments 0

A matrix Φ is said to satisfy the (K, δ)-restricted isometry property (RIP) if for every K-sparse vector x,

$$
(1-\delta)\|x\|^{2} \leq\|\Phi x\|^{2} \leq(1+\delta)\|x\|^{2}
$$

Let ExRIP $[z]$ denote the following statement: There exists an explicit family of deterministic matrices $\left\{\Phi_{M}\right\}$,
where Φ_{M} is $M \times N(M)$ and M and $N(M) / M$ are both arbitrarily large, such that each Φ_{M} satisfies
(K, δ)-RIP with $K=\Omega\left(M^{z-\epsilon}\right)$ for all $\epsilon>0$ and with $\delta<1 / 2$.
The goal is to make progress on the deterministic RIP matrix problem, that is, to prove ExRIP [1].
Despite the fact that such matrices are known to exist (due to random matrix arguments), almost all deterministic constructions take $K=O\left(M^{1 / 2}\right)$, but one paper has broken this square-root bottleneck:

Explicit constructions of RIP matrices and related problems
J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, D. Kutzarova

