ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

Lecture 2: Sparse signal recovery: Analysis of ℓ_1 minimization via RIP

Yuejie Chi The Ohio State University

The Ohio State University

• Definition of sparse and compressible signals

Reference: S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing, Chapter 1.

• Uniqueness and identifiability using spark and coherence

Reference: Donoho, D. L., & Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_1 minimization. 2003.

• ℓ_1 minimization, and sufficient condition for recovery using RIP

Reference: E. J. Candès. The restricted isometry property and its implications for compressed sensing. 2008.

Consider a signal $x \in \mathbb{R}^n$.

Definition 1. [Support] The support of a vector $x \in \mathbb{R}^n$ is the index set of its nonzero entries, i.e.

$$supp(\boldsymbol{x}) := \{ j \in [n] : x_j \neq 0 \}$$

where $[n] = \{1, ..., n\}.$

Definition 2. [k-sparse signal] The signal x is called k-sparse, if

 $\|\boldsymbol{x}\|_0 := |supp(\boldsymbol{x})| \le k.$

Note: $\|x\|_0$ is called the sparsity level of x.

Sparse signals belong to union-of-subspace models

There're $\binom{n}{k}$ subspaces of dimension k.

Compressible signals

We're also interested in signals that are *approximately* sparse. This is measured by how well they can be approximated by sparse signals.

Definition 3. [Best *k*-term approximation] Denote the index set of the *k*-largest entries of $|\mathbf{x}|$ as S_k . The best *k*-term approximation \mathbf{x}_k of \mathbf{x} is defined as

$$\boldsymbol{x}_k(i) = \begin{cases} x_i, & i \in S_k \\ 0, & i \notin S_k \end{cases}$$

The k-term approximation error in ℓ_p norm is then given as

$$\|oldsymbol{x}-oldsymbol{x}_k\|_p = \left(\sum_{i
otin S_k} |x_i|^p
ight)^{1/p}$$

Compressibility: A signal is called *compressible* if $||x - x_k||_p$ decays fast in k.

Proposition 1. [Compressibility] For any q > p > 0 and $x \in \mathbb{R}^n$,

$$\|m{x} - m{x}_k\|_q \le rac{1}{k^{1/p - 1/q}} \|m{x}\|_p.$$

Example: set q = 2 and 0 , we have

$$\|m{x} - m{x}_k\|_2 \le rac{1}{k^{1/p - 1/2}} \|m{x}\|_p.$$

Consider a signal $x \in B_p^n := \{z \in \mathbb{R}^n : ||z||_p \le 1\}$. Then x is compressible when $0 . [Geometrically, the <math>\ell_p$ -ball is pointy when 0 in high dimension.]

Proof of Proposition 1: Without loss of generality we assume the coefficients of x is ordered in descending order of magnitudes. We then have

 $\|x$

$$\begin{aligned} - \boldsymbol{x}_{k} \|_{q}^{q} &= \sum_{j=k+1}^{n} |x_{j}|^{q} \quad \text{(by definition)} \\ &= |x_{k}|^{q-p} \sum_{j=k+1}^{n} |x_{j}|^{p} (|x_{j}|/|x_{k}|)^{q-p} \\ &\leq |x_{k}|^{q-p} \sum_{j=k+1}^{n} |x_{j}|^{p} \quad (|x_{j}|/|x_{k}| \leq 1) \\ &\leq \left(\frac{1}{k} \sum_{j=1}^{k} |x_{j}|^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=k+1}^{n} |x_{j}|^{p}\right) \\ &\leq \left(\frac{1}{k} \|\boldsymbol{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\boldsymbol{x}\|_{p}^{p} = \frac{1}{k^{q/p-1}} \|\boldsymbol{x}\|_{p}^{q}. \end{aligned}$$

Page 7

• Let $A \in \mathbb{R}^{m \times n}$ be the measurement/sensing matrix. Consider, for start, noise-free measurements:

$$\boldsymbol{y} = \boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^m,$$

where $m \ll n$. We are interested in reconstructing \boldsymbol{x} from \boldsymbol{y} .

• Since we want to motivate sparse solutions, we could seek the sparsest signal satisfying the observation:

(P0:)
$$\hat{x} = \operatorname*{argmin}_{oldsymbol{x}} \|oldsymbol{x}\|_0$$
 subject to $oldsymbol{y} = oldsymbol{A} oldsymbol{x}.$

where $\|\cdot\|_0$ counts the number of nonzero entries.

• Although this algorithm is NP-hard, we can still analyze when it is expected to work.

Question: What properties do we seek in A regardless of complexity of reconstruction algorithms?

Definition 4. [Spark] Let Spark(A) be the size of the smallest linearly dependent subset of columns of A.

<u>Basic Fact:</u> $2 \leq \text{Spark}(A) \leq m + 1$.

Theorem 1. [Uniqueness, Donoho and Elad 2002] A representation y = Ax is necessarily the sparsest possible if $||x||_0 < Spark(A)/2$.

Proof: If x and x' satisfy Ax = Ax', with $\|x'\|_0 \le \|x\|_0$, then

$$\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{x}')=0$$

for $||x - x'||_0 < \text{Spark}(A)$, which contradicts with definition of Spark. Therefore, x = x' and x is the sparsest solution of y = Ax.

Definition 5. [Mutual Coherence] Let

$$\mu = \mu(\boldsymbol{A}) := \max_{i \neq j} |\langle \boldsymbol{a}_i, \boldsymbol{a}_j \rangle|$$

- . where a_i and a_j are normalized columns of A.
- $\mu(\mathbf{A}) \leq 1$ if the columns of \mathbf{A} are pairwise independent.
- $\mathsf{Spark}(A) > 1/\mu(A)$ [can be shown by the Gershgorin circle's theorem].
- Welch bound asserts

$$\mu^2 \ge \frac{m-n}{n(m-1)},$$

which roughly gives $\mu = O(1/\sqrt{m})$ for a "well-behaved" A.

Lemma 2. [Gershgorin circle's theorem] The eigenvalues of an $n \times n$ matrix M with entries m_{ij} , $1 \le i, j \le n$, lie in the union of n discs $d_i = d_i(c_i, r_i)$, $1 \le i \le n$, centered at $c_i = m_{ii}$ and with radius $r_i = \sum_{j \ne i} |m_{ij}|$.

Theorem 3. [Equivalence, Donoho and Elad 2002] The sparsest solution to y = Ax is unique if $||x||_0 < \frac{1}{2} + \frac{1}{2\mu(A)}$.

- The largest recoverable sparsity of x is $k \sim O(1/\mu) = O(\sqrt{m})$, which is square-root in the number of measurements.
- This result is deterministic.
- Requires the signal to be exactly sparse, which is not always practical.

Since the above ℓ_0 minimization is NP-hard. We would like to take its convex relaxation, which leads to the ℓ_1 minimization, or basis pursuit:

(BP:)
$$\hat{x} = \operatorname*{argmin}_{oldsymbol{x}} \|oldsymbol{x}\|_1$$
 subject to $oldsymbol{y} = oldsymbol{A} oldsymbol{x}.$

- The BP algorithm does not assume knowledge of the sparsity level to perform.
- Compare this with the usual wisdom of ℓ_2 minimization:

$$\hat{oldsymbol{x}}_{\ell_2} = \operatorname*{argmin}_{oldsymbol{x}} \|oldsymbol{x}\|_2 \;\;\; \mathsf{subject to} \;\;\; oldsymbol{y} = oldsymbol{A} oldsymbol{x}.$$

which has a closed form solution

$$\hat{\boldsymbol{x}}_{\ell_2} = \boldsymbol{A}^{\dagger} \boldsymbol{y},$$

where [†] denotes pseudo-inverse.

A numerical example

Let's run an example using CVX (http://cvxr.com/cvx/).

Geometry of basis pursuit

Definition 6. [Restricted Isometry Property (RIP)] If A satisfies the restricted isometry property (RIP) with δ_{2k} , then for any two k-sparse vectors x_1 and x_2 :

$$1 - \delta_{2k} \le rac{\|oldsymbol{A}(oldsymbol{x}_1 - oldsymbol{x}_2)\|_2^2}{\|oldsymbol{x}_1 - oldsymbol{x}_2\|_2^2} \le 1 + \delta_{2k}.$$

If $\delta_{2k} < 1$, this implies the ℓ_0 problem has a unique k-sparse solution.

Proposition 2.

$$|\langle oldsymbol{A}oldsymbol{x}_1,oldsymbol{A}oldsymbol{x}_2
angle|\leq \delta_{s_1+s_2}\|oldsymbol{x}_1\|_2\|oldsymbol{x}_2\|_2$$

for all x_1 , x_2 that are supported on disjoint subsets $T_1, T_2 \subset [n]$ with $|T_1| \leq s_1$ and $|T_2| \leq s_2$.

Proof: Without loss of generality assume $\|x_1\|_2 = \|x_2\|_2 = 1$. Applying the parallelogram identity, which says

$$egin{aligned} |\langle m{A}m{x}_1,m{A}m{x}_2
angle| &= rac{1}{4}|\|m{A}m{x}_1+m{A}m{x}_2\|_2^2 - \|m{A}m{x}_1+m{A}m{x}_2\|_2^2| \ &\leq rac{1}{4}|2(1+\delta_{s_1+s_2})-2(1-\delta_{s_1+s_2})| \leq \delta_{s_1+s_2}. \end{aligned}$$

Theorem 4. [Performance of BP via RIP, Candès, Tao, Romberg, 2006] If $\delta_{2k} < \sqrt{2} - 1$, then for any vector x, the solution to basis pursuit satisfies

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le C_0 k^{-1/2} \|\boldsymbol{x} - \boldsymbol{x}_k\|_1.$$

where x_k is the best k-term approximation of x for some constant C_0 .

- exact recovery if x is exactly k-sparse.
- Many random ensembles (e.g. Gaussian, sub-Gaussian, partial DFT) satisfies the RIP as soon as (we'll return to this point)

 $m \sim \Theta(k \log(n/k))$

• The proof of theorem is particularly elegant.

Proof of Theorem 4: Set $\hat{x} = x + h$. We already show Ah = 0. The goal is to establish that h = 0 when A satisfies the desired RIP.

The first step is to decompose h into a sum of vectors h_{T_0} , h_{T_1} , h_{T_2} , ..., each of sparsity at most k. Here, T_0 corresponds to the locations of the k largest coefficients of x; T_1 to the locations of the k largest coefficients of $h_{T_0^c}$, T_2 to the locations of the next k largest coefficients of $h_{T_0^c}$, and so on.

The proof proceeds in two steps:

- 1. the first step shows that the size of h outside of $T_0 \cup T_1$ is essentially bounded by that of h on $T_0 \cup T_1$.
- 2. the second step shows that $\|h_{T_0 \cup T_1}\|_2$ is appropriately small.

Step 1: Note that for each $j \ge 2$,

$$\|m{h}_{T_j}\|_2 \leq \sqrt{k} \|m{h}_{T_j}\|_\infty \leq rac{1}{\sqrt{k}} \|m{h}_{T_{j-1}}\|_1$$

therefore

$$\sum_{j\geq 2} \|\boldsymbol{h}_{T_j}\|_2 \leq \frac{1}{\sqrt{k}} \sum_{j\geq 1} \|\boldsymbol{h}_{T_j}\|_1 = \frac{1}{\sqrt{k}} \|\boldsymbol{h}_{T_0^c}\|_1.$$

This allows us to bound

$$\|\boldsymbol{h}_{(T_0\cup T_1)^c}\|_2 \le \|\sum_{j\ge 2} \boldsymbol{h}_{T_j}\|_2 \le \sum_{j\ge 2} \|\boldsymbol{h}_{T_j}\|_2 \le \frac{1}{\sqrt{k}} \|\boldsymbol{h}_{T_0^c}\|_1.$$

Given $\hat{x} = x + h$ is the optimal solution, we have

$$\begin{split} \|\boldsymbol{x}\|_{1} \geq \|\boldsymbol{x} + \boldsymbol{h}\|_{1} &= \sum_{i \in T_{0}} |x_{i} + h_{i}| + \sum_{i \in T_{0}^{c}} |x_{i} + h_{i}| \\ &\geq \|\boldsymbol{x}_{T_{0}}\|_{1} - \|\boldsymbol{h}_{T_{0}}\|_{1} + \|\boldsymbol{h}_{T_{0}^{c}}\|_{1} - \|\boldsymbol{x}_{T_{0}^{c}}\|_{1}, \quad (*) \end{split}$$

Page 20

which gives

$$egin{aligned} \|m{h}_{T_0^c}\|_1 &\leq \|m{h}_{T_0}\|_1 + \|m{x}\|_1 - \|m{x}_{T_0}\|_1 + \|m{x}_{T_0^c}\|_1 \ &\leq \|m{h}_{T_0}\|_1 + 2\|m{x}_{T_0^c}\|_1 := \|m{h}_{T_0}\|_1 + 2\|m{x} - m{x}_k\|_1. \end{aligned}$$

Combining with (*), we have

$$\|\boldsymbol{h}_{(T_0\cup T_1)^c}\|_2 \leq rac{1}{\sqrt{k}} \|\boldsymbol{h}_{T_0^c}\|_1 \leq rac{1}{\sqrt{k}} \|\boldsymbol{h}_{T_0}\|_1 + rac{2}{\sqrt{k}} \|\boldsymbol{x} - \boldsymbol{x}_k\|_1.$$

Step 2: We next bound $\|\boldsymbol{h}_{T_0\cup T_1}\|_2$. Note that

$$0 = \boldsymbol{A}\boldsymbol{h} = \boldsymbol{A}\boldsymbol{h}_{T_0\cup T_1} + \sum_{j\geq 2} \boldsymbol{A}\boldsymbol{h}_{T_j},$$

we have by RIP

$$(1 - \delta_{2k}) \| \boldsymbol{h}_{T_0 \cup T_1} \|_2^2 \le \| \boldsymbol{A} \boldsymbol{h}_{T_0 \cup T_1} \|_2^2 = |\langle \boldsymbol{A} \boldsymbol{h}_{T_0 \cup T_1}, \sum_{j \ge 2} \boldsymbol{A} \boldsymbol{h}_{T_j} \rangle|.$$

Page 21

Using Proposition 2, we have for $j \geq 2$

$$egin{aligned} &|\langle m{A}m{h}_{T_0\cup T_1},m{A}m{h}_{T_j}
angle| \leq |\langle m{A}m{h}_{T_0},m{A}m{h}_{T_j}
angle| + |\langle m{A}m{h}_{T_1},m{A}m{h}_{T_j}
angle| \ &\leq \delta_{2k}(\|m{h}_{T_0}\|_2 + \|m{h}_{T_1}\|_2)\|m{h}_{T_j}\|_2 \ &\leq \delta_{2k}\sqrt{2}\|m{h}_{T_0\cup T_1}\|_2\|m{h}_{T_j}\|_2, \end{aligned}$$

which gives

$$(1 - \delta_{2k}) \| \boldsymbol{h}_{T_0 \cup T_1} \|_2^2 \leq \sum_{j \geq 2} |\langle \boldsymbol{A} \boldsymbol{h}_{T_0 \cup T_1}, \boldsymbol{A} \boldsymbol{h}_{T_j} \rangle|$$

$$\leq \sqrt{2} \delta_{2k} \| \boldsymbol{h}_{T_0 \cup T_1} \|_2 \sum_{j \geq 2} \| \boldsymbol{h}_{T_j} \|_2$$

$$\leq \sqrt{2} \delta_{2k} \| \boldsymbol{h}_{T_0 \cup T_1} \|_2 \frac{1}{\sqrt{k}} \| \boldsymbol{h}_{T_0^c} \|_1,$$

therefore

$$\|\boldsymbol{h}_{T_0\cup T_1}\|_2 \le \frac{\sqrt{2}\delta_{2k}}{(1-\delta_{2k})} \frac{1}{\sqrt{k}} \|\boldsymbol{h}_{T_0^c}\|_1 \le \rho \frac{1}{\sqrt{k}} (\|\boldsymbol{h}_{T_0}\|_1 + 2\|\boldsymbol{x} - \boldsymbol{x}_k\|_1)$$

where
$$\rho := \frac{\sqrt{2}\delta_{2k}}{(1-\delta_{2k})}$$
. Since $\|\boldsymbol{h}_{T_0}\|_1 \le \sqrt{k}\|\boldsymbol{h}_{T_0}\|_2 \le \sqrt{k}\|\boldsymbol{h}_{T_0\cup T_1}\|_2$, we can bound

$$\|\boldsymbol{h}_{T_0\cup T_1}\|_2 \leq rac{2
ho}{1-
ho} rac{\|\boldsymbol{x}-\boldsymbol{x}_k\|_1}{\sqrt{k}}.$$

Finally,

$$egin{aligned} \|\hat{m{x}}-m{x}\|_2 &= \|m{h}\|_2 \leq \|m{h}_{T_0 \cup T_1}\|_2 + \|m{h}_{(T_0 \cup T_1)^c}\|_2 \ &\leq \|m{h}_{T_0 \cup T_1}\|_2 + rac{1}{\sqrt{k}}\|m{h}_{T_0}\|_1 + rac{2}{\sqrt{k}}\|m{x}-m{x}_k\|_1 \ &\leq 2\|m{h}_{T_0 \cup T_1}\|_2 + rac{2}{\sqrt{k}}\|m{x}-m{x}_k\|_1 \ &\leq rac{2(1+
ho)}{1-
ho}rac{\|m{x}-m{x}_k\|_1}{\sqrt{k}}. \end{aligned}$$

Therefore, $C_0 := \frac{2(1+\rho)}{1-\rho}$. The requirement on δ_{2k} comes from the fact that we need $1-\rho > 0$ to avoid the bound to blow up.

In the presence of additive measurement noise,

$$y = Ax + w$$
,

where $\|\boldsymbol{w}\|_2 \leq \epsilon$ is assumed to be bounded.

We can modify the BP algorithm in the following manner:

$$(\mathsf{BP}\mathsf{-noisy:})$$
 $\hat{x} = \operatorname*{argmin}_{oldsymbol{x}} \|x\|_1$ subject to $\|oldsymbol{y} - oldsymbol{A}x\|_2 \leq \epsilon.$

Theorem 5. [Performance of BP via RIP, noisy case] If $\delta_{2k} < \sqrt{2} - 1$, then for any vector x, the solution to basis pursuit (noisy case) satisfies

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le C_0 k^{-1/2} \|\boldsymbol{x} - \boldsymbol{x}_k\|_1 + C_1 \epsilon.$$

where x_k is the best k-term approximation of x for some constants C_0 and C_1 .

Again let's start by assuming $\hat{x} = x + h$. The key difference from the noiseless case is that in Step 2, we now have

$$\|Ah\|_2 = \|A(\hat{x} - x)\|_2 = \|(y - A\hat{x}) - (y - Ax)\|_2$$

 $\leq \|y - A\hat{x}\|_2 + \|y - Ax\|_2 \leq 2\epsilon.$

Therefore, we need to bound

By plugging in this modification, we show

$$\|\hat{x} - x\|_2 = \|h\|_2 \le \frac{2(1+\rho)}{1-\rho} \frac{\|x - x_k\|_1}{\sqrt{k}} + \frac{2\alpha}{1-\rho}\epsilon,$$

where

$$\alpha = \frac{2\sqrt{1+\delta_{2k}}}{1-\delta_{2k}}.$$

- The theorems are quite strong, in the sense it holds for *all* signals once A satisfies RIP.
- The reconstruction quality relies on two quantities: the best k-term approximation error and the noise level.
- Our generalization of the performance guarantee from the noise-free case to the noisy case is essentially effortless. However, we do need an upper bound of the noise level in order to perform the algorithm.
- A related algorithm is called LASSO, which has the form of

$$\hat{\boldsymbol{x}}_{lasso} = \operatorname*{argmin}_{\boldsymbol{x}} \ \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{2}^{2} + \lambda \| \boldsymbol{x} \|_{1},$$

where $\lambda > 0$ is called a regularization parameter. Another related algorithm is called *Dantizg selector*. Both can be analyzed in a similar manner as the BP using RIP.

• Random matrices with i.i.d. Gaussian entries satisfy RIP with high probability, as long as

 $m \gtrsim k \log(n/k).$

• Random Partial DFT matrices, $A = I_{\Omega}F$, where I_{Ω} is an partial identity matrix with rows indexed by the random subset Ω , and F is the DFT matrix, satisfy RIP with high probability, as long as

$$m = |\Omega| \gtrsim k \log^4 n.$$

- Similar results hold for random Partial Circulant/Toeplitz matrices, random matrices with i.i.d. sub-Gaussian entries, etc...
- All these are probabilistic, in the sense if we draw a random matrix following the stated distribution, it will satisfy the RIP with high probability (i.e. $1 \exp(-cm)$).

Deterministic matrices satisfying RIP

Constructing deterministic matrices that satisfy RIP is difficult.

There're many benefits of having deterministic constructions: fast computation, less storage, etc..

Math Research Wiki	On the Wiki	Wiki Content	Community	
	Wiki Activity	Random page	Videos	Photos
Deterministic RIP Matrices				f (f) (f) (f) (f) (f) (f) (f) (f) (f) (f
Comments 0				
A matrix Φ is said to satisfy the (K,δ) -restricted isometry property (RIP) if for every K -sparse vector x ,				
$(1-\delta) x ^2 \le \Phi x ^2 \le (1+\delta) x ^2$				
Let $\operatorname{ExRIP}[z]$ denote the following statement: There exists an explicit family of deterministic matrices $\{\Phi_M\}$, where Φ_M is $M \times N(M)$ and M and $N(M)/M$ are both arbitrarily large, such that each Φ_M satisfies (K, δ) -RIP with $K = \Omega(M^{z-\epsilon})$ for all $\epsilon > 0$ and with $\delta < 1/2$.				
The goal is to make progress on the <i>deterministic RIP matrix problem</i> , that is, to prove $\mathrm{ExRIP}[1]$.				
Despite the fact that such matrices are known to exist (due to random matrix arguments), almost all deterministic constructions take $K = O(M^{1/2})$, but one paper has broken this square-root bottleneck:				
Explicit constructions of RIP matrices and related problems				
J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, D. Kutzarova				