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Outline

• Definition of sparse and compressible signals

Reference: S. Foucart and H. Rauhut. A Mathematical Introduction to
Compressive Sensing, Chapter 1.

• Uniqueness and identifiability using spark and coherence

Reference: Donoho, D. L., & Elad, M. Optimally sparse representation in
general (nonorthogonal) dictionaries via `1 minimization. 2003.

• `1 minimization, and sufficient condition for recovery using RIP

Reference: E. J. Candès. The restricted isometry property and its
implications for compressed sensing. 2008.
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Signals that are exactly sparse

Consider a signal x ∈ Rn.

Definition 1. [Support] The support of a vector x ∈ Rn is the index set of
its nonzero entries, i.e.

supp(x) := {j ∈ [n] : xj 6= 0}

where [n] = {1, . . . , n}.

Definition 2. [k-sparse signal] The signal x is called k-sparse, if

‖x‖0 := |supp(x)| ≤ k.

Note: ‖x‖0 is called the sparsity level of x.

Page 3



Sparse signals belong to union-of-subspace models

There’re
(
n
k

)
subspaces of dimension k.
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Compressible signals

We’re also interested in signals that are approximately sparse. This is measured
by how well they can be approximated by sparse signals.

Definition 3. [Best k-term approximation] Denote the index set of the k-
largest entries of |x| as Sk. The best k-term approximation xk of x is defined
as

xk(i) =

{
xi, i ∈ Sk
0, i /∈ Sk

The k-term approximation error in `p norm is then given as

‖x− xk‖p =

∑
i/∈Sk

|xi|p
1/p

.

Compressibility: A signal is called compressible if ‖x− xk‖p decays fast in k.
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Example of compressible signals

Proposition 1. [Compressibility] For any q > p > 0 and x ∈ Rn,

‖x− xk‖q ≤
1

k1/p−1/q
‖x‖p.

Example: set q = 2 and 0 < p < 1, we have

‖x− xk‖2 ≤
1

k1/p−1/2
‖x‖p.

Consider a signal x ∈ Bnp := {z ∈ Rn : ‖z‖p ≤ 1}. Then x is compressible
when 0 < p < 1. [Geometrically, the `p-ball is pointy when 0 < p < 1 in high
dimension. ]
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Proof of Proposition 1: Without loss of generality we assume the coefficients of
x is ordered in descending order of magnitudes. We then have

‖x− xk‖qq =

n∑
j=k+1

|xj|q (by definition)

= |xk|q−p
n∑

j=k+1

|xj|p(|xj|/|xk|)q−p

≤ |xk|q−p
n∑

j=k+1

|xj|p (|xj|/|xk| ≤ 1)

≤

1

k

k∑
j=1

|xj|p


q−p
p
 n∑
j=k+1

|xj|p


≤
(

1

k
‖x‖pp

)q−p
p

‖x‖pp =
1

kq/p−1
‖x‖qp.
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Compressive acquisition of sparse signals

• Let A ∈ Rm×n be the measurement/sensing matrix. Consider, for start,
noise-free measurements:

y = Ax ∈ Rm,
where m� n. We are interested in reconstructing x from y.

• Since we want to motivate sparse solutions, we could seek the sparsest signal
satisfying the observation:

(P0:) x̂ = argmin
x

‖x‖0 subject to y = Ax.

where ‖ · ‖0 counts the number of nonzero entries.

• Although this algorithm is NP-hard, we can still analyze when it is expected
to work.

Page 8



Spark and uniqueness

Question: What properties do we seek in A regardless of complexity of
reconstruction algorithms?

Definition 4. [Spark] Let Spark(A) be the size of the smallest linearly
dependent subset of columns of A.

Basic Fact: 2 ≤ Spark(A) ≤ m+ 1.

Theorem 1. [Uniqueness, Donoho and Elad 2002] A representation y =
Ax is necessarily the sparsest possible if ‖x‖0 < Spark(A)/2.

Proof: If x and x′ satisfy Ax = Ax′, with ‖x′‖0 ≤ ‖x‖0, then

A(x− x′) = 0

for ‖x−x′‖0 < Spark(A), which contradicts with definition of Spark. Therefore,
x = x′ and x is the sparsest solution of y = Ax.
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Mutual coherence

Definition 5. [Mutual Coherence] Let

µ = µ(A) := max
i6=j
|〈ai,aj〉|

. where ai and aj are normalized columns of A.

• µ(A) ≤ 1 if the columns of A are pairwise independent.

• Spark(A) > 1/µ(A) [can be shown by the Gershgorin circle’s theorem].

• Welch bound asserts

µ2 ≥ m− n
n(m− 1)

,

which roughly gives µ = O(1/
√
m) for a “well-behaved” A.
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Gershgorin circle’s theorem

Lemma 2. [Gershgorin circle’s theorem] The eigenvalues of an n×n matrix
M with entries mij, 1 ≤ i, j ≤ n, lie in the union of n discs di = di(ci, ri),
1 ≤ i ≤ n, centered at ci = mii and with radius ri =

∑
j 6=i |mij|.

Example : take M =

 4 2 3
−2 −5 8
1 0 3
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Sufficient condition using mutual coherence

Theorem 3. [Equivalence, Donoho and Elad 2002] The sparsest solution
to y = Ax is unique if ‖x‖0 < 1

2 + 1
2µ(A).

• The largest recoverable sparsity of x is k ∼ O(1/µ) = O(
√
m), which is

square-root in the number of measurements.

• This result is deterministic.

• Requires the signal to be exactly sparse, which is not always practical.
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Sparse Recovery via `1 Minimization

Since the above `0 minimization is NP-hard. We would like to take its convex
relaxation, which leads to the `1 minimization, or basis pursuit:

(BP:) x̂ = argmin
x

‖x‖1 subject to y = Ax.

• The BP algorithm does not assume knowledge of the sparsity level to perform.

• Compare this with the usual wisdom of `2 minimization:

x̂`2 = argmin
x

‖x‖2 subject to y = Ax.

which has a closed form solution

x̂`2 = A†y,

where † denotes pseudo-inverse.
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A numerical example

Let’s run an example using CVX (http://cvxr.com/cvx/).
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Geometry of basis pursuit
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Restricted isometry property

Definition 6. [Restricted Isometry Property (RIP)] If A satisfies the
restricted isometry property (RIP) with δ2k, then for any two k-sparse vectors
x1 and x2:

1− δ2k ≤
‖A(x1 − x2)‖22
‖x1 − x2‖22

≤ 1 + δ2k.

If δ2k < 1, this implies the `0 problem has a unique k-sparse solution.
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RIP matrices preserve orthogonality between sparse vectors

Proposition 2.

|〈Ax1,Ax2〉| ≤ δs1+s2‖x1‖2‖x2‖2

for all x1, x2 that are supported on disjoint subsets T1, T2 ⊂ [n] with |T1| ≤ s1

and |T2| ≤ s2.

Proof: Without loss of generality assume ‖x1‖2 = ‖x2‖2 = 1. Applying the
parallelogram identity, which says

|〈Ax1,Ax2〉| =
1

4
|‖Ax1 + Ax2‖22 − ‖Ax1 + Ax2‖22|

≤ 1

4
|2(1 + δs1+s2)− 2(1− δs1+s2)| ≤ δs1+s2.
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Restricted isometry property

Theorem 4. [Performance of BP via RIP, Candès, Tao, Romberg, 2006]
If δ2k <

√
2− 1, then for any vector x, the solution to basis pursuit satisfies

‖x̂− x‖2 ≤ C0k
−1/2‖x− xk‖1.

where xk is the best k-term approximation of x for some constant C0.

• exact recovery if x is exactly k-sparse.

• Many random ensembles (e.g. Gaussian, sub-Gaussian, partial DFT) satisfies
the RIP as soon as (we’ll return to this point)

m ∼ Θ(k log(n/k))

• The proof of theorem is particularly elegant.
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Proof of Theorem 4

Proof of Theorem 4: Set x̂ = x + h. We already show Ah = 0. The goal is to
establish that h = 0 when A satisfies the desired RIP.

The first step is to decompose h into a sum of vectors hT0, hT1, hT2, . . ., each
of sparsity at most k. Here, T0 corresponds to the locations of the k largest
coefficients of x; T1 to the locations of the k largest coefficients of hT c0 , T2 to
the locations of the next k largest coefficients of hT c0 , and so on.

The proof proceeds in two steps:

1. the first step shows that the size of h outside of T0∪T1 is essentially bounded
by that of h on T0 ∪ T1.

2. the second step shows that ‖hT0∪T1‖2 is appropriately small.
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Proof continued

Step 1: Note that for each j ≥ 2,

‖hTj‖2 ≤
√
k‖hTj‖∞ ≤

1√
k
‖hTj−1

‖1

therefore ∑
j≥2

‖hTj‖2 ≤
1√
k

∑
j≥1

‖hTj‖1 =
1√
k
‖hT c0‖1.

This allows us to bound

‖h(T0∪T1)c‖2 ≤ ‖
∑
j≥2

hTj‖2 ≤
∑
j≥2

‖hTj‖2 ≤
1√
k
‖hT c0‖1.

Given x̂ = x + h is the optimal solution, we have

‖x‖1 ≥ ‖x + h‖1 =
∑
i∈T0

|xi + hi|+
∑
i∈T c0

|xi + hi|

≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT c0‖1 − ‖xT c0‖1, (∗)
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which gives

‖hT c0‖1 ≤ ‖hT0‖1 + ‖x‖1 − ‖xT0‖1 + ‖xT c0‖1
≤ ‖hT0‖1 + 2‖xT c0‖1 := ‖hT0‖1 + 2‖x− xk‖1.

Combining with (*), we have

‖h(T0∪T1)c‖2 ≤
1√
k
‖hT c0‖1 ≤

1√
k
‖hT0‖1 +

2√
k
‖x− xk‖1.

Step 2: We next bound ‖hT0∪T1‖2. Note that

0 = Ah = AhT0∪T1 +
∑
j≥2

AhTj,

we have by RIP

(1− δ2k)‖hT0∪T1‖
2
2 ≤ ‖AhT0∪T1‖

2
2 = |〈AhT0∪T1,

∑
j≥2

AhTj〉|.
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Using Proposition 2, we have for j ≥ 2

|〈AhT0∪T1,AhTj〉| ≤ |〈AhT0,AhTj〉|+ |〈AhT1,AhTj〉|

≤ δ2k(‖hT0‖2 + ‖hT1‖2)‖hTj‖2

≤ δ2k
√

2‖hT0∪T1‖2‖hTj‖2,

which gives

(1− δ2k)‖hT0∪T1‖
2
2 ≤

∑
j≥2

|〈AhT0∪T1,AhTj〉|

≤
√

2δ2k‖hT0∪T1‖2
∑
j≥2

‖hTj‖2

≤
√

2δ2k‖hT0∪T1‖2
1√
k
‖hT c0‖1,

therefore

‖hT0∪T1‖2 ≤
√

2δ2k
(1− δ2k)

1√
k
‖hT c0‖1 ≤ ρ

1√
k

(‖hT0‖1 + 2‖x− xk‖1)
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where ρ :=
√

2δ2k
(1−δ2k)

. Since ‖hT0‖1 ≤
√
k‖hT0‖2 ≤

√
k‖hT0∪T1‖2, we can bound

‖hT0∪T1‖2 ≤
2ρ

1− ρ
‖x− xk‖1√

k
.

Finally,

‖x̂− x‖2 = ‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2

≤ ‖hT0∪T1‖2 +
1√
k
‖hT0‖1 +

2√
k
‖x− xk‖1

≤ 2‖hT0∪T1‖2 +
2√
k
‖x− xk‖1

≤ 2(1 + ρ)

1− ρ
‖x− xk‖1√

k
.

Therefore, C0 := 2(1+ρ)
1−ρ . The requirement on δ2k comes from the fact that we

need 1− ρ > 0 to avoid the bound to blow up.
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`1 recovery in the noisy case

In the presence of additive measurement noise,

y = Ax + w,

where ‖w‖2 ≤ ε is assumed to be bounded.

We can modify the BP algorithm in the following manner:

(BP-noisy:) x̂ = argmin
x

‖x‖1 subject to ‖y −Ax‖2 ≤ ε.

Theorem 5. [Performance of BP via RIP, noisy case] If δ2k <
√

2 − 1,
then for any vector x, the solution to basis pursuit (noisy case) satisfies

‖x̂− x‖2 ≤ C0k
−1/2‖x− xk‖1 + C1ε.

where xk is the best k-term approximation of x for some constants C0 and C1.
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Proof of Theorem 5

Again let’s start by assuming x̂ = x + h. The key difference from the noiseless
case is that in Step 2, we now have

‖Ah‖2 = ‖A(x̂− x)‖2 = ‖(y −Ax̂)− (y −Ax)‖2
≤ ‖y −Ax̂‖2 + ‖y −Ax‖2 ≤ 2ε.

Therefore, we need to bound

‖AhT0∪T1‖
2
2 = 〈Ah−

∑
j≥2

AhTj,AhT0∪T1〉

≤ 〈Ah,AhT0∪T1︸ ︷︷ ︸
≤2εδ2k‖hT0∪T1

‖2

〉−
∑
j≥2

〈AhTj,AhT0∪T1〉︸ ︷︷ ︸
bounded as before
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By plugging in this modification, we show

‖x̂− x‖2 = ‖h‖2 ≤
2(1 + ρ)

1− ρ
‖x− xk‖1√

k
+

2α

1− ρ
ε,

where

α =
2
√

1 + δ2k
1− δ2k

.
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Remarks

• The theorems are quite strong, in the sense it holds for all signals once A
satisfies RIP.

• The reconstruction quality relies on two quantities: the best k-term
approximation error and the noise level.

• Our generalization of the performance guarantee from the noise-free case to
the noisy case is essentially effortless. However, we do need an upper bound
of the noise level in order to perform the algorithm.

• A related algorithm is called LASSO, which has the form of

x̂lasso = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖1,

where λ > 0 is called a regularization parameter. Another related algorithm
is called Dantizg selector. Both can be analyzed in a similar manner as the
BP using RIP.
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Which matrices satisfy RIP?

• Random matrices with i.i.d. Gaussian entries satisfy RIP with high probability,
as long as

m & k log(n/k).

• Random Partial DFT matrices, A = IΩF , where IΩ is an partial identity
matrix with rows indexed by the random subset Ω, and F is the DFT matrix,
satisfy RIP with high probability, as long as

m = |Ω| & k log4 n.

• Similar results hold for random Partial Circulant/Toeplitz matrices, random
matrices with i.i.d. sub-Gaussian entries, etc...

• All these are probabilistic, in the sense if we draw a random matrix following
the stated distribution, it will satisfy the RIP with high probability (i.e.
1− exp(−cm)).
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Deterministic matrices satisfying RIP

Constructing deterministic matrices that satisfy RIP is difficult.

There’re many benefits of having deterministic constructions: fast computation,
less storage, etc..
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