
Foundations of Reinforcement Learning
Model-free RL: Monte Carlo and temporal difference (TD) learning

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2023

Many materials of this lecture are adapted/stolen from David Silver’s online lecture.

Outline

Monte Carlo policy evaluation

Temporal difference (TD) learning

Off-policy evaluation via importance sampling

1

Two approaches to RL

Model-based approach (“plug-in”)
1. build an empirical estimate P̂ for P
2. planning based on empirical P̂

Model-free approach
— learning w/o constructing model explicitly

2

Value function and Q-function

Value function of policy π: cumulative discounted reward

∀s ∈ S : V π(s) := E

[∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
Q-function of policy π:

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[∞∑
t=0

γtrt
∣∣ s0 = s, a0 = a

]
3

Recap: Bellman’s consistency equation

• V π /Qπ: value / action-value function under policy π

Bellman’s consistency equation

V π(s) = Ea∼π(·|s)
[
Qπ(s, a)

]
Qπ(s, a) = E[r(s, a)]︸ ︷︷ ︸

immediate reward

+ γ E
s′∼P (·|s,a)

[
V π(s′)︸ ︷︷ ︸

next state’s value

]

The value/Q function can be decomposed into two
parts:

• immediate reward E [r(s, a)]
• discounted value of at the successor state
γEs′∼P (·|s,a)V (s′)

Richard Bellman

4

Monte Carlo policy evaluation

5

Monte Carlo policy evaluation

Monte Carlo (MC) learns directly from experience by replacing the
expectation by empirical means.

• Sample trajectories according to π.
• Calculate the value using empirical means.

6

Monte Carlo policy evaluation

Consider a trajectory rolled out by following policy π:

s0, a0, r0, s1, a1, r1, . . . ,

The return or reward-to-go from time t is

Gt = rt + γrt+1 + γ2rt+2

• V π(s) = E[Gt|st = s];

Idea: to evaluate state s, average the reward-to-gos from time-steps that
visit state s over many trajectories.

V (s) ≈
∑
t:st=sGt∑
t:st=s 1

7

First-visit versus Every-visit

First-visit Monte Carlo:
For each episode, at the first time-step t that state s is visited in an episode.

• Increase the counter N(s)← N(s) + 1
• Increase the total return S(s)← S(s) +Gt

• Value is estimated by mean return: V (s) = S(s)/N(s)
Less bias, more variance

Every-visit Monte Carlo:
For each episode, at the every time-step t that state s is visited in an
episode.

• Increase the counter N(s)← N(s) + 1
• Increase the total return S(s)← S(s) +Gt

• Value is estimated by mean return: V (s) = S(s)/N(s)
More bias, less variance

8

Example: blackjack Monte-Carlo value estimation

Policy: stick if sum of cards ≥ 20, otherwise twist.
9

Incremental Monte Carlo update

The Monte-Carlo value update can be done in an incremental manner to
facilitate implementation.

N(st)← N(st) + 1

V (st)← V (st) + 1
N(st)

(Gt − V (st))︸ ︷︷ ︸
incremental update

The value V (st) is updated towards the actual return Gt.

This motivates a more general scheme, which is beneficial specially in
non-stationary problems, that one simply does

V (st)← V (st) + α (Gt − V (st)) ,

where α is the learning rate to enable more flexible trade-off between past
and future (e.g., forgetting faster when α > 1

N(st)).

10

Dynamic programming versus Monte Carlo

Monte Carlo does not require nor use the Markovian structure.

Dynamic programming Monte Carlo
bootstrapping sampling

Caveat of Monte Carlo methods:
• Must wait until the episode to end to calculate the reward-to-go.
• Can only be applied to MDPs when each episode terminates.
• Generally incurs a high variance, but consistent under mild conditions.

11

Temporal difference (TD) learning

12

Temporal difference (TD) learning

“If one had to identify one idea as central and
novel to RL, it would undoubtedly be TD learning.”

Richard Sutton

Temporal difference (TD) learning
• combines dynamic programming and Monte Carlo, by bootstrapping and

sampling simultaneously
• learns from incomplete episodes, and does not require the episode to

terminate
• “updates a guess towards a guess”

13

TD learning for value evaluation

• In Monte Carlo, updating the value towards the return:

V (st)← V (st) + α (Gt − V (st))

• Instead, TD updates V (St) towards estimated return rt + γV (st+1)

V (st)←− V (st) + α
(
rt + γV (st+1)︸ ︷︷ ︸

TD target

−V (st)
)

︸ ︷︷ ︸
TD error

• TD target rt + γV (st+1): sampling + bootstrapping
• TD error δt = rt + γV (st+1) − V (st)

14

TD-learning as stochastic approximation
Stochastic approximation [Robbins and Monro, 1951] for solving Bellman
equation

V = T π(V),
where the Bellman operator T π : R|S| 7→ R|S| is defined as

∀V ∈ R|S| : T π(V) = rπ + γPπV.

• Access a stochastic realization of T π(V):

T πt (V)(st) = rt + γV (st+1)

• Update V (st) by a weighted combination of old and new:

V (st)← (1− α)V (st) + αT πt (V)(st)

= V (st) + α
[
rt + γV (st+1)− V (st)

]
︸ ︷︷ ︸

temporal difference

, t ≥ 0

15

DP versus MC versus TD

Dynamic programming Monte Carlo TD learning
bootstrapping sampling bootstrapping+sampling

• TD has much lower variance than MC because of bootstrapping.
• TD learn on-the-fly because of bootstrapping.

16

Example: random walk

17

n-step TD
Let the TD target look n steps into the future

V π(s) = E
[
rt + γV π(st+1)|st = s

]
(one-step bootstrap)

= E
[
rt + γrt+1 + γ2V π(st+2)|st = s

]
(two-step bootstrap)

= · · ·

18

n-step TD

The n-step return:

G
(n)
t = rt + γrt+1 + . . .+ γnV (st+n)

• n = 1: TD target
• n =∞: MC target

The n-step TD learning:

V (st)←− V (st) + α
(
G

(n)
t − V (st)

)︸ ︷︷ ︸
TD error

• Mix-and-match: combine information over different n as the TD target,
e.g. using

1
2G

(2)
t + 1

2G
(3)
t .

19

From n-step TD to TD(λ)

Can we efficiently combine information from all time-steps?

The λ-return Gλt combines all n-step
returns using weight (1− λ)λn−1:

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t

where λ ∈ [0, 1].

The forward-view TD(λ):

V (st)← V (st) + α (Gλt − V (st))︸ ︷︷ ︸
TD error

Update towards the λ-return.

20

Forward-view TD(λ)

Gλt = (1−λ)
∞∑
n=1

λn−1G
(n)
t

Example: forward-view TD(λ) on random walk

21

From forward-view TD(λ) to backward-view TD(λ)

Forward-view TD(λ):
• Like MC, requires the episode to terminate to compute Gλt .

Question
Can we have TD(λ) run on-the-fly?

22

Eligibility traces

Credit assignment: most frequent or most recent

Eligibility traces combine both heuristics:

Et(s) = γλEt−1(s) + I(st = s), with E0(s) = 0

23

Backward-view TD(λ)

• Keep an eligible trace for every state s
• Update value V (s) for every state s, in proportional to TD-error
δt = rr+1 + γV (st+1)− V (st) and eligibility trace Et(s):

V (s)← V (s) + αδtEt(s)

When λ = 0, Et(s) = I(st = s), and it reduces to TD(0), the basic TD.

24

Equivalence of forward/backward-view TD(λ)

• Consider episodic environments (episode length T)

Theorem 1
The sum of updates is identical for forward-view and backward-view TD(λ)

T∑
t=1

αδtEt(s)︸ ︷︷ ︸
backward updates

=
T∑
t=1

α(Gλt − V (st))I(st = s)︸ ︷︷ ︸
forward updates

• Forward view provides theory

• Backward view provides mechanism

25

Forward/backward-view TD(λ)

Consider an episode where s is visited once at time-step k.
• TD(λ) eligibility trace discounts time since visit,

Et(s) = γλEt−1(s) + I(st = s) =
{

0, t < k

(γλ)t−k, t ≥ k

• Backward TD(λ) updates accumulate error online:

T∑
t=1

αδtEt(s) = α

T∑
t=k

(γλ)t−kδt = α
(
Gλk − V (sk)

)
• By end of episode it accumulates total error for λ-return

26

Telescoping in TD(λ)

TD errors telescope to λ-error (check!),

δt + (γλ)δt+1 + (γλ)2δt+2 + · · ·
= rt + γV (st+1)− V (st)
+ (γλ)rt+1 + γ(γλ)V (st+2)− γλV (st+1)
+ (γλ)2rt+2 + γ(γλ)2V (st+3)− (γλ)2V (st+2) + . . .

= −V (st) + (1− λ)λ0(rt + γV (st+1))
+ (1− λ)λ1(rt + γrt+1 + γ2V (st+2))
+ (1− λ)λ2(rt + γrt+1 + γ2rt+2 + γ3V (st+3)) + · · ·

= Gλt − V (st)

where

Gλt = (1− λ)
∞∑
n=1

λn−1 [rt + γrt+1 + . . .+ γnV (st+n)] .

27

Off-policy evaluation via importance sampling

28

Off-policy evaluation

Sometimes we are interested in evaluating policy π different from behavior
policy µ.

• Learn from observing humans or
other agents

• Re-use experience generated from
old policies

• Learn about optimal policy while
following exploratory policy

• Learn about multiple policies
while following one policy

Can we adapt our ideas so far to off-policy evaluation?

29

Importance sampling

Reevaluation an expectation over one distribution to another:

EX∼P [f(X)] =
∑

P (X)f(X)

=
∑

Q(X)P (X)
Q(X)f(X)

= EX∼Q
[
P (X)
Q(X)f(X)

]

• The importance weights: P (X)
Q(X)

• Allows evaluating a policy π (drawn from P) when sampling from
another policy µ (drawn from Q).

30

Importance sampling for off-policy Monte Carlo

Multiply importance sampling corrections along whole episode:

G
π/µ
t = π(at|st)

µ(at|st)
π(at+1|st+1)
µ(at+1|st+1) · · ·

π(aT |sT)
µ(aT |sT)Gt

Update value towards corrected return:

V (st)← V (st) + α
(
G
π/µ
t − V (st)

)
• High variance when π(a|s)

µ(a|s) is large

• Does not apply when π(a|s)
µ(a|s) is zero: behavior policy µ does not cover the

target policy π

31

Importance sampling for off-policy TD

• Weight TD target by importance sampling [Precup et al., 2001]

V (st)←− V (st) + α
(π(at|st)
µ(at|st)

(rt + γV (st+1))− V (st)
)

• Lower variance than Monte-Carlo importance sampling

32

References I

Precup, D., Sutton, R. S., and Dasgupta, S. (2001).
Off-policy temporal-difference learning with function approximation.
In ICML, pages 417–424.

Robbins, H. and Monro, S. (1951).
A stochastic approximation method.
The annals of mathematical statistics, pages 400–407.

33

	Monte Carlo policy evaluation
	Temporal difference (TD) learning
	Off-policy evaluation via importance sampling

