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Motivation

So far, we have seen that for both stochastic bandits and adversarial bandits,
the worst-case regret bound RT scales as (ignoring logarithmic factors)

Õ
(√
T
)
.

Question
Can we improve the worst-case regret, say to Õ(T 1/4) or Õ(T 1/3)?

Two paths:
• Try hard to come up with a better algorithm.
• Develop negative results that show this is impossible. Our plan!
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Why studying lower bounds?

• Lower bounds tell us the minimal price we need to pay.

• Benchmark performance: given an upper bound for certain algorithm,
how much room can we improve?

• Matching upper and lower bounds tells us the fundamental limits.
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Warm-up: basic tools
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Which distributions do the data come from?

• Consider hypothesis testing.

• Under different hypotheses, we collect data with different distributions

• The (in)ability to distinguish these distributions becomes the key

Question: how do we measure the distance between distributions?
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Distance of distributions

Definition 1 (TV distance)
For two probabilities p, q over Ω, the total variation distance is given by

dTV(p, q) = sup
A⊆Ω

p(A)− q(A) ∈ [0, 1].

Definition 2 (KL divergence)
For two probabilities p, q over Ω, the Kullback-Leibler (KL) divergence is
given by

KL(p‖q) =
∑
x∈Ω

p(x) log p(x)
q(x) .
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Examples of KL divergence

• Bernoulli distributions:

KL
(
Bern( 1+ε

2 )‖Bern( 1
2 )
)

= 1 + ε

2 log
(
1 + ε

)
+ 1− ε

2 log
(
1− ε

)
≤ 2ε2,

where the inequality follows from log(1 + x) ≤ x. Note that

KL
(
Bern( 1

2 )‖Bern( 1+ε
2 )
)
6= KL

(
Bern( 1+ε

2 )‖Bern( 1
2 )
)
!

• Gaussian distributions:

KL
(
N (µ1, σ

2)‖N (µ2, σ
2)
)

= (µ1 − µ2)2

2σ2
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Pinsker’s inequality

Pinsker’s inequality
For two probability distributions p, q over Ω, it holds that

2dTV(p, q)2 ≤ KL(p‖q).

• By definition, for any event A ⊆ Ω,

p(A)− q(A) ≤
√

1
2KL(p‖q).

• Due to asymmetry of KL divergence, we have:

2dTV(p, q)2 ≤ min {KL(p‖q),KL(p‖q)} .

• A very useful tool!

8



Toy example: binary hypothesis testing

Suppose we observe a sequence of coin flips

At
i.i.d.∼ Ber(µ), t = 1, . . . , T.

Consider two hypotheses for µ:

H0 : µ = 1
2 , H1 : µ = 1 + ε

2 .

We want to determine which hypothesis is true. Is the coin fair?

Question
How many samples do we need to collect in order to do so reliably?
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Step 1: KL divergence of the data

Denote the data distribution under two hypotheses respectively as

P0 := P (A1, A2 . . . , AT |H0)
P1 := P (A1, A2 . . . , AT |H1) .

Then, it is easy to see

KL(P1‖P0) =
T∑
i=1

KL (P(Ai|H1)‖P(Ai|H0))

= T · KL
(
Bern( 1+ε

2 )‖Bern( 1
2 )
)

≤ 2Tε2.

The KL divergence scales linear in T and quadratically in ε.
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Step 2: determine the goal

Question: what do we mean by solving the problem “reliably”?

Answer: Maybe getting a correct answer with non-trivial probability, e.g. for
some small probability of error δ,

P (learner outputs fair|H0) ≥ 1− δ/2.
P (learner outputs unfair|H1) ≥ 1− δ/2.

Let us call the event A = {learner outputs fair}, then the above leads to

P0(A) ≥ 1− δ/2, P1(A) ≤ δ/2

=⇒ P0(A)− P1(A) ≥ 1− δ.
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Step 3: applying Pinsker

By Pinsker’s inequality, we know

2(P0(A)− P1(A))2 ≤ KL(P1‖P2) ≤ 2Tε2.

Hence,

T ≥ (P0(A)− P1(A))2

ε2

≥ (1− δ)2

ε2
.

The sample size T needs to be at least

T &
1
ε2

!
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Examine the upper bound

The scaling T & 1
ε2 turns out to be sufficient too!

By Hoeffding’s inequality, we know∣∣∣∣∣ 1n
T∑
t=1

At − µ

∣∣∣∣∣ ≤
√

log(2/δ)
2T with prob. 1− δ.

By setting
√

log(2/δ)
2T ≤ ε

4 , or equivalently, T ≥ 8 log(2/δ)
ε2 , we guarantee∣∣∣∣∣ 1n

T∑
t=1

At − µ

∣∣∣∣∣ ≤ ε

4 with prob. 1− δ.

The learner compares the sample mean 1
n

∑T
t=1At with 1

2 + ε
4 .
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Lower bounds for multi-arm bandits
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Worst-case lower bound

For simplicity, we will assume all arms have a Gaussian reward distribution
N (µi, 1) for i ∈ [n].

Theorem 3 (minimax lower bound)
Let n > 1 and T ≥ n− 1. Then, for any algorithm π, there exists a mean
vector µ = [µi]1≤i≤n ∈ [0, 1]n such that

RT ≥
1
27
√

(n− 1)T .

• No algorithm can obtain a regret bound better than Ω(
√
T ).

• Stochastic bandits are easier than adversarial bandits. Lower bounds for
stochastic bandits are also applicable for adversarial bandits.

• Certifies the near-optimality of
√
T regret for UCB [Auer et al., 2002a]

and EXP3 [Auer et al., 2002b].
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Instance-dependent lower bound

[Lai and Robbins, 1985]: we might be able to say something less pessimistic
in an instance-dependent manner.

Theorem 4 (Instance-dependent lower bound)
Consider a strategy that satisfies E[RT ] = o(Tα) for any set of reward
distributions {Pi}1≤i≤n indexed by a single real parameter, any arm i with
sub-optimality gap ∆i > 0, and any α > 0. Then, the following holds

lim infT→∞
RT

log T ≥
∑

i: ∆i>0

∆i

KL(Pi‖P?)
,

where P? is the distribution of the optimal arm.

• The instance-dependent lower bound is Ω(log T ).
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Near instance-optimality of UCB
For Gaussian bandits,

KL(µi‖µ?) = ∆2
i

2 ,

then it follows that

lim infT→∞
RT

log T ≥
∑

i: ∆i>0

2
∆i
,

and
RT &

∑
i: ∆i>0

log T
∆i

.

• This almost matches with the instance-dependent upper bound of UCB,
which says (ignoring n)

RT .
∑

i:∆i>0

log T
∆i

.
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Analysis
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KL Divergence between two bandits

Lemma 5 (Divergence decomposition)
• Let ν = (P1, . . . ,Pn) be the reward distributions associated with one
n-armed bandit, and let ν′ = (P′1, . . . ,P′n) be the reward distributions
associated with another n-armed bandit.

• Fix some algorithm π and let Pν = Pνπ and Pν′ = Pν′π be the
probability measures on the bandit model {it, rt}Tt=1 induced by the
T -round interconnection of π and ν (respectively, π and ν′).

Then,

KL(Pν‖Pν′) =
n∑
i=1

Eν [Ti,T ]KL(Pi‖P′i),

where Ti,T =
∑T
t=1 I(it = i).
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Bretagnolle-Huber inequality

Figure credit: [Canonne, 2022].

Theorem 6 (Bretagnolle-Huber inequality)
For two probability distributions p, q over Ω, it follows that

dTV(p, q) ≤
√

1− e−KL(p‖q) ≤ 1− 1
2e
−KL(p‖q)

• The second bound is due to [Tsybakov, 2008].
• As a consequence, for any event A ⊆ Ω,

p(Ac) + q(A) ≥ 1
2e
−KL(p‖q).
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Proof of minimax lower bound
Step 1: identifying a pair of bandits. Fix an algorithm π.
Suppose we begin with a Gaussian bandit ν with unit variance Pi = N (µi, 1),
where µ? = µ1 > µ2 ≥ . . . ≥ µn w.l.o.g.. Let Pν be the resulting probability
measure over T -round interconnection of π and ν.

Figure credit: [Lattimore and Szepesvári, 2020] 21



Proof of minimax lower bound

Identifying the competing bandit: in view of the divergence decomposition
lemma, let

j = arg min
i>1

Eν [Ti,T ],

the arm that has been least pulled. The second bandit ν′ is then selected as

P′i =
{

Pi i 6= j
N (µj + λ, 1) i = j

,

where λ > ∆j is to be selected. Arm j is optimal in the second bandit. Call
the resulting probability measure Pν′ .
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Proof of minimax lower bound

Step 2: computing the KL divergence. It is easy to observe that

KL(Pν‖Pν′) = Eν [Tj,T ]KL(Pj‖P′j) ≤
Tλ2

2(n− 1) ,

where we used∑
i>1

Eν [Ti,T ] ≤
n∑
i=1

Eν [Ti,T ] = T =⇒ Eν [Tj,T ] ≤ T

n− 1 .

and
KL
(
N (µj , 1)‖N (µj + λ, 1)

)
= λ2

2 .
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Proof of minimax lower bound
Step 3: summing up the regrets of two bandits. By the regret
decomposition lemma,

• For the first bandit ν, since j is sub-optimal,

RT =
∑
i 6=1

∆iEν [Ti,T ] ≥ ∆jEν [Tj,T ] ≥ T∆j

2 Pν(Tj,T ≥ T/2).

• For the second bandit, since j is optimal, for any i 6= j, it follows
∆′i = µj + λ− µi = λ− (µi − µj) ≥ λ−∆j , it follows

R′T =
∑
i 6=j

∆′iEν′ [Ti,T ] ≥ T (λ−∆j)
2 Pν′(Tj,T < T/2).

Letting A = {Tj,T < T/2}, and summing these up, we have

RT +R′T ≥
T

2 min {∆j , λ−∆j}
[
Pν(A) + Pν′(Ac)

]
.
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Proof of minimax lower bound
Step 4: finishing up by Bretagnolle-Huber. By Bretagnolle-Huber,

Pν(A) + Pν′(Ac) ≥ 1
2e
−KL(Pν‖Pν′ ) ≥ 1

2 exp
(
− 2Tλ2

(n− 1)

)
.

=⇒ RT +R′T ≥
T

4 min {∆j , λ−∆j} exp
(
− Tλ2

2(n− 1)

)
.

Setting λ = 2∆j leads to

RT +R′T ≥
T

4 ∆j exp
(
−

2T∆2
j

(n− 1)

)
.

Let µ? = µ1 = ∆ and µ2, . . . , µn = 0. Set ∆j = ∆ =
√

(n− 1)/4T ≤ 1/2,
we have

RT +R′T ≥
e−1/2

8
√

(n− 1)T =⇒ max{RT , R′T } ≥
e−1/2

16
√

(n− 1)T .
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Proof of instance-dependent lower bound

We only consider Gaussian bandits.

In view of the regret decomposition lemma, it is sufficient to show for any
sub-optimal arm i,

liminfT→∞
Eν [Ti,T ]

log T ≥ 2
∆2
i

.

Let us fix a sub-optimal arm j 6= i?.

Step 1: identify the competing bandit. Motivated to the earlier proof, we
construct second bandit ν′ is then selected as

P′i =
{

Pi i 6= j
N (µj + λ, 1) i = j

,

where we set λ > ∆j , and arm j is optimal in the second bandit.
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Proof of instance-dependent lower bound

Step 2: lower bound the regret via Bretagnolle-Huber. Similar to the
earlier proof, we obtain

RT +R′T ≥
T min{∆j , λ−∆j}

4 e−KL(Pν‖Pν′ )

= T min{∆j , λ−∆j}
4 e−λ

2Eν [Tj,T ]/2,

which gives

Eν [Tj,T ] ≥ 2
λ2 log

(
T min{∆j , λ−∆j}

4(RT +R′T )

)
=⇒ λ2

2
Eν [Tj,T ]

log T ≥
[
1 + log min{∆j , λ−∆j}

4 log T − log(RT +R′T )
log T

]
.

The next step is to examine the liminf of the right-hand-side.
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Proof of instance-dependent lower bound
Step 3: taking limits to finish up. Since for any α > 0, there exist some
constant Cα > 0 such that

RT +R′T ≤ CαTα

for all T , we have

limsupT→∞
log(RT +R′T )

log T ≤ limsupT→∞
α log T + logCα

log T = α.

Since this holds for any arbitrary α > 0, it follows that

limsupT→∞
log(RT +R′T )

log T = 0.

Consequently,

liminfT→∞
λ2

2
Eν [Tj,T ]

log T ≥ 1.

Taking the infimum of both sides over λ > ∆j thus finishes the proof.
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Further pointers

The literature on bandits is vast, and we have only scratched the surface.

We will come back and visit some additional variations, e.g., when dealing
with function approximation.

Further pointers to worthy topics:
• Thompson sampling: a Bayesian approach

• Beyond EXP3: dealing with variance
—check out the homework (release by next Tuesday)!

Excellent reference: Bandit algorithms [Lattimore and Szepesvári, 2020].
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