
Foundations of Reinforcement Learning
Multi-arm bandits: adversarial bandits

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2023



Outline

Introduction and formulation

Algorithms: from full-information to bandits

Analysis

1



Introduction and formulation

2



Limitations of stochastic bandits

In stochastic bandits, the reward distributions of the stochastic bandits do
not depend on past rewards or actions, and the draws are i.i.d. over time.

This can be too restrictive, and unrealistic in practice.
• Is there a reward distribution?
• Are the rewards i.i.d.?

3



Adversarial bandits

Idea: make minimal assumptions about reward generation, and compete with
the best action in hindsight.

For an n-arm adversarial bandit,

• the rewards are in the interval [0, 1]
• in each round t, the reward vector
rt = [ri,t]1≤i≤n is an arbitrary sequence

• all rewards are determined before action
is taken

4



Example

Let n = 3, consider the following arbitrary rewards ...

k t = 1 t = 2 t = 3 t = 4 . . .
1 0.1 0.7 0.4 0.3
2 0.5 0.1 0.6 0.1
3 0.8 0.4 0.4 0.8

• If action = arm 1,
∑4
t=1 r1,t = 0.1 + 0.7 + 0.4 + 0.3 = 1.5;

• If action = arm 2,
∑4
t=1 r2,t = 0.5 + 0.1 + 0.6 + 0.1 = 1.4;

• If action = arm 3,
∑4
t=1 r3,t = 0.8 + 0.4 + 0.4 + 0.8 = 2.4;

• The best arm is arm 3.
• The best arm might change with the rewards.

Can we compete with the best arm no matter what the rewards are?

5



Performance metric: regret

Definition 1 (Expected regret)
The expected regret over T rounds for an action selection rule is defined as

RT (r) = max
1≤i≤n

T∑
t=1

ri,t −
T∑
t=1

E [rit,t] ,

where the expectation is over the randomness of the learner’s actions, and
r := {rt}Tt=1 is the reward. The worst-case regret over all rewards is

R?T = sup
r∈[0,1]T ×n

RT (r).

• Minimizing the regret has a “min-max” flavor.

Goal: achieve sublinear regret R?T = o(T ).

6



Algorithms: from full-information to bandits

7



The power of randomization

• Exploration vs exploitation remains an important issue.
• Exploitation appears to be even more dangerous.

• adversary can “exploit our exploitation”.

Example: Let n = 3, the selection of the learner is given in red.

k t = 1 t = 2 t = 3 t = 4 . . .
1 0.1 0.7 0 0
2 0 0.1 0.6 0.1
3 0.8 0 0.4 0.8

• For learner,
∑4
t=1 r

′
it,t

= 0 + 0 + 0 + 0 = 0.
• R4(r′) = maxi=1,2,3

∑4
t=1 r

′
i,t = 2. High regret!

8



The power of randomization

Without randomization in actions, the regret can be linear.

A construction: for any deterministic sequence of actions {it}Tt=1, we can
construct a reward sequence such that

∀t : ri,t =
{

0 i = it
1 otherwise

By construction,

n∑
i=1

T∑
t=1

ri,t = (n− 1)T =⇒ max
1≤i≤n

4∑
t=1

ri,t ≥
(n− 1)T

n
.

=⇒ Rn(r) = max
1≤i≤n

T∑
t=1

ri,t −
T∑
i=1

rit,t︸ ︷︷ ︸
=0

≥ (n− 1)T
n

!

9



Detour: bandits with full information

Randomization: Let pt = [pi,t] be the
probability of choosing different arms in round t.

How to design/update pt?

Detour: Let’s visit the bandit problem with full information, where we
observe the entire reward vector

rt = [r1,t, r2,t, . . . , rn,t].

This is also known as online learning with expert advice, often formulated
with losses rather than rewards. A huge field!

10



Exponential weight algorithm
Recall the regret

RT (r) = max
1≤i≤n

T∑
t=1

(ri,t − Eit∼pt
[rit,t]) .

Exponential-weight algorithm: assign a higher probability to arms with
better performance according to exponential weights
[Vovk, 1990, Littlestone and Warmuth, 1994]:

pi,t+1 ∝ exp
(
η

t∑
`=1

ri,`

)
=

exp
(
η
∑t
`=1 ri,`

)∑n
i=1 exp

(
η
∑t
`=1 ri,`

) , 1 ≤ i ≤ n

where η > 0 is some parameter.
• The randomness ensures exploration: even arms with 0 cumulative

rewards so far get chances
• Higher weights encourage exploitation: η controls the trade-off

exploitation and exploration
11



A bit more discussions

Incremental update:

pi,t+1 ∝ exp
(
η

t∑
`=1

ri,`

)
∝ pi,t · eηri,t

• A multiplicative combination of history information and new information

This algorithm has many names, e.g. multiplicative weight updates (MWU)
method, Hedge, and was rediscovered many times in different contexts; see
[?] for more information.

12



Exponential weight algorithm with full information

1 Initialization: set p1 as a uniform distribution over [n]; set Si,0 = 0 for
i ∈ [n]; parameter η > 0.

2 For each round t = 1, 2, . . . , T :
• Observe the reward ri,t for i ∈ [n], and update the cumulative reward

Si,t = Si,t−1 + ri,t.

• Update the sampling probability over arms

pi,t+1 ∝ exp
(
ηSi,t

)
.

What is the regret of exponential weight algorithm?

RT (r) = max
1≤i≤n

T∑
t=1

(ri,t − E [rit,t]) = max
1≤i≤n

T∑
t=1

ri,t −
T∑
t=1

n∑
i=1

pi,tri,t.

13



Regret of exponential weight algorithm

Theorem 2 (Regret under full information)
The exponential weights algorithm with parameter η > 0 incurs regret

R?T = sup
r∈[0,1]T ×n

RT (r) ≤ Tη + logn
η

.

Choosing η =
√

logn/T gives

R?T ≤ 2
√
T logn.

sublinear regret!

Can we translate this back to the bandit setting?

14



Back to bandits

In bandits, we only observe rit,t for the pulled arm it!

A general recipe:
• Step 1: estimate the entire reward vector
• Step 2: plug this into the full-information algorithm

Importance-sampling estimator:

r̃i,t = ri,t
pi,t

Iit=i =
{ rit,t

pit,t
i = it

0 otherwise

or equivalently

r̃t =
[
0, . . . , rit,t

pit,t
, . . . , 0

]
.

This is an unbiased estimate of the reward vector: E[r̃i,t] = ri,t.

15



EXP3 for adversarial bandits

[Auer et al., 2002]: EXP3 = Exponential-weight algorithm for Exploration
and Exploitation

1 Initialization: set p1 as a uniform distribution over [n]; set S̃i,0 = 0 for
i ∈ [n]; parameter η > 0.

2 For each round t = 1, 2, . . . , T :
• Draw an arm it from the distribution pt;
• For each arm i ∈ [n], compute the estimated reward

r̃i,t = ri,t

pi,t
Iit=i

and update the cumulative reward S̃i,t = S̃i,t−1 + r̃i,t.
• Update the sampling probability over arms

pi,t+1 ∝ exp
(
ηS̃i,t

)
.

16



Regret of EXP3

Theorem 3 (Regret of EXP3)
The EXP3 algorithm with parameter η > 0 incurs regret

R?T ≤ nTη + logn
η

.

• The first term is worse by a factor of n compared with the
full-information case;

• Choosing η =
√

logn/(nT ) gives

R?T ≤ 2
√
nT logn.

• Adversarial bandits are not harder than stochastic bandits: matches the
worst-case regret bound Õ(

√
nT ) of UCB for stochastic bandits.

17



Analysis

18



Roadmap

• We will first prove the regret bound for the full-information setting.

• We then adapt it to the bandit setting.

19



Proof of Theorem 2 (full information)

Step 1: introduce the “magic” measure of progress (log-sum-exp):

Φt = 1
η

log
(

n∑
i=1

exp(ηSi,t)
)

Recall that pi,t+1 = exp
(
ηSi,t

)∑n

i=1
exp
(
ηSi,t

) .
Basic facts:

• Φ0 = 1
η logn.

• ΦT = 1
η log (

∑n
i=1 exp(ηSi,T )) ≥ 1

η log (exp(ηSi,T )) = Si,T , for i ∈ [n];
in other words, ΦT upper bounds the performance of individual arms,
the first term in the regret.

20



Proof of Theorem 2 (full information)

Step 2: understand the temporal difference of Φt.

Φt − Φt−1 = 1
η

log
(

n∑
i=1

eηSi,t

)
− 1
η

log
(

n∑
i=1

eηSi,t−1

)

= 1
η

log
∑n
i=1 e

ηSi,t−1eηri,t∑n
i=1 e

ηSi,t−1

= 1
η

log
n∑
i=1

eηSi,t−1∑n
i=1 e

ηSi,t−1
eηri,t

= 1
η

log
n∑
i=1

pi,te
ηri,t ,

which is linked to the sampling probabilities.

21



Proof of Theorem 2 (full information)

Step 2 - continued: deconstructing the log-sum, using basic facts:

Φt − Φt−1 = 1
η

log
n∑
i=1

pi,te
ηri,t

≤ 1
η

log
n∑
i=1

pi,t
(
1 + ηri,t + η2r2

i,t

)
(ex ≤ 1 + x+ x2)

≤ 1
η

log
(

1 + η

n∑
i=1

pi,tri,t + η2
n∑
i=1

pi,tr
2
i,t

)

≤
n∑
i=1

pi,tri,t + η

n∑
i=1

pi,tr
2
i,t (log(1 + x) ≤ x)

• ∀x : log(1 + x) ≤ x
• For x ≤ 1 : ex ≤ 1 + x+ x2

22



Proof of Theorem 2 (full information)
Step 3: by telescoping

ΦT − Φ0 =
T∑
t=1

(Φt − Φt−1) ≤
T∑
t=1

n∑
i=1

pi,tri,t + η

T∑
t=1

n∑
i=1

pi,tr
2
i,t.

Therefore,

RT (r) = max
1≤i≤n

Si,T −
T∑
t=1

n∑
i=1

pi,tri,t ≤ ΦT −
T∑
t=1

n∑
i=1

pi,tri,t (Si,T ≤ ΦT )

≤ Φ0 + η

T∑
t=1

n∑
i=1

pi,tr
2
i,t

≤ 1
η

logn+ η

T∑
t=1

n∑
i=1

pi,t (Φ0 ≤
1
η

logn)

≤ logn
η

+ ηT.
(∑

i

pi,t = 1
)

23



Proof of Theorem 3 (bandit)

We highlight the differences from the full-information case.

Step 1: introduce a measure of progress (log-sum-exp)

Φt = 1
η

log
(

n∑
i=1

exp(ηS̃i,t)
)

Basic facts:
• Φ0 = 1

η logn.

• ΦT = 1
η log

(∑n
i=1 exp(ηS̃i,T )

)
≥ S̃i,T , i ∈ [n]

• E[ΦT ] ≥ E[S̃i,T ] = Si,T .

24



Proof of Theorem 3 (bandit)
Step 2: understand the temporal difference of Φt.

Φt − Φt−1 = 1
η

log
(

n∑
i=1

eηS̃i,t

)
− 1
η

log
(

n∑
i=1

eηS̃i,t−1

)

= 1
η

log
∑n
i=1 e

ηS̃i,t−1eηr̃i,t∑n
i=1 e

ηS̃i,t−1

= 1
η

log
n∑
i=1

eηS̃i,t−1∑n
i=1 e

ηS̃i,t−1
eηr̃i,t

= 1
η

log
n∑
i=1

pi,te
ηr̃i,t

By same arguments, we obtain

Φt − Φt−1 ≤
n∑
i=1

pi,tr̃i,t + η

n∑
i=1

pi,tr̃i,t
2.

25



Proof of Theorem 3 (bandit)

Step 3: telescoping

ΦT − Φ0 ≤
T∑
t=1

n∑
i=1

pi,tr̃i,t + η

T∑
t=1

n∑
i=1

pi,tr̃i,t
2,

which leads to

E[ΦT ]− Φ0 ≤
T∑
t=1

n∑
i=1

pi,tri,t + η

T∑
t=1

n∑
i=1

r2
i,t

after taking expectations using

E[r̃i,t] = ri,t E[r̃i,t2] =
r2
i,t

pi,t
.

26



Proof of Theorem 3 (bandit)

Step 4: finishing up.

RT (r) = max
1≤i≤n

Si,T −
T∑
t=1

n∑
i=1

pi,tri,t

≤ E[ΦT ]−
T∑
t=1

n∑
i=1

pi,tri,t

≤ Φ0 + η

T∑
t=1

n∑
i=1

r2
i,t

≤ logn
η

+ ηnT.

27



References I

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002).
The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48–77.

Littlestone, N. and Warmuth, M. K. (1994).
The weighted majority algorithm.
Information and Computation, 108(2):212–261.

Vovk, V. G. (1990).
Aggregating strategies.
In Proceedings of the third annual workshop on Computational learning theory, pages 371–386.

28


	Introduction and formulation
	Algorithms: from full-information to bandits
	Analysis

