
Foundations of Reinforcement Learning
Multi-arm bandits: stochastic bandits

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2023



Outline

Introduction and formulation

From ε-greedy to UCB algorithm

Analysis of UCB algorithm

1



Introduction and formulation

2



A/B testing

How do you decide which variation leads to higher traffic/revenue?

Figure credit: internet.

A/B testing: explore each variation equally first, then deploy the statistically
better one.

3



From A/B testing to multi-arm bandits

Figure credit: internet.

Multi-arm bandits: simultaneous exploration and exploitation, dynamic
allocation.

4



Multi-arm bandit

Which slot machine will give me the most money?

First proposed in [Thompson, 1933], popularized by [Robbins, 1952]

5



Learning the best arm

Can we learn which slot machine gives the most money?

$1
$0
$0

$1
$4
$0
$2
$1
$3
$5

$1
$0
$1
$2

6



Formulation

We can play multiple rounds t = 1, 2, . . . , T .

In each round, we select an arm it from a fixed set i = 1, 2, . . . , n; and
observe the reward rt that the arm gives.

Arm 1 Arm 2 Arm 3

Objective: Maximize the total reward over time.

7



Stochastic bandit

• The reward at each arm is stochastic (e.g., 1 with probability pi and
otherwise 0).

• Suppose the rewards are independent over time. The best arm is then
the arm with highest expected reward.

Example of online ads: arm = ad, reward = 1 if the user clicks on the ad
and 0 otherwise

8



Stochastic bandit with i.i.d. rewards

We consider a simple setting with i.i.d. bounded rewards.

• Each arm distributes rewards according to some (unknown) distribution
over [0, 1], with

E[ri,t] = µi, ∀i ∈ [n], t = 1, 2 . . .

• Suppose we play arm it at round t, and receive the reward

rit,t

drawn i.i.d. from the arm it’s distribution.

Partial information: Every round we cannot observe the reward of all arms:
we just know the reward of the arm that we played.

9



Regret: performance metric

We design algorithms that determine the sequence {it}, i.e. policies.

How to evaluate the performance?

Definition 1 (Expected regret)
The expected regret over T rounds is defined as

RT = max
1≤i≤n

E

[
T∑

t=1
(ri,t − rit,t)

]
= Tµ? − E

[
T∑

t=1
rit,t

]
,

where µ? = max1≤i≤n µi is the highest expected reward over all arms.

• 1st term captures the highest cumulative reward in hindsight.
• 2nd term captures the actual accumulated reward.

10



Regret decomposition lemma

Since E[rit,t] = E [
∑n

i=1 µiIit=i] =
∑n

i=1 µi (EIit=i), then

RT =
T∑

t=1

[
n∑

i=1
µ? (EIit=i)−

n∑
i=1

µi (EIit=i)
]

=
n∑

i=1
∆iE

[
T∑

t=1
Iit=i

]

=:
n∑

i=1
∆iE [Ti,T ]

where
• ∆i = µ? − µi is the sub-optimality gap of arm i;
• Ti,T =

∑T
t=1 Iit=i is the number of times arm i is played in T rounds.

11



Sublinear regret
Sublinear regret: most MAB algorithms aim to achieve sublinear regret, so
that the average regret goes to 0 as T →∞:

lim
T→∞

RT

T
= 0

12



From ε-greedy to UCB algorithm

13



Learning the best arm via trial-and-error

Which arm do I pick next, so that I maximize my reward over time?

$1
$0
$0

$1
$4
$0
$2
$1
$3
$5

$1
$0
$1
$2

$12
$11

14



Exploration-exploitation trade-off

Which arm should I play?
• Best arm observed so far? (exploitation)
• Or should I look around to try and find a better arm? (exploration)

We need both in order to maximize the total reward.

15



An ε-greedy approach

Exploit, but explore a random arm ε fraction of the time.

1 Initial phase: Try each arm and observe the reward.

2 For each round t = n+ 1, . . . , T :
• Calculate the empirical average reward for each arm i:

µi,t = total reward from pulling this arm in the past
number of times I pulled this arm =

∑
t:it=i

rt∑
t:it=i

1
,

where it is the index of the arm played at time t, rt is the reward.

• With probability 1 − ε, play the arm with highest µi,t and observe the
reward. Otherwise, choose an arm at random and observe the reward.

16



Understanding ε-greedy

• In the first thousand iterations, all arms are chosen fairly frequently.
• Eventually the algorithm realizes that arm 5 has the highest expected

reward.
17



Regrets of greedy policies

Figure credit: David Silver’s lecture.

• Greedy policy incurs linear regret since it can lock on a sub-optimal
policy.

• ε-greedy always explores by ε fraction and therefore its regret is still
linear (recall the regret decomposition lemma).

• Decaying ε helps, however it is hard to design the schedule.
18



The UCB algorithm

[Auer et al., 2002]: the idea is to always try the best arm, where “best”
includes exploration and exploitation.

1 Initial phase: try each arm and observe the reward.

2 For each round t = n+ 1, . . . , T :
• Calculate the UCB (upper confidence bound) index for each arm i:

UCBi,t = µi,t +
√

log t
Ti,t

,

where µi,t is the empirical average reward for arm i and Ti,t is the
number of times arm i has been played up to round t.

• Play the arm with the highest UCB index and observe the reward.

19



Understanding UCB

UCBi,t = µi,t +

√
log t
Ti,t

,

• Exploitation: µi,t is the average observed reward. High observed rewards
of an arm leads to high UCB index.

• Exploration:
√

log t
Ti,t

decreases as we make more observations (Ti,t

grows). Few observations of an arm leads to high UCB index.

20



Theory of UCB algorithm

Theorem 2 (Instance-dependent regret bound of UCB)
For T ≥ n, the expected regret of UCB algorithm is upper bounded as

RT ≤
∑

i:∆i>0

(
4 log T

∆i
+ 8∆i

)
≤

∑
i:∆i>0

4 log T
∆i

+ 8n,

where ∆i = µ? − µi is the sub-optimality gap of arm i.

• The regret bound scales with the harmonic mean of the gaps,

RT .
n log T

harmonic mean({∆i})
.

• E.g. ∆2 = 1
2 , ∆3 = 1

2 , harmonic mean = 1
2 .

• E.g. ∆2 = 1
10 , ∆3 = 1

2 , harmonic mean = 1
6 .

• When ∆i’s are constants, the regret scales as (ignoring n)
RT = O

(
log T

)
,

which is nearly the best we can hope for! (We’ll see why later.)
21



Gap-free bound of UCB algorithm

The gap-dependent bound may become too loose when ∆i is, say,
asymptotically small, ∆i ∼ log T/T .

Fortunately, this can be fixed by studying the following instance-independent
(aka worst-case) bound.

Theorem 3 (Instance-independent regret bound of UCB)
For T ≥ n, the expected regret of UCB algorithm is upper bounded as

RT ≤ 4
√
nT log T + 8n.

• When n = O(1), the regret scales as

RT = O
(√

T log T
)

= Õ
(√
T
)

• The logarithmic factor can be shaved away [Audibert and Bubeck, 2009].

22



Analysis

23



Toolkit: Hoeffding’s inequality

Theorem 4 (Hoeffding’s inequality)
Let X1, X2, . . . , Xn be independent random variables satisfying
ai ≤ Xi ≤ bi. Then for all δ ≥ 0,

P

(∣∣∣∣∣
n∑

i=1
Xi − E

[ n∑
i=1

Xi

]∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

Setting ai = 0, bi = 1, and E[Xi] = µ, we obtain

P

(∣∣∣∣∣ 1n
n∑

i=1
Xi − µ

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2nε2)

=⇒

∣∣∣∣∣ 1n
n∑

i=1
Xi − µ

∣∣∣∣∣ ≤
√

log(2/δ)
2n with prob. 1− δ.

This will allow us to talk about how the mean reward concentrates around
the true mean.

24



Implications of Hoeffding’s inequality

For each arm i at time t, with probability at least 1− 2/t2,

∣∣µi,t − µi

∣∣ <√ log t
Ti,t

=⇒ UCBi,t = µi,t +

√
log t
Ti,t

≥ µi.

Optimism in the face of uncertainty:
acting according to the UCB index, which
is an upper bound of the true mean µi.

25



Bound the number of sub-optimal pulls
Recall that

RT =
n∑

i=1
∆i E [Ti,T ]︸ ︷︷ ︸

control target

.

Key observation: at each t, the UCB index of the sub-optimal arms i 6= i?

will be sufficiently apart from the optimal one and arm i will not get pulled
(i.e. it+1 6= i), as long as Ti,t is sufficiently large:

UCBi,t = µi,t +

√
log t
Ti,t

≤ µi + 2

√
log t
Ti,t

(Hoeffding)

≤ µi? ≤ UCBi?,t (optimism/Hoeffding)

as long as
Ti,t ≥

4 log t
∆2

i

with probability at least 1− 4/t2 (we applied Hoeffding twice).
26



Bound the number of sub-optimal pulls

E [Ti,T ] ≤ E

[
T−1∑
t=0

I(it+1 = i)
]

= E

[
T−1∑
t=0

I
(
it+1 = i, Ti,t <

4 log t
∆2

i

)]
+ E

[
T−1∑
t=0

I
(
it+1 = i, Ti,t ≥

4 log t
∆2

i

)]

≤ 4 log T
∆2

i

+
T−1∑
t=n

P
(
it+1 = i, Ti,t ≥

4 log t
∆2

i

)

≤ 4 log T
∆2

i

+
T−1∑
t=n

P
(
it+1 = i

∣∣Ti,t ≥
4 log t

∆2
i

)
P
(
Ti,t ≥

4 log t
∆2

i

)

≤ 4 log T
∆2

i

+
T−1∑
t=n

4
t2

≤ 4 log T
∆2

i

+ 8.

27



A key lemma

Lemma 5 (bounding the number of pulls of sub-optimal arms)
For any arm with ∆i > 0, it holds that

E [Ti,T ] ≤ 4 log T
∆2

i

+ 8.

Proof of Theorem 2:

RT =
n∑

i=1
∆iE [Ti,T ] ≤

∑
∆i>0

∆i

(
4 log T

∆2
i

+ 8
)

=
∑

∆i>0

(
4 log T

∆i
+ 8∆i

)
.

28



From gap-dependent to gap-independent bounds
Intuition: for some ∆ to be determined later,

• For arms {i : ∆i ≥ ∆} with large gaps: use the gap-dependent bound

E [Ti,T ] ≤ 4 log T
∆2

i

+ 8;

• For arms {i : ∆i < ∆} with small gaps: use the naive bound∑
i

E [Ti,T ] ≤ T.

Hence,

RT =
n∑

i=1
∆iE [Ti,T ] ≤

∑
i: ∆i≥∆

∆i

(
4 log T

∆2
i

+ 8
)

+
∑

i: ∆i<∆

∆iE [Ti,T ]

≤ 4n log T
∆ + 8n+ ∆T.

Choosing ∆ =
√

4n log T
T , we obtain RT ≤ 4

√
nT log T + 8n.

29



References I

Audibert, J.-Y. and Bubeck, S. (2009).
Minimax policies for adversarial and stochastic bandits.
In COLT, pages 217–226.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256.

Robbins, H. (1952).
Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527–535.

Thompson, W. R. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples.
Biometrika, 25(3-4):285–294.

30


	Introduction and formulation
	From -greedy to UCB algorithm
	Analysis of UCB algorithm

