Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023

Outline

Introduction and formulation

From e-greedy to UCB algorithm

Analysis of UCB algorithm

Introduction and formulation

A /B testing

How do you decide which variation leads to higher traffic/revenue?

i

50% FACEBOOK USERS

SEE _—

i,

50% FACEBOOK USERS

SEE —

Figure credit: internet.

A /B testing: explore each variation equally first, then deploy the statistically
better one.

From A/B testing to multi-arm bandits

o A/BTesting * MAB Algorithm

Option A
Option A

Option B

Option C

Time Time

High Value B Medium Value B Llow Value

Figure credit: internet.

Multi-arm bandits: simultaneous exploration and exploitation, dynamic
allocation.

Multi-arm bandit

Which slot machine will give me the most money?

bibblio

First proposed in [Thompson, 1933], popularized by [Robbins, 1952]

Learning the best arm

Can we learn which slot machine gives the most money?

Formulation

We can play multiple rounds t =1,2,...,T.

In each round, we select an arm i; from a fixed set i = 1,2,...,n; and
observe the reward r; that the arm gives.

Arm 1

Objective: Maximize the total reward over time.

Stochastic bandit

Arm 1 Arm 2 Arm 3 Arm 4 Arm 5

e The reward at each arm is stochastic (e.g., 1 with probability p; and
otherwise 0).

e Suppose the rewards are independent over time. The best arm is then
the arm with highest expected reward.

Example of online ads: arm = ad, reward = 1 if the user clicks on the ad
and 0 otherwise

Stochastic bandit with i.i.d. rewards

We consider a simple setting with i.i.d. bounded rewards.

e Each arm distributes rewards according to some (unknown) distribution
over [0, 1], with

Elri¢] =pi, Yien], t=1,2...
e Suppose we play arm i; at round t, and receive the reward
Tyt

drawn i.i.d. from the arm ;s distribution.

Partial information: Every round we cannot observe the reward of all arms:
we just know the reward of the arm that we played.

Regret: performance metric

We design algorithms that determine the sequence {i;}, i.e. policies.

How to evaluate the performance?

Definition 1 (Expected regret)

The expected regret over T' rounds is defined as

T
§ 7"7, R th t
t=1

Ry = max E
1<i<n

=T —E

T
E Tigt| s
t=1

where ¥ = maxj<;<p i is the highest expected reward over all arms.

e 1st term captures the highest cumulative reward in hindsight.

e 2nd term captures the actual accumulated reward.

10

Regret decomposition lemma

Since Er;, +] = E D7 pilli,=i] = 21—, pi (El;,=;), then

Rr = Z lz ,u* (Eﬂit:i) - Z 122 (E}Iit—i>‘|

t=1 Li=1 i=1
n T

> AE [Z Hit:i]

i=1 t=1

=: Z AZE [E,T]
i=1

where

o A, = pu* — p; is the sub-optimality gap of arm ¢;

o Iir= ZtT:l I;,—; is the number of times arm i is played in T" rounds.

11

Sublinear regret

Sublinear regret: most MAB algorithms aim to achieve sublinear regret, so
that the average regret goes to 0 as T' — oc:

Sublinear regret

Linear regret

12

From e-greedy to UCB algorithm

13

Learning the best arm via trial-and-error

Which arm do | pick next, so that | maximize my reward over time?

$12
$11

14

Exploration-exploitation trade-off

Which arm should | play?

e Best arm observed so far? (exploitation)

e Or should | look around to try and find a better arm? (exploration)

We need both in order to maximize the total reward.

15

An e-greedy approach

Exploit, but explore a random arm ¢ fraction of the time.

@ Initial phase: Try each arm and observe the reward.

@ Foreachroundt=n+1,...,T:
e Calculate the empirical average reward for each arm i:

total reward from pulling this arm in the past Zm’t:i Tt
number of times | pulled this arm - Dt L '

Ky =

where i, is the index of the arm played at time ¢, r; is the reward.

e With probability 1 — ¢, play the arm with highest 7z, , and observe the
reward. Otherwise, choose an arm at random and observe the reward.

16

Understanding e-greedy

e-greedy

a ——.a e e s B P O

(] 0 000 a0 £ 0000

Trial

e In the first thousand iterations, all arms are chosen fairly frequently.

e Eventually the algorithm realizes that arm 5 has the highest expected
reward.

17

Regrets of greedy policies

Total regret

greedy

/

Tecaying e-greedy

Time-steps

Figure credit: David Silver’s lecture.

e Greedy policy incurs linear regret since it can lock on a sub-optimal

policy.

o c-greedy always explores by € fraction and therefore its regret is still
linear (recall the regret decomposition lemma).

e Decaying ¢ helps, however it is hard to design the schedule.

18

The UCB algorithm

[Auer et al., 2002]: the idea is to always try the best arm, where "best”
includes exploration and exploitation.

@ Initial phase: try each arm and observe the reward.

Q@ Foreachroundt=n+1,...,T:

e Calculate the UCB (upper confidence bound) index for each arm i:

logt

UCB;: = 11, s
St luz,t + Ti,t

where [i; , is the empirical average reward for arm i and T; + is the
number of times arm ¢ has been played up to round t.

e Play the arm with the highest UCB index and observe the reward.

19

Understanding UCB

P m—Y
© —
g .
g H“ G)
é 7(1)
Arm 1 Arm 2 Arm 3 -
logt
UCB,, = Ti; :
it /’[’Z,t + Ti,t

e Exploitation: 1, , is the average observed reward. High observed rewards
of an arm leads to high UCB index.

e Exploration: /% f

T;
grows). Few observations of an arm leads to high UCB index.

decreases as we make more observations (T; ;

Theory of UCB algorithm

Theorem 2 (Instance-dependent regret bound of UCB)
For T > n, the expected regret of UCB algorithm is upper bounded as

41 41
Rp< (25T+8Ai)< > Zg + 8n,

2:A; >0 :A; >0 v

where A; = p* — p; is the sub-optimality gap of arm i.

e The regret bound scales with the harmonic mean of the gaps,
R nlogT
T~ harmonic mean({A;})’

e Eg. Ay =1, A3z =1, harmonic mean = 1.

e Eg Ax= ﬁ, Az = % harmonic mean = é_
e When A;'s are constants, the regret scales as (ignoring n)
Rr =0O(logT),

which is nearly the best we can hope for! (We'll see why later.)

21

Gap-free bound of UCB algorithm

The gap-dependent bound may become too loose when A; is, say,
asymptotically small, A; ~ logT/T.

Fortunately, this can be fixed by studying the following instance-independent
(aka worst-case) bound.

Theorem 3 (Instance-independent regret bound of UCB)
For T > n, the expected regret of UCB algorithm is upper bounded as

Ry < 4+/nTlogT + 8n.
e When n = O(1), the regret scales as

Ry = O(\/TlogT) = 5(@)

e The logarithmic factor can be shaved away [Audibert and Bubeck, 2009].

22

Analysis

23

Toolkit: Hoeffding's inequality

Theorem 4 (Hoeffding’s inequality)
Let X1,Xs,...,X,, be independent random variables satisfying

a; < X; <b;. Then for all § >0,
>c| <26 (267)
2 SzeXpl—=n 57 3 |-
> iea (b — a;)?

P (3o X, fIE[ZXl}
i=1 i=1
Setting a; = 0, b; = 1, and E[X;] = p, we obtain
P l zn:)f
n L i T M
log(2/4)

1 n
— ZXi — ,u‘ <y — with prob. 1 — 4.
n 2n

> 5> < 2exp (—2n52)

=

This will allow us to talk about how the mean reward concentrates around
the true mean.

24

Implications of Hoeffding’s inequality

For each arm ¢ at time ¢, with probability at least 1 — 2/t2,

_ logt
Hip — M| < \/7
|)t | Ti,t
_ logt
= UCB;: =m; . + T > .
it

Optimism in the face of uncertainty:
acting according to the UCB index, which
is an upper bound of the true mean p;.

25

Bound the number of sub-optimal pulls

Recall that

Rr =) AE[T1].

control target

Key observation: at each ¢, the UCB index of the sub-optimal arms i # i*

will be sufficiently apart from the optimal one and arm ¢ will not get pulled
(i.e. 4441 # 1), as long as T; ; is sufficiently large:

/1 1
UCB;: =, + og i + 2 og (Hoeffding)

< i <UCB;+ ¢ (optimism/Hoeffding)

as long as
4logt

A2

Tii >

s

with probability at least 1 — 4/t% (we applied Hoeffding twice).

26

Bound the number of sub-optimal pulls

T—1
E [Tz T] <E l]I(lt+1 = Z)‘|
t=0
T-1
4logt 4logt
ZH<LL+1LT1L og >] E H<it+1_iaTi,t2 :g)
t=0 @

IN

27

A key lemma

Lemma 5 (bounding the number of pulls of sub-optimal arms)
For any arm with A; > 0, it holds that

Alog T
E[T,] < —28

T <5+

Proof of Theorem 2:

RT—ZAE L 7] ZA(“OgT)
=1

A;>0

_ 4logT
= Z(A +8A,).

A; >0 v

28

From gap-dependent to gap-independent bounds

Intuition: for some A to be determined later,
e For arms {i: A; > A} with large gaps: use the gap-dependent bound

4logT

E[T;r] < A TS
e For arms {i: A; < A} with small gaps: use the naive bound
Y E[Tig] <T.
Hence,
- 4100
Rp=Y AE[Tir]< > A ()+ > AEI[T 1]
i=1 i Ay>A i A<A
dnlogT
< 8L 4 8n +AT.

Choosing A = \/%, we obtain Ry < 4y/nTlogT + 8n.

29

References |

B
[

Audibert, J.-Y. and Bubeck, S. (2009).
Minimax policies for adversarial and stochastic bandits.
In COLT, pages 217-226.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235-256.

Robbins, H. (1952).

Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527-535.

Thompson, W. R. (1933).

On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples.

Biometrika, 25(3-4):285-294.

30

	Introduction and formulation
	From -greedy to UCB algorithm
	Analysis of UCB algorithm

