Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023



Outline

Sample-efficient RL in linear MDP

Sample-efficient RL under realizability



Recap: finite-horizon episodic MDP

action
ap ~ mh(-|sn)

reward

Th = 1(Sh, an I
“===~1 environment (¢ — -

next state
Shy1 ~ Pu(:|sn,an)

H': horizon length

S: state space with size S e A: action space with size A
rh(sh,an) € [0, 1]: immediate reward in step h

= {Wh}thl: policy (or action selection rule)

Py, (-|s,a): transition probabilities in step h



Value function and Q-function
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next state
She1 ~ Pu(-sn,an)

® execute policy 7 to generate sample trajectory



Bellman’s optimality eq. for finite-horizon MDPs
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action
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<
next state
Sna1 ~ Pu(:|sn, an)

Let Q5 (s,a) = max, Q7 (s,a) and V;*(s) = max, V;7(s) .
@ Begin with the terminal step h = H + 1:
V}*I+1 =0, Q*HH = 0.
@ Backtrack h=H,H —1,...,1:
Qi(s,a) :=E[rn(sn an)] + Eyop, (15,0) Vs (s)

immediate reward next step’s value

Vi(s) = max Qi(s.a),  mh(s) = argmax Q}(s.a).
acA acA



Sample-efficient RL in linear MDP



Linear MDP

Linear MDP: the transition kernel Py (s’|s,a) and the reward r1,(s,a) can be
decomposed by

Pu(s'ls, a) = (¢(s,a), pj,(s)) ra(s,a) = (¢(s,a), 0})

where
wp:S—RY and 6; € RY.



Feature map in linear MDP

We assume the feature map ¢(s, a) is known, and

sup [|¢(s, a)lls < 1.

s,a

® Tabular MDP: pick ¢(s,a) as one-hot vector for each (s,a) pair.

® Soft state aggregation [Singh et al., 1994]: think of 1} and 6} as
hidden/latent states.

® | earned features, e.g. via contrastive learning [Zhang et al., 2022]:

W Target State Start State

Four Rooms Mojoco DM Control



Nice implications of linear MDP

® For any policy T,

Qr(s,a) =rp(s,a) + Pa(t|s, a) Vi
= < ;;,7 ¢(S, a’)> + <Vhﬂ+17 MZ¢(S7 CL)>
= < ;(L + (M;:)thﬂ-&-lv ¢(57 a‘))
—_———
=wy
is also linear in ¢(s,a)! Here, we overload the notation yf € RISIX4,
® Closedness under the Bellman operator: for any fj, 1 linear in ¢,
(T fs1)(5@) = 735, @) + B (.0 025 fry (', 0]
= <6;L7 ¢(Sa a)> + <H}IE}X fh—i—l(slv a,)v N;;QS(Sa a)>
= (07 + ()T max fra (51, ), 9(5,0))

is linear in ¢.



Planning in linear MDP

@ Begin with the terminal step h = H + 1:

VP*I-i-l =0, Q;H-l = 0.
© Backtrack h=H,H —1,...,1:

QZ/(Sa a) = T’}L(S, (1) + Ph("sv CL)V,;_l
= < ;a ¢(Sa a)> + <Vh*+17 /.LZ(ZS(S,CL))
= < ; + (H“Z)T‘/};—i-h ¢(Sa a)>
—_———
=y

Therefore, Q7 (s, a) is also linear in ¢(s, a)!

© Update
Vi (s) = max Qj (s, a)
a



Online RL with linear MDP

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T = KH

o execute 7'

episode 1 |::> {shyah, T,

1= ¥ S| execute 72

L 2 2 2vH
episode 2 I:> {8%> @k Th th=1

s execute 7€

episode K |:> {Sﬁ(a a}l[(’ 7'{; }le

How to balance exploration and exploitation in linear MDP? )
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Recall: UCB-VI

For each episode k:
@ Backtrack h = H, H — 1,...,1: run optimistic value iteration

Qn(s,a) < min {H —h+1, rn(sh,an) + ﬁh7s,th+1 + bh(sh;ah)}7
—_——— —_——  —

immediate reward  next step’s value bonus

Vi —
n(s) max Qn(s,a),
@ Forward h =1,..., H: take action according to the greedy policy

mh(8) + argmax Qp(s,a)
acA

and collect {sp, ap, rh}thl.

11



Can we extend UCB-VI to linear MDP?

Key challenges:
® How do we estimate the model ﬁh,s’a?

— For simplicity, assume r is known.

® How do we design the bonus term by, (sp, ap)?
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Step 1: learning the model

Model learning in linear MDP

Given the transitions
no_fui i i n—1
Dy = {Sh’ahvsthl}i:O )

how to learn p7?

® Define the S-dimensional one-hot vector
8(shiq)=1[0,...,1,...,0] T

then
E[6(sh1)|Hh] = Pa(lsh, ap,) = pro(sh, ap),
where #{, is the history information up to the collected transition.

* Treat §(sj_, ) as a regression target for u} (s}, a},).
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Model learning via ridge regression

n—1
fir = argmin > || (sh, ai) = 5(sh )3+ Aull?
SR N——

regularization

data fitting
® (Closed-form solution:
n—1
. -1 . . .
i = (2¢ Sheah)B(shi i)+ AL ) (D (shia)lshsah))
i=0

=:Ap
® For value iteration, we only need to compute, for any V/,

ﬁh,s oV = (Hpo(s, a))

n—1

= ¢(s,a)T(AR) D b(shap)V(shi),

=0

which admits an efficient computation.
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Step 2: design the bonus

Bonus design in linear MDP

How do we quantify the uncertainty of

H (ﬁh,s,a - Ph,s,a)VH ?
0

® Prediction error on i} :

fip — g, = =g (AR~ + Z€h¢ (shap) " (AR~
i=1

where €}, = 5(5;&1) — Py(]st,al).
® Prediction error on P, ; ,V:
(ﬁh,s,a - Ph,s,a)v = ¢(87 a)T(ﬂZ - MZ)TV

n—1

= —2d(s,a) T(AR) T i TV Y d(s,a) T(AR) T o(sh, af eV

i=1

self-normalized bounds for Martingales 15



Bonus design

’(ﬁh,s,a - Ph,s,a)V’ ,S H\/EHd)(S,a)”(AZ)_1

® For a fixed V, use self-normalized bounds for Martingales
[Abbasi-Yadkori et al., 2011].

® Covering argument to obtain uniform convergence.
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The algorithm: LSVI-UCB

For each episode k = 1,2,..., K,
@ Collect a trajectory {(sh,ah,rh)}h | according to the greedy policy 7"

w.r.t. Qh
Q@ Forh=H,H—-1,...,1:
@ Define A = AT+ 31, ¢i,(¢) ", where ¢}, = ¢(s},, aj,).
@ Let QF be the estimate from ridge regression:

k
Qhi(s,a) = ¢(s,0) T(AR) D 6h (i, + Vi (sier))
=1
©® Add bonus to ensure optimism:
Qh(s,a) = Qh(s,a) + B\/(s,0) T (A})~16(s,a)

@ Obtain the value estimate:

~

Vf(s) := min {H, max@lfb(s,a)}.
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Theory of LSVI-UCB

Given K initial states {s}}1<x<x chosen by nature, define

Regret( K XK: <V1 st) (s’f))

k=1

Theorem 1 ([Jin et al., 2020])
LSVI-UCB achieves (up to log factor)

d3H3
T

1
gRegret(K) hS

where T' is sample size.

® Sublinear regret O(v/T).

® The regret depends on the dimension of the feature space d, rather than
the ambient dimension S A.
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Sample-efficient RL under realizability
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Realizability assumption

Linear Q* (Realizability) assumption: 3 features {¢,(s,a) € R} s.t.

V(S7a7h) : QZ(&G) = <90h(37a)7 92)

= only Qj =rn+ P,V is linearly realizable

Arguably the weakest linear function approximation assumption.
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Can we hope to achieve sample efficiency in
linear (Q* problem?



Case 1: RL with a generative model / simulator

Can query arbitrary state-action pairs to get samples

generative model

® In general, needs min { (¥, (1)} samples [Weisz et al., 2021]

* With constant sub-optimality gap, needs only poly(d, H, ﬁ) samples
[Du et al., 2020].
Bgpi= i {Vi(s) -~ Qjfs0)}
87

@ : suboptimal action
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Case 2: online RL

Obtain data samples via sequential interaction with environment

® collect N episodes of data, each consisting of H steps

® in the n-th episode, execute MDP using a policy "
1 T2 3 TH
& \l 52 \l 53 \l SHJ\
[ A (v [
ai az as aH
yTH,QH, TH)

(817a17T1;82aa27r27

Needs min {e?(® ()} samples when Ag,, < 1 [Wang et al., 2021]

)
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generative model | online RL

no sub-optimality gap inefficient inefficient
with sub-optimality gap efficient inefficient
1 T2 r3 TH
S1 ‘I S2 ‘l 83— SH—‘,
H 1 H 1 H ! T H
‘\_r, \-f’ \_rl ‘\_4'
ai a2 as aH
51,Q1,7T1,52,02,72,* ,TH,QH,T
gemerative model ( 1,01,71,92,02,12, s TH>,OH, H)
generative model: idealistic online RL: more restrictive/practical

Is there a sampling mechanism — more flexible than standard online RL, yet
practically relevant — that still promises efficient learning? J




A new sampling protocol: state revisiting

Allow one to revisit previous states in the same episode

— also called local access to generative model [Yin et al., 2022]

S.O N S1— 8'2 ~ S3 ~ 8'4 ~ S H——"
\\_all \\_ﬂ’l ‘\_f’l \\_f’l \\_f'l (\ 4"
ag ay az as aq

® Input: initial state (chosen by nature)

® generate a length-H trajectory

® Pick any previously visited state sy, in this episode, and repeat



A new sampling protocol: state revisiting

“save files” feature in video games Monte Carlo Tree Search

® more flexible than standard online RL

® more restrictive/practical than generative model

Issue: f revisit attempts might affect sample size
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Theory

Theorem 2 ([Li et al., 2021])

There exists an algorithm that achieves (up to log factor)

d?H7
T

1
?Regret(K) <

. . .- . . g 2 5
where T is sample size, and { state revisits is at most O (%£-).

gap

* Sample size needed to get ¢ average regret: poly(d, H, ﬁ, 1),
ga
independent of S and A

® Limited state revisits: poly(d, H, f) almost independent of
gap

® Can be easily refined to get logarithmic regret bound (in T')
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A glimpse of the algorithm: LinQ-LSVI-UCB

I4
,—4 3
(si,ai (s2,a3) (s3,a3) 54
k=1 > > 1
P - 2
oy ShaD=Gla) (ha)e (had)  (Hadi=|(si.al 5
B ) 3|3 1.3 g
oz GhaDi=Gha)  (Hladi((shap)  (3ad)=|(s3 a3 pd
- >eo
4| 4 4
os GilabiElah)  GHlabislcha)  Gia 3

h=1 h=2

=
1
=
1
w
=
+
[u

Key ingredients:
¢ Adapted from LSVI-UCB [Jin et al., 2020]

® Check exploration bonus: if this uncertainty term exceeds Ag,,/2, then
revisit states to draw more samples
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