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The deadly triad

Function approximation in policy gradient and actor-critic
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TD(0) with linear function approximation

Suppose we collect a trajectory following policy π:

s0, r0, s1, r1, s2, r2, . . .

The value function of π is approximated as

V π(s) ≈ ϕ(s)⊤w.

TD(0) on a single trajectory:

wt+1 ← wt + αt

(
rt + γϕ(st+1)⊤wt − ϕ(st)⊤wt

)︸ ︷︷ ︸
TD error δt

ϕ(st)
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Applying TD(0) to on-policy control

SARSA with linear function approximation:

• Approximate the on-policy Q-function with

Q(s, a;w) = ψ(s, a)⊤v,

• Policy evaluation: apply TD(0) to update the weight

vt+1 ← vt + α
(
rt + γψ(st+1, at+1)⊤vt − ψ(st, at)⊤vt

)
ψ(st, at)

• Policy improvement: ϵ-greedy policy improvement
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Off-policy evaluation with function approximation

Suppose we collect a trajectory following behavior policy πb:

s0, a0, r0, s1, a1, r1, s2, a2, r2, . . .

with at ∼ πb(·|st).

Off-policy evaluation
How do we perform off-policy evaluation using TD(0) with function
approximation, when the policy under evaluation π is different from πb?
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TD(0) updates with importance sampling

J(w) = 1
2Es∼dπ

[
(V π(s)− V (s;w))2

]
︸ ︷︷ ︸

=:J(s;w)

= 1
2Es∼dπ

[(
V π(s)− ϕ(s)⊤w

)2]
.

• Using the TD target rt + γV (st+1, w) = rt + γϕ(st+1)⊤w, the
semi-gradient is evaluated as

∇wJ(st;w) = −
(
rt + γϕ(st+1)⊤w − ϕ(st)⊤w

)︸ ︷︷ ︸
TD error δt

ϕ(st).

• Update the weight w via

wt+1 = wt − αt
π(at|st)
πb(at|st)︸ ︷︷ ︸

=:ρt

∇wJ(st;w) = wt + αtρtδtϕ(st).
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Q-learning with linear function approximation

Q-learning with linear function approximation:

• Approximate the off-policy Q-function with

Q(s, a;w) = ψ(s, a)⊤v,

• Policy evaluation: using Q-learning target to update the weight

vt+1 ← vt + α
(
rt + γmax

a
ψ(st+1, a)⊤vt − ψ(st, at)⊤vt

)
ψ(st, at)

• Policy improvement: ϵ-greedy policy improvement
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The deadly triad



Off-policy TD(0) might diverge
Intuition: only one action is available, and it results deterministically in a
transition to the second state with a reward of 0 [Sutton and Barto, 2018]:

• The linear function approximation assumes the value takes the form

[w, 2w] with ϕ(left) = 1, ϕ(right) = 2.

• For one transition from left state to right state, we have

δt = rt + γV (right)− V (left) = γ2wt − wt = (2γ − 1)wt,

ρt = 1.

• The off-policy TD(0) updates

wt+1 = wt + αtρtδtϕ(left) = (1 + αt(2γ − 1))wt.

Diverges whenever γ > 1/2 for any αt > 0 if we do this over and over!
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Baird’s example

Figure source: [Sutton and Barto, 2018]

9



Baird’s example explained

• 7 states, feature dimension = 8!!!
• The set of features is linearly independent, e.g.

ϕ(1) = [2, 0, 0, 0, 0, 0, 0, 1]⊤

• The true value function is

V π(s) = 0, which can be exactly approximated by w = 0.

• The behavior policy πb offers a path to skip the absorbing state 8 of π,
creating a path mimicking our intuition earlier (focusing on w8).

• We will be okay with on-policy evaluation.
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Numerical divergence on Baird’s example

Figure source: [Sutton and Barto, 2018]
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Does LSTD resolve the issue?

• Tsitsiklis and Van Roy’s Counterexample: the reward is zero on all
transitions, so the true value function is

V π(s) = 0, and w = 0.
• Suppose we use least-squares at each step with DP to update

wt+1 = arg min
w∈R

∑
s∈S

(
V̂ (s, w)− Eπ[rt + γV̂ (st+1, wk)|St = s]

)2

= arg min
w∈R

(w − γ2wk)2 + (2w − (1− ε)γ2wk)2

= 6− 4ε
5 γwk, which diverges as long as γ >

5
6− 4ε .
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The deadly triad

The risk of divergence arises whenever we combine:

Richard Sutton
• Function approximation:

significantly generalizing from large numbers of examples

• Bootstrapping:
learning value estimates from other value estimates, as in dynamic
programming and temporal-difference learning

• Off-policy learning:
learning about a policy from data not due to that policy, as in
Q-learning, where we learn about the greedy policy from data with a
necessarily more exploratory policy

Any two without the third is okay.
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Possible remedies

• More careful algorithm designs [Sutton et al., 2009]:
• Gradient TD (GTD)
• TD with gradient correction (TDC)
• Emphatic TD [Sutton et al., 2016], etc...

• Using a target network [Mnih et al., 2015, Zhang et al., 2021]:

f(st, at; v) = 1
2

(
rt + γmax

a
Qtarget(st+1, a; v)−Q(st, at; v)

)2

• Target network Qtarget: periodically synced by the value network.
• Value network Q: updated via gradient methods.

A key ingredients in (double) deep Q-learning (DQN).
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Function approximation in policy gradient
and actor-critic



Recall: policy gradient methods
Recall the policy gradient expression

∇θV
πθ (ρ) = 1

1− γEs∼d
πθ
ρ ,a∼πθ(·|s)

[
Qπθ (s, a)∇ log πθ(a|s)

]
,

where
• dπθ

ρ is the state visitation distribution,
• ∇ log πθ(a|s) is the score function.

Function approximation in PG
How do we inject function approximation into policy gradient methods?

Answer: using a critic with function approximation

Qπθ (s, a) ≈ Qw(s, a)

parameterized by some w.
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Actor-critic framework

• Critic: update the parameter w of the Q-function Qw(s, a) by
approximately minimizing

Jcritic(w) = Es∼d
πθ
ρ ,a∼πθ(·|s)

[(
Qw(s, a)−Qπθ (s, a)

)2
]

• Actor: update the parameter θ of the policy πθ, by moving along the
policy gradient

∇θV
πθ (ρ) = 1

1− γEs∼d
πθ
ρ ,a∼πθ(·|s)

[
�����:

Qw(s, a)
Qπθ (s, a) ∇ log πθ(a|s)

]
,

How does value function approximation impacts the evaluation of the
policy gradient?
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Compatible function approximation

Theorem 1 (Compatible function approximation)
If Qw(s, a) is compatible to the policy, i.e.

∇wQw(s, a) = ∇θ log πθ(a|s),

then the policy gradient is still unbiased if w is a stationary point of Jcritic(w):

Es,a∼d
πθ
ρ

[
Qπθ (s, a)∇ log πθ(a|s)

]
= Es,a∼d

πθ
ρ

[
Qw(s, a)∇ log πθ(a|s)

]
.

• This allows us to use Qw(s, a) in the policy gradient without introducing
bias.

• One possible candidate:

Qw(s, a) = w⊤ϕ(s, a), πθ(a|s) ∝ exp(θ⊤ϕ(s, a))
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Proof

Suppose we find w that is a stationary point of Jcritic(w), it holds that

Es,a∼d
πθ
ρ

[(
Qw(s, a)−Qπθ (s, a)

)
∇wQw(s, a)

]
= 0.

⇕

Es,a∼d
πθ
ρ

[
Qw(s, a)∇wQw(s, a)

]
= Es,a∼d

πθ
ρ

[
Qπθ (s, a)∇wQw(s, a)

]
⇕

Es,a∼d
πθ
ρ

[
Qw(s, a)∇θ log πθ(a|s)

]
= Es,a∼d

πθ
ρ

[
Qπθ (s, a)∇θ log πθ(a|s)

]
.
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Reducing variance using a baseline

Instead of using Qπθ (s, a) in the policy gradient, we can use the advantage
function

Aπθ (s, a) = Qπθ (s, a)− V πθ (s),

which helps reduce the variance.

• We can set the critic to estimate the advantage function instead

• Key observation: the TD error

δπθ = r + γV πθ (s′)− V πθ (s)

is an unbiased estimate of the advantage function

E[δπθ |s, a] = E[r + γV πθ (s′)|s, a]− V πθ (s)
= Qπθ (s, a)− V πθ (s)
= Aπθ (s, a)
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Actor-critic with TD error

Use the TD error for policy gradient

∇θV
πθ (θ) = E [∇θ log πθ(s|a)δπθ ]

This only requires one set of critic
parameter:
• Compute the TD error

δπθ = r + γV πθ (s′)− V πθ (s)

• Update the policy parameter

θ ← θ + βδπθ∇θ log πθ(a|s)

where β is the learning rate.
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Natural actor-critic

Consider the linear value approximation

Aw(s, a) = w⊤∇θ log πθ(a|s)︸ ︷︷ ︸
features

,

where the compatible function approximation holds

∇wAw(s, a) = ∇θ log πθ(a|s),

the natural gradient simplifies.
• Let w be the minimizer of

min
w

E
[(
Aw(s, a)−Aπθ (s, a)

)2
]

= E
[(
w⊤∇θ log πθ(a|s)−Aπθ (s, a)

)2
]
.
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Natural actor-critic

• The policy gradient reduces to

∇θV
πθ (θ) = E [∇θ log πθ(a|s)Aπθ (s, a)]

= E [∇θ log πθ(a|s)Aw(s, a)]
= E

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤w

]
= Fθw,

where Fθ is the Fisher information matrix.

• The NPG update is thus

θ ← θ + β(Fθ)†∇θV
πθ (θ) = θ + βw.

Update the actor directly in the direction of w!
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