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Offline RL / Batch RL

• Sometimes we can not explore or generate new data
• But we have already stored tons of historical data

medical records data of self-driving clicking times of ads

Can we learn a good policy based solely on historical data without
active exploration?
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Online versus Offline RL

Online RL
• interact with environment
• actively collect new data

Offline/Batch RL
• no interaction
• data is given
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Two main types of offline data and approaches

• Expert data: e.g., expert demonstration
• imitation learning (imitate experts’ behavior)

• Uniform coverage data: e.g., generative model / simulator
• a different set of algorithms (e.g., model-based, model-free methods)
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Imitation learning (IL)

Imitation is the sincerest form of flattery that mediocrity can pay to
greatness.

— Oscar Wilde

Goal: learn a good policy that mimics the expert demonstration.
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Behavior cloning: IL from offline data

• Reward function is unknown or hard-to-tune in practice.

• Behavior cloning leverages expert demonstration to directly learn a
policy without inferring the reward function.

Many successes: robots, autonomous driving, drones, ...
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Three settings

Pure offline setting (behavior cloning):
• Only expert demonstration is available

Hybrid setting (MaxEnt IRL):
• Expert demonstration is available
• Able to interact with the real world (e.g. through the ground truth

transition dynamic)

Interactive setting (DAgger):
• Access to an interactive expert
• Able to interact with the real world
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The pure offline setting:
behavior cloning



ALVINN

ALVINN (Autonomous Land Vehicle In a Neural Network), the self-driving
car from 1988 [Pomerleau, 1988]!

9



Reduction to supervised learning

supervised learning behavior cloning

Classifier
labelsimages

Policy
actionstate

Invoke supervised learning approaches to learn the policy:
a state-to-action mapping!

• Break down the expert demonstration (e.g., a trajectory) into a training
dataset of (state, action) pairs;

• Learn a state-to-action mapping (i.e., policy) from the training data via
your favorite supervised learning algorithm.

— doesn’t require knowing the reward!
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Supervised learning

Expert data: suppose we have an i.i.d. dataset

D = {si, ai}Ni=1, with ai = π?(si), si ∼ dπ
?

ρ .

Here, π? is the optimal policy, and dπ?ρ is the discounted state-visitation
distribution induced by π?.

Supervised learning: we learn a policy

π̂ = arg min
π∈Π

N∑
i=1

`(π; si, ai)

• Π is the policy class, which is assumed to be finite, and π? ∈ Π
• `(π; si, ai) is the sample loss, e.g.

• negative log-likelihood: − log π(ai|si)
• least-squares loss: ‖π(si)− ai‖2

2
• hinge loss, 0-1 loss, etc...
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Performance guarantee of behavior cloning

Theorem 1 ([Ross and Bagnell, 2010])
Suppose that supervised learning works, where the learned deterministic
policy satisfy

Es∼dπ?ρ I (π̂(s) 6= π?(s)) ≤ ε,

then BC returns a policy π̂ such that

V ?(ρ)− V π̂(ρ) ≤ 2
(1− γ)2 ε.

• The error is “amplified” by a quadratic factor of the horizon dependency
1

(1−γ)2 , which is unavoidable in the worst case [Rajaraman et al., 2020].
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Proof of Theorem 2

By the performance difference lemma,

V π
?

(ρ)− V π̂(ρ) = 1
(1− γ)Es∼d

?
ρ
Aπ̂(s, π?(s))

= 1
(1− γ)

[
Es∼d?ρA

π̂(s, π?(s))− Es∼d?ρA
π̂(s, π̂(s))︸ ︷︷ ︸

=:0

]

≤ 2
(1− γ)2Es∼d?ρI (π̂(s) 6= π?(s))

≤ 2ε
(1− γ)2 ,

where the penultimate line used the fact that − 1
1−γ ≤ A

π̂ ≤ 1
1−γ , and the

last line used Es∼dπ?ρ I (π̂(s) 6= π?(s)) ≤ ε.
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Why does error compounding occur?

Consider prediction over a horizon H: error at step t is ε.

supervised learning behavior cloning
independent error over t error propagates into the future

ε+ . . .+ ε = Hε Hε+ (H − 1)ε+ . . .+ ε ∼ H2ε

The BC error is quadratic in H instead of linear in H!
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Error rate of supervised learning?

Taking Maximum likelihood estimate (MLE) as an example...

π̂MLE = arg max
π∈Π

N∑
i=1

log π(ai|si)

Theorem 2 ([Agarwal et al., 2019])
With probability at least 1− δ, we have

Es∼dπ?ρ
∥∥π̂(·|s)− π?(·|s)

∥∥2
TV ≤

2 log(|Π|/δ)
N

• The error depends on log |Π|, allowing rich policy class.
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Performance guarantees of BC with MLE

Theorem 3 ([Agarwal et al., 2019])
With probability at least 1− δ, BC returns a policy π̂MLE such that

V ?(ρ)− V π̂MLE(ρ) ≤ 3
(1− γ)2

√
log(|Π|/δ)

N
.

• To achieve ε-accuracy, the sample size needs to be at least

N &
log |Π|

(1− γ)4ε2
.
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Proof of Theorem 3

Denote π̂ := π̂MLE for short. By the performance difference lemma,

V π
?

(ρ)− V π̂(ρ) = 1
(1− γ)Es∼d

?
ρ
Aπ̂(s, a)

= 1
(1− γ)

[
Es∼d?ρEa∼π?(·|s)A

π̂(s, a)− Es∼d?ρEa∼π̂(·|s)A
π̂(s, a)︸ ︷︷ ︸

=:0

]

≤ 1
(1− γ)2Es∼d?ρ

∥∥π̂(·|s)− π?(·|s)
∥∥

1

≤ 1
(1− γ)2

√
Es∼d?ρ

∥∥π̂(·|s)− π?(·|s)
∥∥2

1

= 1
(1− γ)2

√
4Es∼d?ρ

∥∥π̂(·|s)− π?(·|s)
∥∥2

TV ≤ 2ε
(1− γ)2 ,

where we used (E[X])2 ≤ E[X2].
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Distribution shift

π̂ = arg min
π∈Π

Es∼dπ? [`(π; s, π?(s))]

In supervised learning, a learner’s prediction does not influence the
distribution of examples upon which it will be tested.

training: s ∼ dπ
?

= test: s ∼ dπ
?

This is not the case with sequential decision making: Predictions affect future
inputs/ observations!

training: s ∼ dπ
?

6= test: s ∼ dπ̂
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Distribution shift

training: s ∼ dπ
?

6= test: s ∼ dπ̂

ALVINN [Pomerleau, 1988]: “when driving for itself, the network may occasionally
stray from the road center, so it must be prepared to recover by steering the vehicle
back to the center of the road.” 19



The hybrid setting:
Maximum Entropy Inverse RL



The hybrid setting

Expert data: suppose we have an i.i.d. dataset

D = {si, ai}Ni=1, with ai = π?(si), si ∼ dπ
?

ρ .

Here, π? is the optimal policy, and dπ?ρ is the discounted state-visitation
distribution induced by π?.

Additionally, we known the transition kernel P (·|s, a) of the underlying
MDP

• Enables planning once we are given a reward function.

What is the benefit of this additional piece of information?
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Intuition and distribution matching
Intuition: by rolling out a policy π in the environment, we can detect its
deviation from the expert policy π? through distribution matching:

dπ ≈ dπ
?

?

Theorem 4 ([Agarwal et al., 2019])
There exists a computationally-inefficient algorithm (distribution matching)
such that with probability at least 1− δ, it returns a policy π̂DM such that

V ?(ρ)− V π̂DM(ρ) . 1
(1− γ)

√
log(|Π|/δ)

N
.
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Maximum Entropy Inverse RL (MaxEnt IRL)

MaxEnt IRL: A popular computationally-efficient approach in practice
[Ziebart et al., 2008].

• Denote ρπ the trajectory distribution induced by π:

ρπ = ρ(s0)π(a0|s0)P (s1|s0, a0)π(a1|s1) . . .

• Maximize the entropy of the trajectory while matching with the expert:

max
π
H(ρπ)︸ ︷︷ ︸

entropy maximization

= max
π

Es,a∼dπ − log π(a|s)

s.t. Es,a∼dπφ(s, a) = Es,a∼dπ?φ(s, a)︸ ︷︷ ︸
distribution matching

where φ(s, a) ∈ Rd is the feature map for state-action pair (s, a).
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MaxEnt IRL: algorithm and interpretation

• Using Lagrange formulation:

min
π

Es,a∼dπ log π(a|s) + max
θ

(
Es,a∼dπθ>φ(s, a)− Es,a∼dπ? θ>φ(s, a)

)
,

where θ is the Lagrangian multiplier.

• By the von Neumann’s minimax theorem:

max
θ

min
π

[
Es,a∼dπ log π(a|s) + Es,a∼dπθ>φ(s, a)− Es,a∼dπ? θ>φ(s, a)

]

• Saddle-point optimization: alternatively update θ (via gradient ascent)
and π (via planning).
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MaxEnt IRL: algorithm and interpretation

For t = 0, 1, . . .

πt = argmin
π

Es,a∼dπ
(
log π(a|s) + θ>t φ(s, a)

)︸ ︷︷ ︸
entropy-regularized cost

θt+1 = θt + η
(
Es,a∼dπtφ(s, a)− Es,a∼dπ?φ(s, a)

)
Interpreting rθ(s, a) ≈ θ>φ(s, a),

• Optimizing π amounts to planning in an entropy-regularized MDP,
which can be found by soft value iteration.

• Optimizing θ amounts to learning the cost function (or reward function).
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The interactive setting:
DAgger



Revisit the supervised learning reduction

π̂ = arg min
π∈Π

Es∼dπ [`(π; s, π?(s))]

We want to optimize the performance when the state is drawn from dπ,
which also need to be learned.

• non-i.i.d. supervised learning problem
• much more challenging!

[Ross et al., 2011] proposed an algorithm called DAgger (dataset
aggregation) that allows sampling new expert data on the learned policy.
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DAgger: dataset aggregation

[Ross et al., 2011]: train on a mixture of expert and behavior policy via
reduction to no-regret online learning
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