Foundations of Reinforcement Learning

Policy optimization: the role of regularization

Shicong Cen and Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023

Outline

Global convergence of entropy-regularized NPG

A mirror descent perspective and alternative analysis

Beyond entropy regularization

Given an initial state distribution $s\sim\rho,$ find policy π such that

maximize_{$$\pi$$} $V^{\pi}(\rho) := \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right]$

maximize_{$$\theta$$} $V^{\pi_{\theta}}(\rho) := \mathbb{E}_{s \sim \rho} \left[V^{\pi_{\theta}}(s) \right]$

softmax parameterization:

 $\pi_{\theta}(a|s) \propto \exp(\theta(s,a))$

Policy gradient method

For $t = 0, 1, \cdots$

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{\pi_{\theta}^{(t)}}(\rho)$$

where η is the learning rate.

How fast does softmax PG converge?

- [Agarwal et al., 2021] showed that softmax PG converges asymptotically to the global optimal policy.
- [Li et al., 2023] showed that softmax PG may take $|S|^{2^{\Theta(\frac{1}{1-\gamma})}}$ iterations to converge!

Can we accelerate the convergence using algorithmic tricks?

Natural policy gradient

Natural policy gradient (NPG) method [Kakade, 2001]

For $t = 0, 1, \cdots$

$$\theta^{(t+1)} = \theta^{(t)} + \eta (\mathcal{F}^{\theta}_{\rho})^{\dagger} \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho)$$

where η is the learning rate and $\mathcal{F}^{\theta}_{\rho}$ is the Fisher information matrix:

$$\mathcal{F}_{\rho}^{\theta} := \mathbb{E}\left[\left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right) \left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right)^{\top}\right].$$

Theorem 1 ([Agarwal et al., 2021])

Set $\pi^{(0)}$ as a uniform policy. For all $t \ge 0$, we have

$$V^{(t)}(\rho) \ge V^{\star}(\rho) - \left(\frac{\log |\mathcal{A}|}{\eta} + \frac{1}{(1-\gamma)^2}\right) \frac{1}{t}.$$

Implication: set $\eta \ge (1-\gamma)^2 \log |\mathcal{A}|$, we find an ϵ -optimal policy within at most

$$\frac{2}{(1-\gamma)^2\epsilon}$$
 iterations.

Global convergence at a sublinear rate independent of $|\mathcal{S}|$, $|\mathcal{A}|!$

Global convergence of entropy-regularized NPG

Entropy regularization

To encourage exploration, promote the stochasticity of the policy using the **"soft"** value function (Williams and Peng, 1991):

$$\forall s \in \mathcal{S}: \qquad V_{\tau}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} + \tau \mathcal{H}(\pi(\cdot|s_{t})) \mid s_{0} = s\right]\right]$$

where \mathcal{H} is the Shannon entropy, and $\tau \geq 0$ is the reg. parameter.

 $\mathsf{maximize}_{\theta} \quad V^{\pi_{\theta}}_{\tau}(\rho) := \mathbb{E}_{s \sim \rho} \left[V^{\pi_{\theta}}_{\tau}(s) \right]$

Entropy-regularized NPG

Entropy-regularized NPG

For $t = 0, 1, \cdots$

$$\theta^{(t+1)} = \theta^{(t)} + \eta (\mathcal{F}_{\rho}^{\theta})^{\dagger} \nabla_{\theta} V_{\tau} \pi_{\theta}^{(t)}(\rho)$$

where η is the learning rate and $\mathcal{F}^{\theta}_{\rho}$ is the Fisher information matrix:

$$\mathcal{F}_{\rho}^{\theta} := \mathbb{E}\left[\left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right) \left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right)^{\top}\right]$$

Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Unreasonable effectiveness in practice

TRPO = NPG + line search(Schulman et al., 2015) We also found that adding the entropy of the policy π to the objective function improved exploration by discouraging premature convergence to suboptimal deterministic policies. This technique was originally proposed by (Williams & Peng, 1991), who found that it was particularly help-ful on tasks requiring hierarchical behavior. The gradi-

A3C (Mnih et al., 2016) SAC (Haarnoja et al., 2018)

Can we justify the efficacy of entropy-regularized NPG?

Entropy-regularized NPG in the tabular setting

$\label{eq:constraint} \begin{array}{l} \mbox{Entropy-regularized NPG} \\ \mbox{For } t=0,1,\cdots, \mbox{ the policy is updated via} \\ \pi^{(t+1)}(\cdot|s) \propto \underbrace{\pi^{(t)}(\cdot|s)}_{\mbox{current policy}} \overset{1-\frac{\eta\tau}{1-\gamma}}{\underbrace{} \exp(Q_{\tau}^{(t)}(s,\cdot)/\tau)}_{\mbox{soft greedy}} \overset{\frac{\eta\tau}{1-\gamma}}{\underbrace{} \\ \mbox{where } Q_{\tau}^{(t)}:=Q_{\tau}^{\pi^{(t)}} \mbox{ is the soft Q-function of } \pi^{(t)}, \mbox{ and } 0<\eta\leq \frac{1-\gamma}{\tau}. \end{array}$

- invariant with the choice of ρ
- Reduces to soft policy iteration (SPI) when $\eta = \frac{1-\gamma}{\tau}$.

Linear convergence with exact gradient

Exact oracle: perfect evaluation of $Q_{\tau}^{\pi^{(t)}}$ given $\pi^{(t)}$;

Theorem 2 ([Cen et al., 2022])

For any learning rate $0 < \eta \leq (1-\gamma)/\tau$, the entropy-regularized NPG updates satisfy

• Linear convergence of soft value functions:

$$\|V_{\tau}^{\star} - V_{\tau}^{(t+1)}\|_{\infty} \le 3C_1 \left(1 - \eta\tau\right)^t,$$

• Linear convergence of soft Q-functions:

$$||Q_{\tau}^{\star} - Q_{\tau}^{(t+1)}||_{\infty} \leq \gamma C_1 (1 - \eta \tau)^t,$$

for all $t \geq 0$, where Q_{τ}^{\star} is the optimal soft Q-function, and

$$C_1 = \|Q_{\tau}^{\star} - Q_{\tau}^{(0)}\|_{\infty} + 2\tau \left(1 - \frac{\eta\tau}{1 - \gamma}\right) \|\log \pi_{\tau}^{\star} - \log \pi^{(0)}\|_{\infty}.$$

To reach $\|Q_{\tau}^{\star}-Q_{\tau}^{(t+1)}\|_{\infty}\leq\epsilon$, the iteration complexity is at most

• General learning rates ($0 < \eta < \frac{1-\gamma}{\tau}$):

$$\frac{1}{\eta\tau}\log\left(\frac{C_1\gamma}{\epsilon}\right)$$

• Soft policy iteration ($\eta = rac{1-\gamma}{ au}$):

$$\frac{1}{1-\gamma} \log \left(\frac{\|Q_{\tau}^{\star} - Q_{\tau}^{(0)}\|_{\infty} \gamma}{\epsilon} \right)$$

Global linear convergence of entropy-regularized NPG at a rate independent of $|\mathcal{S}|, \, |\mathcal{A}|!$

Comparisons with entropy-regularized PG

$$\begin{split} & \left[\textbf{Mei et al., 2020} \right] \text{showed entropy-regularized PG achieves} \\ & V_{\tau}^{\star}(\rho) - V_{\tau}^{(t)}(\rho) \leq \left(V_{\tau}^{\star}(\rho) - V_{\tau}^{(0)}(\rho) \right) \\ & \quad \cdot \exp \left(- \frac{(1-\gamma)^4 t}{(8/\tau + 4 + 8\log|\mathcal{A}|)|\mathcal{S}|} \left\| \frac{d_{\rho}^{\pi^{\star}}}{\rho} \right\|_{\infty}^{-1} \frac{\min \rho(s)}{s} \underbrace{\left(\inf_{0 \leq k \leq t-1} \min_{s,a} \pi^{(k)}(a|s) \right)^2}_{\text{can be exponential in } |\mathcal{S}| \text{ and } \frac{1}{1-\gamma}} \right) \end{split}$$

Much faster convergence of entropy-regularized NPG at a **dimension-free** rate!

Comparison with unregularized NPG

Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of $Q_{\tau}^{\pi^{(t)}}$ given $\pi^{(t)}$, which returns $\widehat{Q}_{\tau}^{(t)}$ that

$$\left\|\widehat{Q}_{\tau}^{(t)} - Q_{\tau}^{(t)}\right\|_{\infty} \le \delta,$$

e.g., using sample-based estimators such as REINFORCE (Williams, 1992).

Inexact entropy-regularized NPG:

$$\pi^{(t+1)}(a|s) \propto \left(\pi^{(t)}(a|s)\right)^{1-\frac{\eta\tau}{1-\gamma}} \exp\left(\frac{\eta \widehat{Q}_{\tau}^{(t)}(s,a)}{1-\gamma}\right)$$

Question: Robustness of entropy-regularized NPG?

Theorem 3 ([Cen et al., 2022]; improved)

For any learning rate $0 < \eta \le (1 - \gamma)/\tau$, the entropy-regularized NPG updates achieve the same iteration complexity as the exact case, as long as

$$\delta \leq rac{1-\gamma}{\gamma} \cdot \min\left\{rac{\epsilon}{4}, \sqrt{rac{\epsilon au}{2}}
ight\}$$

• Crude sample complexity for finding an *e*-optimal policy in the original MDP using a generative model:

$$\widetilde{\mathcal{O}}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^7\epsilon^2}\right)$$

- set $\tau = (1 \gamma)\epsilon/\log |\mathcal{A}|$;
- in a generative model takes no larger than $\widetilde{O}(|\mathcal{S}||\mathcal{A}|(1-\gamma)^{-3}\delta^{-2})$ samples to achieve δ -accurate estimate of $Q_{\tau}^{(t)}$ per iteration;

A glimpse of the analysis

A key lemma: monotonic performance improvement

Implication: monotonic improvement of $V_{\tau}(s)$ and $Q_{\tau}(s, a)$.

Recall: Bellman's optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

one-step look-ahead

Bellman equation: Q^* is *unique* solution to

$$\mathcal{T}(Q^\star) = Q^\star$$

 $\gamma\text{-contraction}$ of Bellman operator:

$$\|\mathcal{T}(Q_1) - \mathcal{T}(Q_2)\|_{\infty} \le \gamma \|Q_1 - Q_2\|_{\infty}$$

Richard Bellman

Soft Bellman operator

$$\begin{aligned} \mathcal{T}_{\tau}(Q)(s,a) &:= \underbrace{r(s,a)}_{\text{immediate reward}} \\ &+ \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\max_{\pi(\cdot|s')} \mathop{\mathbb{E}}_{a' \sim \pi(\cdot|s')} \left[\underbrace{Q(s',a')}_{\text{next state's value}} - \underbrace{\tau \log \pi(a'|s')}_{\text{entropy}} \right] \right], \end{aligned}$$

Soft Bellman equation: Q^{\star}_{τ} is *unique* solution to

$$\mathcal{T}_{\tau}(Q_{\tau}^{\star}) = Q_{\tau}^{\star}$$

 $\gamma\text{-contraction of soft Bellman operator:}$

$$\|\mathcal{T}_{\tau}(Q_1) - \mathcal{T}_{\tau}(Q_2)\|_{\infty} \le \gamma \|Q_1 - Q_2\|_{\infty}$$

Richard Bellman

Analysis of soft policy iteration ($\eta = \frac{1-\gamma}{\tau}$)

 $\pi^{(0)}$ evaluate $\Omega^{\pi^{(0)}}$ greed evaluate $Q^{\pi^{(1)}}$ Breedy $\pi^{(2)}$

Policy iteration

Bellman operator

Soft policy iteration

Soft Bellman operator

Let
$$x_t := \begin{bmatrix} \|Q_{\tau}^{\star} - Q_{\tau}^{(t)}\|_{\infty} \\ \|Q_{\tau}^{\star} - \tau \log \xi^{(t)}\|_{\infty} \end{bmatrix}$$
 and $y := \begin{bmatrix} \|Q_{\tau}^{(0)} - \tau \log \xi^{(0)}\|_{\infty} \\ 0 \end{bmatrix}$,

where $\xi^{(t)} \propto \pi^{(t)}$ is an auxiliary sequence, then

$$x_{t+1} \le Ax_t + \gamma \left(1 - \frac{\eta \tau}{1 - \gamma}\right)^{t+1} y_t$$

where

$$A := \begin{bmatrix} \gamma \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{\eta \tau}{1-\gamma} & 1 - \frac{\eta \tau}{1-\gamma} \end{bmatrix}$$

is a rank-1 matrix with a non-zero eigenvalue $\underbrace{1-\eta\tau}_{\text{contraction rate!}}.$

A mirror descent perspective and alternative analysis

Detour: mirror descent

• The gradient descent update rule

$$x^{(t+1)} = P_{\mathcal{X}} \left(x^{(t)} - \eta_{\mathsf{GD}} \nabla f(x^{(t)}) \right)$$

is equivalent to minimizing local quadratic approximation of f:

$$x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle \nabla f(x^{(t)}), x - x^{(t)} \right\rangle + \frac{1}{2\eta_{\mathsf{GD}}} \|x - x^{(t)}\|_2^2.$$

• $\eta_{\text{GD}} > 0$ is the step size and $P_{\mathcal{X}}$ is the projection operator to \mathcal{X} .

Detour: mirror descent

• The mirror descent update rule

$$x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle \nabla f(x^{(t)}), x - x^{(t)} \right\rangle + \frac{1}{\eta_{\mathsf{MD}}} D_{\Phi}(x, x^{(t)})$$

is obtained by replacing $\frac{1}{2}\|x-x^{(t)}\|_2^2$ with Bregman divergence

$$D_{\Phi}(x, x^{(t)}) = \Phi(x) - \Phi(x^{(t)}) - \left\langle x - x^{(t)}, \nabla \Phi(x^{(t)}) \right\rangle.$$

• $\eta_{\rm MD} > 0$ is the step size.

A mirror descent view of entropy-regularized NPG

Entropy-reg. NPG = mirror descent with KL divergence: (Lan, 2021; Shani et al., 2020)

$$\begin{aligned} \pi^{(t+1)}(\cdot|s) &= \operatorname*{argmin}_{p \in \Delta(\mathcal{A})} \left\langle -Q_{\tau}^{(t)}(s,\cdot), p \right\rangle - \tau \mathcal{H}(p) + \frac{1}{\eta_{\mathsf{MD}}} \mathsf{KL}\left(p \parallel \pi^{(t)}(\cdot|s)\right) \\ &\propto \underbrace{\pi^{(t)}(\cdot|s)}_{\mathsf{current policy}} \underbrace{\frac{1}{1+\eta_{\mathsf{MD}}\tau}}_{\mathsf{soft greedy}} \underbrace{\exp(Q_{\tau}^{(t)}(s,\cdot)/\tau)}_{\mathsf{soft greedy}} \underbrace{\frac{\eta_{\mathsf{MD}}\tau}{1+\eta_{\mathsf{MD}}\tau}}_{\mathsf{soft greedy}} \end{aligned}$$

for all $s \in \mathcal{S}$.

Entropy-reg. NPG = mirror descent with KL divergence: (Lan, 2021; Shani et al., 2020)

$$\pi^{(t+1)}(\cdot|s) = \underset{p \in \Delta(\mathcal{A})}{\operatorname{argmin}} \left\langle -Q_{\tau}^{(t)}(s,\cdot), p \right\rangle - \tau \mathcal{H}(p) + \frac{1}{\eta_{\mathsf{MD}}} \mathsf{KL}\left(p \parallel \pi^{(t)}(\cdot|s)\right)$$
$$\propto \pi^{(t)}(\cdot|s)^{\frac{1}{1+\eta_{\mathsf{MD}}\tau}} \exp(Q_{\tau}^{(t)}(s,\cdot)/\tau)^{\frac{\eta_{\mathsf{MD}}\tau}{1+\eta_{\mathsf{MD}}\tau}}$$
$$\propto \pi^{(t)}(\cdot|s)^{1-\eta\tau} \exp(Q_{\tau}^{(t)}(s,\cdot)/\tau)^{\eta\tau}$$

for all $s \in \mathcal{S}$, with

$$\eta_{\rm MD} = \frac{\eta}{1 - \gamma - \eta \tau}.$$

Redux: Linear convergence with exact gradient

[Lan, 2022] provided an alternative framework for analyzing regularized natural policy gradient (called policy mirror descent - PMD).

Theorem 4 ([Lan, 2022])

For any learning rate $0 < \eta \leq (1-\gamma)/\tau$, the entropy-regularized NPG updates satisfy

$$V_{\tau}^{\star}(\rho) - V_{\tau}^{(t+1)}(\rho) \le C_2 \left\| \frac{\rho}{\nu_{\tau}^{\star}} \right\|_{\infty} \max\left\{ \gamma, 1 - \frac{\eta\tau}{1-\gamma} \right\}^{t+1}$$

for all $t \geq 0$, where ν_{τ}^{\star} is the stationary distribution of π_{τ}^{\star} ,

$$\left\| \frac{\rho}{\nu_{\tau}^{\star}} \right\|_{\infty} = \max_{s \in \mathcal{S}} \frac{\rho(s)}{\nu_{\tau}^{\star}(s)},$$

and $C_2 = V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(0)}(\nu_{\tau}^{\star}) + \frac{1-\gamma}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \| \pi^{(0)}(s)) \right].$

With a fixed learning rate $0<\eta\leq (1-\gamma)/\tau,$ the iteration complexity for entropy-regularized NPG to reach

$$V_{\tau}^{\star}(\rho) - V_{\tau}^{(t)}(\rho) \le \epsilon$$

is no larger than the minimum of

$$\widetilde{O}\left(\frac{1}{\eta\tau}\log\left(\frac{\mathsf{init.\,error}}{\epsilon}\right)\right)$$
 [Cen et al., 2022]

and

$$\widetilde{O}\left(\max\left\{\frac{1}{1-\gamma}, \frac{1-\gamma}{\eta\tau}\right\}\log\left\|\frac{\rho}{\nu_{\tau}^{\star}}\right\|_{\infty}\log\left(\frac{\mathsf{init.\,error}}{\epsilon}\right)\right). \qquad [\mathsf{Lan, 2022}]$$

Regularized performance difference lemma: for any two policies π and π' ,

$$\begin{aligned} V_{\tau}^{\pi}(\rho) &- V_{\tau}^{\pi'}(\rho) \\ &= \frac{1}{1 - \gamma} \mathop{\mathbb{E}}_{s \sim d_{\rho}^{\pi}} \left[\left\langle Q_{\tau}^{\pi'}(s), \pi^{(t+1)}(s) - \pi'(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi'(s)) \right]. \end{aligned}$$

Regularized three-point identity: for any policy π ,

$$\frac{\eta}{1-\gamma-\eta\tau} \left[\left\langle Q_{\tau}^{(t)}(s), \pi^{(t+1)}(s) - \pi(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi(s)) \right] \\ = \frac{1-\gamma}{1-\gamma-\eta\tau} \mathsf{KL}(\pi \parallel \pi^{(t+1)}(s)) + \mathsf{KL}(\pi^{(t+1)}(s) \parallel \pi^{(t)}(s)) - \mathsf{KL}(\pi \parallel \pi^{(t)}(s)).$$

Applying regularized performance difference lemma gives:

$$\begin{split} &V_{\tau}^{(t+1)}(\rho) - V_{\tau}^{(t)}(\rho) \\ &= \frac{1}{1-\gamma} \mathop{\mathbb{E}}_{s \sim d_{\rho}^{(t+1)}} \left[\left\langle Q_{\tau}^{(t)}(s), \pi^{(t+1)}(s) - \pi^{(t)}(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi^{(t)}(s)) \right] \\ &\geq \frac{1}{1-\gamma} \left\| \frac{d_{\rho}^{(t+1)}}{d_{\rho}^{\pi^{*}}} \right\|_{\infty} \mathop{\mathbb{E}}_{s \sim d_{\rho}^{\pi^{*}}} \left[\left\langle Q_{\tau}^{(t)}(s), \pi^{(t+1)}(s) - \pi^{(t)}(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi^{(t)}(s)) \right] \end{split}$$

With ρ set to stationary state distribution ν_τ^\star of $\pi_\tau^\star,$ we have

$$\frac{1}{1-\gamma} \left\| \frac{d_{\rho}^{(t+1)}}{d_{\rho}^{\pi_{\tau}^{\star}}} \right\| = \frac{1}{1-\gamma} \left\| \frac{d_{\nu_{\tau}^{\star}}^{(t+1)}}{\nu_{\tau}^{\star}} \right\| \ge 1.$$

We end up with:

$$V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}) - V_{\tau}^{(t)}(\nu_{\tau}^{\star}) \\ \geq \mathop{\mathbb{E}}_{\substack{s \sim d_{\nu_{\tau}^{\star}}^{\pi_{\tau}^{\star}}}} \left[\left\langle Q_{\tau}^{(t)}(s), \pi^{(t+1)}(s) - \pi^{(t)}(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi^{(t)}(s)) \right].$$

Adding and subtracting terms,

$$\begin{aligned} V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}) &- V_{\tau}^{(t)}(\nu_{\tau}^{\star}) \\ &= \mathop{\mathbb{E}}_{s \sim d_{\nu_{\tau}^{\star}}^{\pi_{\tau}^{\star}}} \left[\left\langle Q_{\tau}^{(t)}(s), \pi_{\tau}^{\star}(s) - \pi^{(t)}(s) \right\rangle + \tau \mathcal{H}(\pi_{\tau}^{\star}(s)) - \tau \mathcal{H}(\pi^{(t)}(s)) \right] \\ &+ \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\left\langle Q_{\tau}^{(t)}(s), \pi^{(t+1)}(s) - \pi_{\tau}^{\star}(s) \right\rangle + \tau \mathcal{H}(\pi^{(t+1)}(s)) - \tau \mathcal{H}(\pi_{\tau}^{\star}(s)) \right] \end{aligned}$$

Applying the two key lemmas gives

$$\begin{split} V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}) &- V_{\tau}^{(t)}(\nu_{\tau}^{\star}) \\ &\geq (1-\gamma)(V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t)}(\nu_{\tau}^{\star})) \\ &+ \frac{1}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[(1-\gamma)\mathsf{KL}(\pi_{\tau}^{\star} \,\|\, \pi^{(t+1)}(s)) - (1-\gamma - \eta\tau)\mathsf{KL}(\pi_{\tau}^{\star} \,\|\, \pi^{(t)}(s)) \right]. \end{split}$$

Rearranging the terms,

$$\begin{split} &V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}) + \frac{1-\gamma}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \| \pi^{(t+1)}(s)) \right] \\ &\leq \gamma(V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t)}(\nu_{\tau}^{\star})) + \frac{1-\gamma-\eta\tau}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \| \pi^{(t)}(s)) \right] \\ &\leq \max\left\{ \gamma, 1 - \frac{\eta\tau}{1-\gamma} \right\} \left\{ V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t)}(\nu_{\tau}^{\star}) + \frac{1-\gamma}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \| \pi^{(t)}(s)) \right] \right\}. \end{split}$$

Finally, we have

$$\begin{split} & V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}) + \frac{1-\gamma}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \, \| \, \pi^{(t+1)}(s)) \right] \\ & \leq \max\left\{ \gamma, 1 - \frac{\eta\tau}{1-\gamma} \right\}^{t+1} \Big\{ V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(0)}(\nu_{\tau}^{\star}) + \frac{1-\gamma}{\eta} \mathop{\mathbb{E}}_{s \sim \nu_{\tau}^{\star}} \left[\mathsf{KL}(\pi_{\tau}^{\star} \, \| \, \pi^{(0)}(s)) \right] \Big\} \end{split}$$

Applying the bound

$$V_{\tau}^{\star}(\rho) - V_{\tau}^{(t+1)}(\rho) \le \left\| \frac{\rho}{\nu_{\tau}^{\star}} \right\|_{\infty} (V_{\tau}^{\star}(\nu_{\tau}^{\star}) - V_{\tau}^{(t+1)}(\nu_{\tau}^{\star}))$$

finishes the proof.

Beyond entropy regularization

Beyond entropy regularization

Leverage regularization to promote structural properties of the learned policy.

cost-sensitive RL

weighted 1-norm

sparse exploration

Tsallis entropy

constrained and safe RL

log-barrier

Regularized RL in general form

The regularized value function is defined as

$$\forall s \in \mathcal{S}: \qquad V_{\tau}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} - \tau h_{s_{t}}(\pi(\cdot|s_{t}))\right) \mid s_{0} = s\right],$$

where h_s is convex (and possibly nonsmooth) w.r.t. $\pi(\cdot|s)$.

 $\mathsf{maximize}_{\pi} \quad V_{\tau}^{\pi}(\rho) := \mathbb{E}_{s \sim \rho} \left[V_{\tau}^{\pi}(s) \right]$

Generalized Policy Mirror Descent (GPMD)

Generalized Policy Mirror Descent (GPMD) [Zhan et al., 2023]

For $t = 0, 1, \cdots$, update

 $\pi^{(t+1)}(\cdot|s) = \operatorname*{argmin}_{p \in \Delta(\mathcal{A})} \langle -Q_{\tau}(s, \cdot), p \rangle + \tau h_{s}(p)$

$$-\frac{1}{\eta_{\mathsf{MD}}}\underbrace{D_{h_s}(p,\pi^{(t)}(\cdot|s);\partial h_s(\pi^{(t)}(\cdot|s)))}_{\mathcal{M}_s(\pi^{(t)}(\cdot|s))}$$

Generalized Bregman divergence w.r.t. h_s

where a surrogate of $\partial h_s(\pi^{(t)}(\cdot|s))$ is updated recursively.

Compare with PMD [Lan, 2022]:

$$\pi^{(t+1)}(\cdot|s) = \operatorname*{argmin}_{p \in \Delta(\mathcal{A})} \langle -Q_{\tau}(s, \cdot), p \rangle + \tau h_s(p) + \frac{1}{\eta_{\mathsf{MD}}} \mathsf{KL}(p \parallel \pi^{(t)}(\cdot|s)),$$

• GPMD achieves linear convergence for general convex and nonsmooth $h_s!$ In contrast, PMD requires $h_s + H$ is convex.

Numerical examples

 $h_s =$ Tsallis Entropy

 $h_s = \text{Log Barrier}$

GPMD achieves faster convergence than PMD!

References I

Agarwal, A., Kakade, S., and Yang, L. F. (2020). Model-based reinforcement learning with a generative model is minimax optimal. <i>Conference on Learning Theory</i> , pages 67–83.
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2021). On the theory of policy gradient methods: Optimality, approximation, and distribution shift. <i>The Journal of Machine Learning Research</i> , 22(1):4431–4506.
Cen, S., Cheng, C., Chen, Y., Wei, Y., and Chi, Y. (2022). Fast global convergence of natural policy gradient methods with entropy regularization. <i>Operations Research</i> , 70(4):2563–2578.
Kakade, S. M. (2001). A natural policy gradient. Advances in Neural Information Processing Systems, 14.
Lan, G. (2022). Policy mirror descent for reinforcement learning: Linear convergence, new sampling complexity, and generalized problem classes. <i>Mathematical programming</i> , pages 1–48.
Li, G., Wei, Y., Chi, Y., and Chen, Y. (2023). Softmax policy gradient methods can take exponential time to converge.

Mathematical Programming.

References II

Mei, J., Xiao, C., Szepesvari, C., and Schuurmans, D. (2020). On the global convergence rates of softmax policy gradient methods. In *International Conference on Machine Learning*, pages 6820–6829. PMLR.

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and Chi, Y. (2023).

Policy mirror descent for regularized reinforcement learning: A generalized framework with linear convergence.

SIAM Journal on Optimization.