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Recent successes in reinforcement learning (RL)

RL holds great promise in the next era of artificial intelligence.
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Supervised learning
Given training data, make prediction on unseen data:

Primarily deal with pattern recognition
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Reinforcement learning

In RL, an agent learns by interacting with an environment.

• no training data

• maximize total rewards

• trial-and-error

• sequential and online

Deal with decision making, sometimes with constraints
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Sequential decision making

“Those who cannot remember the past are condemned to repeat it.”

—George Santayana

• Games
• Robotics navigation and control
• Pricing and supply chain management
• Recommendation systems
• Portfolio optimization

Learn from past to predict and optimize future performance
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Challenges of RL

• explore or exploit: unknown or changing environments
• credit assignment problem: delayed rewards or feedback
• enormous state and action space
• nonconvex optimization
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Multi-arm bandit

Which slot machine will give me the most money?
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Learning the best arm

Can we learn which slot machine gives the most money?
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Learning the best arm via trial-and-error

Which arm do I pick next, so that I maximize my reward over time?
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Exploration-exploitation trade-off

Which arm should I play?
• Best arm observed so far? (exploitation)
• Or should I look around to try and find a better arm? (exploration)

We need both in order to maximize the total reward.
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Credit assignment problem

What is the action that leads to the desired outcome?

What if....
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Enormous problem size and function approximation

S ⇡ 2 · 10170
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Figure credit: Alphago
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Multi-agent RL

To collaborate or to compete, that is the question.
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Challenges in MARL: nonstationarity

agent environment st at st+1 rt
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From a single-agent perspective:
the environment is time-varying and nonstationary!
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Challenges in MARL: curse of multiple agents

The explosion of choices:
The joint action space grows exponentially with the agents!
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Partial observability in RL
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Goal of this course

• Not a deep RL course

• Aim to build the
“foundations”

• 800-level course:
research-oriented

• models, algorithms and
their analyses
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Sample efficiency

Collecting data samples might be expensive or time-consuming

clinical trials autonomous driving online ads

Calls for design of sample-efficient RL algorithms!
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Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!
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From asymptotic to non-asymptotic analyses
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Non-asymptotic analyses are key to understand sample and
computational efficiency in modern RL.
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Logistics
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Basic information

• Tue/Thu: 3:30 – 4:50 pm

• Instructor’s office hours: Wed 1 – 2pm, PH B25

• TA’s office hours: Jiin Woo, Thu 1 – 2pm, CIC 4117 Bellefield

• Course website:
https://users.ece.cmu.edu/˜yuejiec/ece18813B.html

• Piazza and gradescope.
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Why you should consider taking this course

• There will be quite a few THEOREMS and PROOFS ...
• Promote deeper understanding of scientific/engineering results

• Nonrigorous / heuristic from time to time
• “Nonrigorous” but grounded in rigorous theory
• Help develop intuition

• No exams!
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Tentative topics

• Multi-arm bandit
• Markov decision processes
• RL with a generative model
• Online RL
• Offline RL
• Policy optimization
• Actor critic
• Function approximation and representation learning
• Multi-agent RL
• Partially-observed MDP
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Useful references

We recommend these books, but will not follow them closely ...
• Reinforcement Learning: Theory and Algorithms (draft), by Alekh

Agarwal, Nan Jiang, Sham M. Kakade, Wen Sun

• Reinforcement learning: An introduction, by Richard S. Sutton, Andrew
G. Barto

• Reinforcement learning and optimal control, by Dimitri P. Bertsekas

• Bandit Algorithms, by Tor Lattimore, Csaba Szepesvari

More references will be provided at each lecture.
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Prerequisites

• linear algebra
• probability
• a programming language (e.g. Matlab, Python, ...)
• basic optimization

• Concentration inequalities are a plus, but not necessary
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Grading

• Homeworks (20%): ∼2 problem sets
• Use gradescope for submission and grading.

• Midterm Paper Presentations (25%)
• An in-class presentation on a selected paper from a given pool is

arranged in lieu of the midterm.
• About 15-20 min each, highlight at least one key result

• Final project (55%)
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Final project

Two forms
• literature review on a research topic (individual)
• original research (can be individual or a group of two)

• You are strongly encouraged to combine it with your own research

Three milestones
• Proposal (March 23): up to 2 pages (NeurIPS format). Plan early! Use

midterm paper as a planner.
• In-class presentation (last week of class)
• Report (May 14): up to 5 pages with unlimited appendix
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