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An integrative perspective to LQ and `∞ control
for delayed and quantized systems

Yorie Nakahira and Lijun Chen

Abstract—Deterministic and stochastic approaches to handle
uncertainties may incur very different complexities in computa-
tion time and memory usage, in addition to different uncertainty
models. For linear systems with delay and rate constrained com-
munications between the observer and the controller, previous
work shows that a deterministic approach, the `∞ control has
low complexity but can only handle bounded disturbances. In this
paper, we first take a stochastic approach and propose an LQ
controller that can handle arbitrarily large disturbance but has
large complexity in time and space. The differences in robustness
and complexity of the `∞ and LQ controllers motivate the design
of a hybrid controller that interpolates between the `∞ and
LQ controllers. Using both theoretical bounds and numerical
examples, we show that the hybrid controller can achieve a sweet
spot in the robustness-complexity tradeoff, i.e., reject occasional
large disturbance while operating with low complexity most of
the time.

Index Terms—Robustness-complexity tradeoff, the LQ control,
the `∞ control, communication constraints, robust control.

I. INTRODUCTION
In the design of cyber-physical systems, it is essential to

account for a broad range of uncertainties such as disturbances
due to environmental changes and control errors due to delays
and quantizations in feedback loops. Two approaches are typ-
ically used to handle uncertainties: deterministic or stochastic.
In the deterministic approach, uncertain input or parameters
are assumed to be in an uncertainty set, and the design goal is
to optimize the worst-case performance over the uncertainty
set. In the stochastic approach, uncertain input or parameter
is assumed to have a certain distribution, and the design goal
is to optimize the average performance. It is obvious that the
applicability of each approach depends on the characterization
of uncertainty. However, it is not clear which approach incurs
less complexity in time and space (i.e., memory). In the paper,
we investigate some of the related issues in controller design
for linear systems with delay and quantization.

Specifically, we consider a linear dynamical system with
delay and rate constrained communications between the ob-
server and the controller; see Fig. 1 for a schematic. Previous
work [2], [3] takes the deterministic approach of `∞ control,
i.e., to design an optimal controller that minimizes the worst-
case infinity-norm of the system output under infinity-norm
bounded disturbances. The resulting controller uses static
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memoryless quantizers and therefore has low time and space
complexity. However, the efficacy of this approach partly
depends on how “tight” the uncertainty set is in covering
all possible disturbances, and the assumption of bounded
uncertainty set will necessarily leave out large disturbance that
may occasionally occur.

In contrast, in this paper, we take a stochastic approach
that can better handle (occasional) large disturbances and
study the linear-quadratic (LQ) control problem with costs
(i.e., performance) in both the state and the control action.
Building upon controller design methods for the quantized
system [4], [5], we design a controller for the delayed and
quantized system. We further derive a lower bound on the
optimal performance and compare the performance of the
proposed LQ controller against it. The comparison shows that
the LQ controller can reject large disturbance while achieving
near-optimal performance. However, the LQ controller needs
to store the whole distribution of the system state, which incurs
a much higher time and space complexity than the optimal `∞
controller.

The above optimal/near-optimal controllers based on the
two approaches have different advantages and limitations
regarding robustness to uncertainty and complexity in time
and space. An interesting question that arises from these
differences is if it is possible to design a controller that has
the advantages of both the above controllers. In this paper, we
take a hybrid approach to create such a controller. Specifically,
we assume that the typical disturbance is relatively small
and covered by a bounded set, while the large disturbance
(outside of the bounded set) is rare event that has a (tail)
Gaussian distribution. Under this assumption, we construct a
hybrid controller that interpolates between the `∞ controller
and the LQ controller. Using both theoretical bounds and
numerical examples, we show that the hybrid controller can
achieve a sweet spot in the robustness-complexity tradeoff,
i.e., reject occasional large disturbance while operating with
low complexity most of the time.

Related work: There is a large literature on the topics
studied in this paper. Here we briefly review only those that
are directly relevant. Applications of the model studied in this
paper range from cyber-physical systems [2], [6]–[10] to neu-
roscience [3] and cell biology [11]–[13]. Motivated by these
applications, there exists a large literature on control under
communication constraints, based on either the deterministic
approach or the stochastic approach. For the former, stability
conditions are known for a broad class of linear systems with
quantization or data rate constraints [14], [15], and optimal
controllers for systems with delay and quantization are given
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in [2], [3]. For the latter, stability conditions are known for
linear systems with quantization or data rate constraints [16]–
[18], and performance bounds are given in [19]–[29]. The
relation between the optimal cost and the causal rate-distortion
function is studied in [29]–[34]. The information-theoretic
quantities used to model communication constraints include
mutual information [22], [35], anytime capacity [36], and
directed information [27], [37], among others. The optimal
controllers are studied for quantized systems [4], [5]. In
contrast, in this paper, we study optimal controller design for
delayed and quantized systems, and further, we take a hybrid
deterministic-stochastic approach.

Notation and preliminaries: We use lower case letter to
denote a sequence, e.g., x = {x0, x1, x2, · · · }, xtτ to denote
a truncated sequence {xτ , xτ+1, · · · , xt} from τ to t, and for
simplicity let xt = xt0. We use ′ to denote matrix transpose.
The `∞ norm of a sequence x is defined as ‖x‖∞ := supt |xt|.
We use f(x) to denote the probability density function of
a random variable x, and f(x|y) to denote the conditional
probability density function of a random variable x given y.

The rest of this paper is organized as follows. Section II
describes the system model, as well as summarizes the ex-
isting result on the `∞ control. Section III present the LQ
control design and its analysis. Section IV presents the hybrid
controller and its analysis. Section V concludes the paper.

II. SYSTEM MODEL

Consider a feedback dynamical system with delay and rate
constrained communications between the observer and the
controller as shown in Fig. 1. The plant follows the discrete-
time dynamics:

xt+1 = Axt + ut + wt, (1)

where xt ∈ R is the state, wt ∈ R is the disturbance, and ut ∈
R is the control action at time t. Without loss of generality,
assume the initial condition x0 = 0 and wt = 0 for t < 0.

Fig. 1: The system model.

The communication channel between the observer and
the controller is characterized by delay d and bandwidth
R, with R > log2 |A| to ensure stability [17]. Associated
with the observer is an encoder that at time t is defined

by a mapping Et from the available information It =
{{xτ}τ=0,...,t, {wτ}τ=0,...,t−1} to a proper codeword st, i.e.,

st = Et(It) ∈ S, (2)

where the set S of codewords has cardinality of at most 2R.
Associated with the controller is an decoder that at time t
recovers the information on state and disturbance upon the
received (delayed) information Jt−d = {sτ}τ=0,...,t−d, based
on which the controller will decide the control action ut. The
encoder and controller can be jointly defined by a mapping
Dt:

ut = Dt(Jt−d) ∈ R. (3)

We may loosely refer to Dt as decoder, controller or decoder-
encoder, whichever is more convenient in the relevant context.

Let K := {(E0, D0), (E1, D1), · · · , (Et, Dt), · · · }, which
we also broadly call the controller, and denote by K(R, d)
the space of such controllers with delay d and bandwidth
R. The design goal for the controller is to achieve a good
performance (small state deviation under disturbance) with
small control effort (small actuation, small computation time,
and low memory usage), which can be quantified in terms of
‖x‖, ‖u‖ for certain norm ‖ · ‖ and by the functional form of
(Et, Dt).

A. The `∞ System

In this subsection, we summarize the existing robust control
theory for the `∞ system with delay and quantization [2] [3],
where the design objective is to minimize maxw ‖x‖∞. For
disturbance with bounded support ‖w‖∞ ≤ L and stabilizing
bandwidth R > log2 |A|, the optimal performance is given by:

max
‖w‖∞≤L

‖x‖∞ =

{
d∑
i=0

|Ai|+ |Ad+1|
(2R − |A|)−1

}
L. (4)

Let Ψ(L) :=
{
|Ad+2|(2R − |A|)−1 + |Ad+1|

}
L. The optimal

performance is achieved by the `∞ controller as shown in
Algorithm 1. In Algorithm 1, Q` : R→ SR denotes a uniform
quantizer of rate R (i.e., with 2R levels) over the interval
[−`, `], and |SR| = 2R.

Algorithm 1: The `∞ controller.

Encoder: qt = Q−1
Ψ(L)(st−d−1)− u∗t−1

zt = Adwt−d−1 + qt

u∗t = −Azt
st−d = QΨ(L)(u

∗
t )

Decoder: ut = Q−1
Ψ(L)(st−d)

The advantage of this controller is that it requires little
computation and storage: the encoder only needs to store the
last codeword and perform minimum computation, and the
decoder is static and memoryless. In addition, this controller
requires minimum actuation effort when |A| ≥ 1: the stabiliz-
ing control law that minimizes max‖w‖∞≤1 ‖u‖∞ is identical
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to the above control law, which minimizes max‖w‖∞≤1 ‖x‖∞.
However, the low complexity of the `∞ controller does not
come for free. For a disturbance with unbounded support, the
fixed quantizer in Algorithm 1 is not stabilizing because there
is always a nonzero probability that the quantizer saturates.
In next section, we will consider the LQ controller that can
better handle large disturbance.

III. THE LINEAR QUADRATIC SYSTEM

In this section, we study the robust control problem for the
linear quadratic (LQ) system with delay and quantization. The
disturbance wt, t ≥ 0 is assumed to be i.i.d. Gaussian with
zero mean and variance σ2, i.e., wt

i.i.d.∼ N (0, σ2) for t ≥ 0.
The control objective is to minimize an average cost subject
to the plant dynamics (1):1

minimize
K∈K(R,d)

lim
t→∞

E[x′tPxt + u′tQut] (5)

where P ≥ 0 and Q ≥ 0 balance the cost of state deviation
and control action.

A. Performance Bound and Optimal Controller Structure

The following result gives a lower bound on the theoretically
opimal LQ cost.

Theorem 1: The optimal performance of the robust control
problem (5) is bounded below as follows:

lim
t→∞

E[x′tPxt + u′tQut]

≥ P
d−1∑
i=0

A2iσ2 + P ?A2dσ2 +G?A2d σ2

22R −A2
, (6)

where P ? and G? are the unique solution to the equations:

P ? = A′
[
P ? + P − P ?(Q+ P ?)−1P ?

]
A,

G? = A′P ?A+ P − P ?.
(7)

Proof: See Appendix.
The first and second terms in the lower bound (6),

P
∑d−1
i=0 A

2iσ2 +P ?A2dσ2, are due to delay in control action,
while the third term G?A2d σ2

22R−A2 is mainly due to limited
data rate. The lower bound is derived using the following
lemma, which characterizes the structure of the optimal con-
troller to (5) and holds generally for multiple-input-multiple-
output (MIMO) systems.

Lemma 1: Consider a MIMO system

xt+1 = Axt +But + wt (8)

with xt ∈ Rm, ut ∈ Rn, wt ∈ Rm and wt
i.i.d∼ N (0,Σ) with

covariance matrix Σ � 0, and the corresponding robust control
problem

min
K∈K(R,d)

lim
N→∞

E

[
x′NPxN +

N−1∑
t=0

(x′tPxt + u′tQut)

]
(9)

1In this paper we consider the scalar system (1), except for Lemma 1 that
is for the vector system (8). But notice that we treat a scalar as a vector or
matrix (of dimension one) in many equations.

with P � 0, Q � 0. Given any encoding scheme {Et}, the
optimal decoder-controller Dt has the following structure:

ut = Lt E[zt|st−d], (10)

where zt is defined by the recursion

zt+1 = Azt +Adwt−d +Btut, z0 = 0, (11)

and
Lt = −(Q+B′Pt+1B)−1B′Pt+1A, (12)

with Pt defined by the recursion

PN = P,

Pt = A′
[
Pt+1 + P − Pt+1B(Q+B′Pt+1B)−1B′Pt+1

]
A.

(13)

Proof: See Appendix.
Notice that Lemma 1 does not specify what an optimal

encoder is. Also, seen from the proof of Theorem 1, the first
two terms in the lower bound (6) of the optimal performance
are tight for any delay d if the decoder-controller has the
structure (10).

Remark 1 (Certainty equivalence): The definition of cer-
tainty equivalence and its extension to quantized systems are
given in [21], [38]. The optimal controller structure in Lemma
1 is an extension of certainty equivalence to systems with delay
and quantization. The auxiliary sequence {zt} and Lemma 1
together allow us to bound the objective value by studying
an estimation problem of a Gauss-Markov source and an LQ
control problem of a fully observed system. The sequence {zt}
also plays an important role in Section IV.

B. The LQ Controller

Based on the optimal decoder-controller structure charac-
terized in Lemma 1, we propose a controller, referred to as
the LQ controller, in Algorithm 2. The encoder and decoder
in Algorithm 2 use an adaptive quantizer generated by the
Lloyd algorithm [4], [39], [40] and estimate zt using recursive
Bayesian estimation. The encoder computes the prior density
function2

f(zt|st−d−1)=

∫ ∞
−∞

f(zt, zt−1|st−d−1)dzt−1 (14)

=

∫ ∞
−∞

f(zt|zt−1, s
t−d−1)f(zt−1|st−d−1)dzt−1,

where f(zt|zt−1, s
t−d−1) can be computed by

f(zt|zt−1, s
t−d−1) = f(zt|zt−1)

= f(Azt−1 +Adwt−d−1 + ut−1|zt−1).

Then, f(zt|st−d−1) is used to run the Lloyd algorithm [4],
[39], [40] to find a quantizer Qt that maps zt to st. Given

2With a slight abuse of notation, we use f(x|y) to denote both the
probability density function of a random variable x conditioned on another
random variable y and the function that is computed by the controller to
approximate the actual density function.
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the received codeword st−d at the decoder, the update process
computes the posterior density function

f(zt|st−d) =
f(zt, st−d|st−d−1)

f(st−d|st−d−1)
(15)

=
f(zt|st−d−1)f(st−d|zt, st−d−1)

f(st−d|st−d−1)

∝ f(zt|st−d−1)f(st−d|zt, st−d−1),

where f(zt|st−d−1) is the prior density function computed in
(14), and f(st−d|zt, st−d−1) is determined by the quantizer
Qt. Finally, f(zt|st−d) is used to generate an estimate of zt
as follows:

ẑt = E[zt|st−d] =

∫ ∞
−∞

ztf(zt|st−d)dzt. (16)

Algorithm 2: The LQ controller
Initialize:

1) Compute f(zd|s0) = N (0, σ2).
2) Set zd = 0, u0 = 0.

Encoder: At time t, the encoder performs the following
procedures:

1) Update the auxiliary variable (11).
2) Generate the prior density function by (14).
3) Run the Lloyd algorithm to obtain Qt.
4) Send the codeword st = Qt(zt) to the decoder.
5) Generate the posterior density function by (15).

Decoder: At time t, the decoder receives the codeword
st−d that was generated d sampling intervals before, and
performs the following procedures:

1) Compute the prior density function by (14).
2) Run the Lloyd algorithm to recover Qt.
3) Use the delayed codeword st−d to generate the

posterior density function by (15).
4) Calculate the estimate ẑt of zt by (16).
5) Compute the control action:

ut = −(Q+ P ∗)−1P ∗A ẑt. (17)

The proposed LQ controller may not be optimal, but can be
shown to achieve near optimal performance by comparing with
the lower bound (6) of the optimal performance. As mentioned
in the above, the first two terms of the lower bound are tight
for any delay d if the decoder-controller has the structure (10),
which is the case for the LQ controller. Thus, the performance
gap to the lower bound reduces mostly to the difference
between the achievable (zt − ẑt)G

∗(zt − ẑt) and the lower
bound of E[(zt − ẑt)G∗(zt − ẑt)]. Fig. 2 shows a comparison
between the LQ controller and the lower bound. We see that
the LQ controller achieves near optimal performance when the
bandwidth R is large enough.

The Gaussian distribution has infinite support, i.e., the
LQ controller can handle large disturbance, as opposed to
the `∞ controller that can only handle bounded disturbance.
However, the LQ controller is demanding in both computation
and memory, due to the use of an adaptive quantizer that is
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Fig. 2: The achievable performance of the LQ controller versus
the lower bound (6) on the optimal performance for the system
with A = 1, d = 0, and σ2 = 1.

necessary for stabilizing an unstable system if the disturbance
has an infinite support [15].

IV. A HYBRID ROBUST CONTROLLER

We have seen from the previous sections that the `∞
controller has low time and space complexity but can only
handle bounded disturbance, while the LQ controller can reject
arbitrarily large disturbance but incurs much higher time and
space complexity. An interesting question that arises from
these differences is if it is possible to design a controller that
has the advantages of both controllers. In this section, we take
a hybrid approach to design such a controller.

Specifically, we assume that the typical disturbance is
relatively small and covered by a bounded set, while the large
disturbance (outside of the bounded set) is rare event that
has a (tail) Gaussian distribution. Under this assumption, we
construct a hybrid controller that interpolates between the `∞
controller and the LQ controller. Using both theoretical bounds
and numerical simulations, we show that the hybrid controller
can achieve a sweet spot in the robustnes-complexity tradeoff,
i.e., reject occasional large disturbance while operate with low
complexity most of the time.

A. The Hybrid Controller

We now assume that the LQ cost function has no control
cost, i.e., Q = 0 in (5), yielding the optimal LQ controller

ut = −Aẑt (18)

to replace (17) in Algorithm 2. This simplification allows
the `∞ and LQ controllers to be considered in an unified
framework.

The proposed hybrid controller has two modes: normal
mode that runs the `∞ controller (Algorithm 1) and acute mode
that runs the LQ controller (Algorithm 2). We now explain the
switching policy between the `∞ and LQ controllers using a
bridging variable zt and a design parameter L. Notice that the
sequences {zt} in the `∞ and LQ controllers have identical
role (storing the sum of the quantization error from past control
action and the scaled disturbance Adwt−d−1), and thus can
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Algorithm 3: The hybrid controller
Initialize: mode← ‘normal′

Ψ(L)← {|Ad+2|(2R − |A|)−1 + |Ad+1|}L
for t ∈ N do

if mode = ‘normal’ then
Perform the `∞ controller (Algorithm 1)
if |zt| > Ψ(L)/A then

mode← ‘acute′

end
else

Perform the LQ controller (Algorithm 2)
if |zt| ≤ Ψ(L)/A then

mode← ‘normal′

end
end

end

serve as a bridging variable to connect the two controllers.
Re-define the sequence {qt} as

qt+1 = Aqt + ut +Ad+1wt−d−1 (19)

with wt = 0 for t < 0. The definition (19) does not rely on the
particular realization of the controller, so qt is well-defined in
both Algorithms 1 and 2. Using qt, zt can be written as

zt = Adwt−d−1 + qt (20)

with the zt = 0 for t ≤ d. Thus, zt in Algorithm 2 satisfies

zt+1 = Azt +Adwt−d + ut

= Adwt−d +Aqt + ut +Ad+1wt−d−1

= Adwt−d + qt+1, (21)

where the first equality follows form (11), the second equality
from (20), and the third equality from (19). Therefore, zt takes
the same value in both Algorithms 1 and 2. The proposed
controller sets a threshold on the absolute value of zt to
determine whether the `∞ controller or the LQ controller
should be used.

Let the design parameter L ∈ R be the size of the
disturbance up to which the controller stays in normal mode,
i.e., normal mode when ‖w‖∞ ≤ L. Since ‖wt−d−1

0 ‖∞ ≤ L
implies |zt| ≤ Ψ(L)/A, equivalently |zt| > Ψ(L)/A implies
|wτ | ≥ L for some τ ≤ t− d− 1. Thus, the condition

|zt| > Ψ(L)/A (22)

is a sufficient condition for ‖wt−d−1
0 ‖∞ > L. We use this

sufficient condition to define the switching policy as follows:

mode =

{
‘normal′ |zt| ≤ Ψ(L)/A,

‘acute′ |zt| > Ψ(L)/A.
(23)

The proposed hybrid controller is described in Algorithm 3.
The design parameter L impacts the system performance

and controller complexity, and there exists a tradeoff between
the two. We will next discuss its choice and the resulting
performance and complexity tradeoff.

B. Switching Behavior

In this subsection, we analyze the behavior of the hybrid
controller using the switching time from normal to acute mode
and the recovery time from acute to normal mode. We denote
the set of times at which the controller switches from normal
to acute mode as

Ts = {t ∈ N : |zt| > Ψ(L)/A & |zt−1| ≤ Ψ(L)/A},

and the set of time at which the controller switches from acute
to normal mode as

Tr = {t ∈ N : |zt| ≤ Ψ(L)/A & |zt−1| > Ψ(L)/A}.

Let tr ∈ {0} ∪ Tr be the beginning of a normal mode, the
switching time Ts is defined as

Ts(tr) = min{t > tr : |zt| > Ψ(L)/A} − tr. (24)

Let ts ∈ Ts be the beginning of an acute mode, the recovery
time Tr is similarly defined as

Tr(ts) = min{t > ts : |zt| ≤ Ψ(L)/A} − ts. (25)

Long switching time and short recovery time imply that
the controller stays in normal mode most of the time, and
thus requires less computation and memory. Therefore, the
controller complexity can be roughly characterized by the time
of operating in acute mode.

Let a random variable w be drawn from the same distri-
bution with the disturbance wt, i.e., w,wt

i.i.d.∼ N (0, σ). The
following result characterizes the relation between the design
parameter L and the expected switching time E[Ts(tr)].

Theorem 2: Define a mappng T̂s : R→ R+

T̂s(tr) =

{
d+ P(|w| > L)−1 tr = 0,

P(|w| > L)−1 tr ∈ Tr.

The expected switching time Ts(tr) is lower bounded by

E[Ts(tr)] ≥ T̂s(tr), (26)

and the lower bound becomes tight as the bandwidth R→∞.
Proof: See appendix.

The proof of Theorem 2 uses the concept of majorization
to approximate the switching time by geometric distribution.
Theorem 2 suggests that the expected switching time can be
approximated by E[Ts(tr)] ≈ T̂s(tr).

Similarly, the expected recovery time Tr(·) can be approx-
imated by

E[Tr(·)] ≈ T̂r = P(|w| ≤ L)−1. (27)

Recall from (21) that the evolution of zt follows zt+1 =
Adwt−d + qt+1 where qt+1 is a function of zt. Assuming
the quantizer (defined from the encoder and decoder) is near-
optimal, a large zts at the beginning of the an acute mode is
approximately reduced by rate |A|2−R per unit time and by
|Aτ |2−τR after τ times. Thus, for sufficiently large |A|2−R,
the term Adwt−d in (21) dominates. In this situation, observing
a small disturbance, i.e., |wt−d| ≤ L, is enough to lessen the
value of zt below Ψ(L)/A. This explains why the recovery
time can be approximated by a geometric distribution with
success probability P(|wt| ≤ L).
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Fig. 3: The accuracy of the theoretical approximations (26) of
the switching time and (27) of the recovery time for a system
with A = 1 and d = 1. The empirical values of Ts and Tr are
first generated by averaging 100 trials for different values of
L ∈ [0.1, 2] and R ∈ {1, 2, · · · , 9}. Then, the approximation
errors |Ts − T̂s| and |Tr − T̂r| are averaged over all L, and
their mean values are plotted for different values of R.

Fig. 3 shows a comparison between the empirical value
of the expected switching time Ts(0) and the theoretical
approximation T̂s(0) and between the empirical value of the
expected recovery time Tr(·) and the theoretical approximation
T̂r. We see that the approximation becomes tight when the
bandwidth R is large enough.

C. The Performance versus Complexity Tradeoff

The above theoretical approximations suggest that, for suf-
ficiently large bandwidth (|A|2−R � 1), a greater L implies
larger switching time (from Ts(tr) ≈ T̂s(tr) = P(|wt| >
L)−1) and smaller recovery time (from Tr(ts) ≈ T̂r(ts) =
P(|wt| ≤ L)−1). This can be empirically verified; see, e.g.,
Fig. 4. Since the switching (recovery) time is an increasing
(decreasing) function of L, the complexity of the hybrid
controller decreases as L increases.

One the other hand, the decrease in controller complexity
comes with cost of degraded performance because a larger
L also implies a coarser quantizer in Algorithm 1 (and thus
larger quantization error). Specifically, in normal mode,

|xt| ≤

(
d∑
i=0

|Ai|+ |Ad+1|(2R − |A|)−1

)
L. (28)
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Fig. 4: The switching and recovery times as a function of L
for a system with A = 1, d = 1, and R = 6. The averages
over 100 trials are plotted for the empirical values.

So, the worst-case `∞ cost in normal model is an increasing
function of L, and a smaller L leads to better performance.

Therefore, there is a tradeoff between performance and
complexity, as shown in, e.g., Fig. 5. Fig. 5 (and other
numerical experiments) also shows that significant increase
(decrease) in switching (recovery) time can be achieved with
small performance degradation (notice that the vertical axes
are in log-scale).

D. Performance under Mixed Disturbance

We now take a look at the performance of the proposed
controllers (Algorithms 1-3) under the mixed disturbance:

wt = vt + rt (29)

with vt
i.i.d.∼ N (0, σ2

v) and ‖r‖∞ ≤ 1. We use this type
of structured disturbance to model the common situation
where the system experiences bounded disturbance most of
the time and large disturbance occasionally (i.e., with small
probability).

For a feedback system with perfect communications, the op-
timal `∞ controller and LQ controller for the scalar system (1)
are identical when the control cost is not considered. However,
with communication constraints, the optimal `∞ controller
and LQ controller are radically different, and the mixed
disturbance poses significant challenge in encoding/decoding
strategies as the system state can be defined neither in a worst-
case framework nor in a stochastic framework.
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Fig. 5: The tradeoff between complexity (as implied by the
switching time and the recovery time) and performance (as
represented by the worst-case `∞ cost in normal mode) for a
system with A = 1 and (d,R) = {(1, 1), (2, 2), (3, 3)}.

The `∞ controller cannot stabilize such systems because
there is a non-zero probability for the fixed quantizer to satu-
rate. The performance of the LQ controller and the proposed
hybrid controller is compared in Fig. 6. The LQ controller
has degraded performance when there exists an additional
disturbance r that cannot be well-defined using probability
density function. However, the proposed hybrid controller
consistently achieves robust performance under such distur-
bance. By exploiting the additional dimension in the controller
design space, the right inegration of stochastic (LQ) and worst-
case (`∞) enables a robust controller under communication
constraints.

V. CONCLUSSION

We have considered robust control design for linear systems
with delayed and rate constrained communications between
the observer and the controller. We first take a stochastic ap-
proach and propose an LQ controller that can handle arbitrarily
large disturbance but has large complexity in time and space.
This is different from the `∞ control (a deterministic ap-
proach) that previous work have shown to have low time/space
complexity but can only handle bounded disturbance. The
differences in robustness and complexity of the LQ and `∞
controllers motivate the design of a hybrid controller that
interpolates between the `∞ and LQ controllers. Using both
theoretical bounds and numerical examples, we show that the
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Fig. 6: Performance of the hybrid controller. The figure
on the top shows the tradeoff between the normal mode
performance (in the `∞ cost) and the approximated acute
mode ratio T̂s/(T̂r + T̂s) for a system with A = 1 and
(d,R) = {(1, 1), (2, 2), (3, 3)}. The figure on the bottom
shows the performance (in the LQ cost) for a system with
A = 1, d = 1, R = 3 and under the mixed disturbance with
different variances σ2

v . The averaged LQ costs for 100 trials
are plotted.

hybrid controller can achieve a sweet spot in the robustness-
complexity tradeoff, i.e., reject occasional large disturbance
while operate with low complexity most of the time.
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VII. APPENDIX

In this section, we provide the proofs for the main results
in the paper.

A. Proof of Lemma 1

Define

et = wt−1 +Awt−2 + · · ·+Ad−1wt−d, (30)
zt = xt − et, (31)

where et captures the component in the state xt that results
from the disturbance wt−1

t−d and cannot be mitigated due to
the delay in control, while zt depends on the information of
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wt−d−1
0 and the control action in response to it. Obviously, zt

and et are independent. Moreover, E[et] = 0, and zt satisfies
equation (11), restated below??

zt+1 = Azt +Adwt−d +But, z0 = 0.

In order to decompose the effects of control action and
disturbance, we define z̄t to be the state zt that would be
generated at time t when the system (8) has zero control
ut ≡ 0. Setting ut = 0 in the above equation, we obtain

z̄t+1 = Az̄t +Adwt−d, z̄0 = 0. (32)

Recall that {st} is the codewords generated by {zt}. We
introduce an auxiliary encoder

f(s̄t−d|z̄t, s̄t−d−1) = f(st−d|z̄t, st−d−1) (33)

to generate another sequence of codewords {s̄t}.
Lemma 2: The following relation holds:

zt − E[zt|st−d] = z̄t − E[z̄t|s̄t−d].

Proof: (Lemma 2) We first use mathematical induction to
show

f(st−d, z̄t) = f(s̄t−d, z̄t). (34)

Obviously, (34) holds at t = 0. If (34) holds until t, then (34)
also holds for t+ 1 because

f(s̄t−d+1, z̄t+1)

=f(s̄t−d, z̄t)f(z̄t+1|s̄t−d, z̄t)f(s̄t−d+1|s̄t−d, z̄t+1)

=f(st−d, z̄t)f(z̄t+1|st−d, z̄t)f(st−d+1|st−d, z̄t+1)

=f(st−d+1, z̄t+1),

where the second equality is due to construction (33), the
induction hypothesis (34), and the fact that f(z̄t+1|s̄t−d, z̄t) =
f(z̄t+1|z̄t) = f(z̄t+1|st−d, z̄t). By (34), we obtain

E[zt|st−d] = E[z̄t +

t∑
k=1

Ak−1But−k|st−d]

= E[z̄t|st−d] +

t∑
k=1

Ak−1But−k

= E[z̄t|s̄t−d] +

t∑
k=1

Ak−1But−k,

and thus

zt − E[zt|st−d]

=z̄t +

t∑
k=1

Ak−1But−k −

(
E[z̄t|s̄t−d] +

t∑
k=1

Ak−1But−k

)
=z̄t − E[z̄t|s̄t−d].

Lemma 2 implies that we can negate all the effect of the
control action to obtain z̄t. Intuitively, this is because ut0
is generated from st−d. This separation allows us to prove
Lemma 1.

Proof: (Lemma 1) Consider the cost-to-go:

Jt(s
t−d) = E

[
x′NPxN +

N−1∑
τ=t

x′τPxτ + u′τQuτ

∣∣∣st−d]
for any k < N and JN = E[x′NPxN ]. We use mathematical
induction to show the following properties:

(i) The optimal cost-to-go satisfies

Jt(s
t−d) = E

[
ẑ′tPtẑt|st−d

]
+ αt(s

t−d), (35)

where ẑt = E[zt|st−d] and αt(s
t−d) is a function of

st−d whose expected value does not depend on the
choice of control action, i.e.,

E
[
αt(s

t−d)
]

= E
[
αt(s̄

t−d)
]
. (36)

(ii) The optimal controller admits the form (10).

At t = N , the cost-to-go satisfies

JN = E[x′NPxN |sN−d]
= E[(ẑN + z̃N + eN )′P (ẑN + z̃N + eN )|sN−d]
= E[ẑ′NP ẑN |sN−d] + E[z̃′NP z̃N |sN−d] + E[e′NPeN ],

where z̃t := zt−ẑt, and the last equality holds because eN , ẑN
and z̃N are uncorrelated and eN is independent of sN−d. By
Lemma 2, E[z̃′NP z̃N |sN−d] does not depend on the choice of
control action. Letting αN = E[z̃′NP z̃N |sN−d] +E[e′NPNeN ]
yields (35) for t = N .

Assume now that (35) holds for t = k + 1. The optimal
cost-to-go at time t = k can be derived as follows:

Jk(sk−d)

= minuk
E[x′kPxk + u′kQuk + Jk+1|sk−d] (37)

= minuk
E[x′kPxk + u′kQuk

+ E
[
ẑ′k+1Pk+1ẑk+1|sk−d+1

]
+ αk+1|sk−d]

= minuk
E[ẑ′k(P +A′Pk+1A)ẑk + u′k(Q+B′Pk+1B)uk

+ u′kB
′Pk+1Aẑk + ẑ′kA

′Pk+1Buk|sk−d] (38)

+ E[e′kPek + ŵ′kPk+1ŵk + z̃′kP z̃k|sk−d]
+ E[αk+1(sk−d+1)|sk−d],

where ŵk = E[Adwk−d + Az̃k|sk−d+1], and by induction
hypothesis the second equality holds. By Lemma 2 and
induction hypothesis, e′kPek + ŵ′kPk+1ŵk + z̃′kP z̃k does not
depend on the control action ut. Therefore, we can just
consider minimizing the first term (38). The control action
that minimizes this term is given by (10), i.e.,

uk = −(Q+B′Pk+1B)−1B′Pk+1A ẑk,

where

Pk = A′
[
Pk+1 + P − Pk+1B(Q+B′Pk+1B)−1B′Pk+1

]
A.

Substituting this control action uk into Jk, we obtain the
optimal cost-to-go

Jk(sk−d) = E
[
ẑ′kPkẑk|sk−d

]
+ αk(sk−d)
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with

αk(sk−d) = E[e′kPek + ŵ′kPk+1ŵk + z̃′kP z̃k + αk+1

∣∣sk−d]
= E[e′kPek + z̃′tA

′Pk+1Az̃t + w′t−d(A
d)′Pk+1A

dwt−d

− z̃′t+1Pk+1z̃t+1 + z̃′kP z̃k + αk+1(sk−d+1)|sk−d], (39)

where the second equality is obtained as follows. Given sk−d,
the random variable ŵk is the estimate of Adwk−d + Az̃k
given sk−d+1, and the random variable z̃k+1 is the resulting
estimation error, i.e.,

ŵk + z̃′k+1 = Adwk−d +Az̃k. (40)

Therefore, the weighted covariance of the estimation target
equals the sum of the weighted estimation error covariance
and the weighted estimate covariance

E[(Adwk−d +Az̃k)′Pk+1(Adwk−d +Az̃k)|sk−d]
= E[z̃′k+1z̃k+1|sk−d] + E[ŵ′kPk+1ŵk|sk−d]

Combining above with

E[(Adwk−d +Az̃k)′Pk+1(Adwk−d +Az̃k)|sk−d]
= E[z̃′tA

′Pk+1Az̃t + w′k−d(A
d)′Pk+1A

dwk−d|sk−d]

yields (39). By Lemma 2 and the induction hypothesis
E[αk+1|sk−d] = E[αk+1|s̄k−d], αk does not depend on the
choice of control action. So, equation (35) holds for t = k.

From the proof of lemma, we can observe that, given any
encoder, the optimal decoder are essentially the optimal LQ
controller for the sequence ẑt, which evolves according to the
dynamics

ẑt+1 = Aẑt +But + ŵt. (41)

In other words, the optimal decoder are the certainty equivalent
controller for the sequence zt, the estimation target of ẑt.
When there is no delay in the control action, i.e., d = 0,
then this optimal decoder reduces to the certainty equivalent
controller for xt, as is given by [22].

B. Proof of Theorem 1

We first describe a result that will be used later.
Lemma 3 ( [22], [29]): Consider a scalar Gauss-Markov

sequence {yt} satisfying

yt+1 = Ayt + vt, y0 = 0, (42)

where A ∈ R, yt ∈ R, and vt
i.i.d.∼ N (0, σ2). Assume that

at each time t, only R(> log2 |A|) bits of information about
yt can be transmitted to st ∈ S, where |S| = 2R and st is a
function of (yt, st−1). Let ŷt be an estimate of yt using only
the information of st. Then, the following inequality holds:

lim
t→∞

1

N
E

[
N∑
t=1

(yt − ŷt)2

]
≥ σ2

22R −A2
.

With Lemmas 1 and 3, we are ready to proveTheorem 1.

Proof: (Theorem 1) By equation (35),3

lim
t→∞

E[x′tPxt + u′tQut]

= lim
N→∞

1

N
E

[
x′NPxN +

N−1∑
t=0

x′tPxt + u′tQut

]
= lim

N→∞

1

N
E[J1]

= lim
N→∞

1

N
E[Jd(s

0)]

= lim
N→∞

1

N
E
[
E
[
ẑdPdẑd|s0

]
+ αd(s

0)
]

= lim
N→∞

1

N
E
[
αd(s

0)
]

Next we observe that E[αt] satisfies the relation

E[αk(sk−d)] (43)

= E[E[αk+1(sk−d+1) + e′kPek + w′k−d(A
d)′Pk+1A

dwk−d
(44)

+ z̃′k(A′Pk+1A+ P )z̃′k − z̃′k+1Pk+1z̃k+1|sk−d]] (45)

= E[αk+1(sk−d+1)] + E[e′kPek + w′k−d(A
d)′Pk+1A

dwk−d
(46)

+ z̃′k(A′Pk+1A+ P )z̃′k − z̃′k+1Pk+1z̃k+1] (47)

= E[αN (sN−d)] +

N−1∑
τ=k

E[e′τPeτ + w′τ−d(A
d)′Pτ+1A

dwτ−d

(48)
+ z̃′τ (A′Pτ+1A+ P )z̃′τ − z̃′τ+1Pτ+1z̃τ+1] (49)

(50)

Because the system is controllable, the Riccati difference
equation (7) has a unique solution P ?, and limN→∞ Pk = P ?.
Therefore, we have

lim
N→∞

1

N

N−1∑
τ=d

E[w′τ−d(A
d)′Pτ+1A

dwτ−d] = P ?A2dσ2

(51)

and

lim
N→∞

1

N

N−1∑
τ=d

E[z̃′t(A
′Pk+1A+ P − Pk+1)z̃t] (52)

= lim
N→∞

1

N

N−1∑
t=1

E[z̃′t(A
′P ?A+ P − P ?)z̃t]. (53)

3With a slight abuse of notation, we use J1 without the conditioning of the
sequence st because it is purely determined from the initial condition.
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Combining (43)–(49) and (51)–(53), we obtain that

lim
N→∞

1

N
E[αd(s

0)]

= P (1 +A2 +A4 + · · ·+A2(d−1))σ2 + P ?A2dσ2

+ lim
N→∞

1

N

N−1∑
t=1

E[z̃′t(A
′Pk+1A+ P − Pk+1)z̃t]

= P

d−1∑
i=0

A2iσ2 + P ?A2dσ2

+ lim
N→∞

1

N

N−1∑
t=1

E[z̃′t(A
′P ?A+ P − P ?)z̃t].

When xt ∈ R, from Lemma 3, the second term is lower
bounded by

E[(z̄t − E[z̄t|s̄t−d])′G?(z̄t − E[z̄t|s̄t−d])]

≥ G?A2d σ2

22R −A2

Therefore, we have obtained (9).

C. Proof of Theorem 2

Proof: (Theorem 2) We first prove the lower bound for
τ = 0. Let {Ek} be the event that the controller switches at
time k, i.e.,

Ek = {|zt| ≤ Ψ(L)/A for all t < k and |zk| > Ψ(L)/A}.

Notice that {Ek} a sequence of a mutually exclusive set of
events, and that P(Ek) = 0 for k ≤ d (since zt = 0 for t ≤ d
by definition). Let {Fk} be the event that the disturbance first
exceeds L in amplitude at time k, i.e.,

Fk = {|wt| ≤ L for all t < k and |wk| > L}.

The sequence {Ek} is a mutually exclusive set of events,
and limτ→∞

∑τ
i=0 P(Ei) = 1. Same holds for {Fk}, i.e.,

limτ→∞
∑τ
i=0 P(Fi) = 1. From ∪i≥kEi ⊂ ∪i≥kFi, we obtain

∞∑
i=k−d−1

P(Fi) ≤
∞∑
i=k

P(Ei) (54)

for any k ∈ N. Using (54), the expected switching time can
be bounded below by

E[Ts(τ)] =

∞∑
k=0

k P(Ek)

=

∞∑
k=0

k P(Ek)−
∞∑
k=0

k P(Ek+d) +

∞∑
k=0

k P(Ek+d)

= d+

∞∑
k=0

k P(Ek+d)

= d+

∞∑
k=1

∞∑
i=k

P(Ei+d)

≥ d+

∞∑
k=1

∞∑
i=k

P(Fi−1)

= d+

∞∑
k=1

k P(Fk−1)

= d+

∞∑
k=1

k
(
1− P(|w| > L)

)k−1P(|w| > L)

= d+ P(|w| > L)−1,

where the last equality can be interpreted as computing the
mean of a geometric distribution with failure probability
P(|w| > L).

Next, notice that |zt| ≤ Ψ(L)/A and |wt−d| ≤ L implies
|zt+1| ≤ Ψ(L)/A. Thus, we can apply the argument in τ = 0
to obtain the lower bound for τ ∈ T :

E[Ts(τ)] ≤ P(|w| > L)−1.

Next, we prove the convergence for τ = 0, i.e.,
E[Ts(0)]

R→∞→ d + P(|w| > L)−1. Since d +∑∞
k=1

∑∞
i=k P(Ei+d) ≥ d +

∑∞
k=1

∑∞
i=k P(Fi−1) is the

only inequality from the above analysis, it is suffice to show
that |

∑∞
k=1

∑∞
i=k P(Ei+d)−

∑∞
k=1

∑∞
i=k P(Fi−1)| → 0.

By ‖q‖∞
R→∞→ 0 and zt → Adwt−d−1, P(Ft−d−1)→ P(Et).

This implies that∣∣∣∣∣
∞∑

i=k−1

P(Fi−1)−
∞∑
i=k

P(Ei+d)

∣∣∣∣∣
=

∣∣∣∣∣
(

1−
k−2∑
i=0

P(Fi)

)
−

(
1−

k−1∑
i=0

P(Ei+d)

)∣∣∣∣∣
→ 0 as R→∞

holds for any k ∈ N. Since both
∑∞
k=1

∑∞
i=k P(Ei+d) and∑∞

k=1

∑∞
i=k P(Fi−1) are bounded, for any ε > 0 there exits

a sufficiently large T such that τ > T implies
∞∑
k=τ

∞∑
i=k

P(Ei+d) ≤ ε/4 and
∞∑
k=τ

∞∑
i=k

P(Fi−1) ≤ ε/4,

and sufficiently large R̄ such that R > R̄ implies
τ∑
k=1

∞∑
i=k

P(Ei+d) ≤ ε/4 and
τ∑
k=1

∞∑
i=k

P(Fi−1) ≤ ε/4,
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which jointly yields∣∣∣∣∣
∞∑
k=1

∞∑
i=k

P(Ei+d)−
∞∑
k=1

∞∑
i=k

P(Fi−1)

∣∣∣∣∣ ≤ ε. (55)

The case for τ ∈ T follows the same argument and is omitted
here.
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