ScienceDirect

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 48-22 (2015) 034-039

A linear programming framework for
networked control system design

Yorie Nakahira* Seungil You*

* California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: {ynakahir, syou} @Qcaltech.edu)

Abstract: This paper considers stability and performance for a sampled data system with a
distributed controller, time-varying delay, quantization, saturation, and external disturbances.
We decompose the overall system into two subproblems. The first is a linear subsystem
containing a distributed controller satisfying information sharing constraint between sensor and
actuator. The second involves nonlinear error dynamics comprised of sampling, quantization,
delay and saturation errors. We show how to construct an invariant set of the error dynamics
using a linear program. Our method enables the design of distributed/localized controllers and
delayed communication channels with linear programming, enhancing both implementation
and design scalability. The use of I, signal/l; operator norm appears essential to capture
communication error and facilitate scalable computation. We also analyze the suboptimality
gap and the feasibility condition of the proposed linear program.
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1. INTRODUCTION

Networked control systems are becoming increasingly
ubiquitous as seen in applications such as vehicle platoon-
ing, smart grid, and software defined networking among
others. Their distributed nature creates various challenges
both in design and implementation. Common elements
in these systems include information sharing constraints,
quantization, time-varying delays, and sampling. Cur-
rently, there is no existing framework that incorporates
every one of these components.

Distributed control literature focuses on systems with in-
formation sharing constraints. Rotkowitz and Lall (2006)
found that quadratically invariant information constraints
produce a convex formulation of optimal control problem.
Various controller synthesis methods for linear systems ex-
tended from their work can be found in Table 1. However,
this approach cannot account for band-limited commu-
nication channels between sensor and actuator. Naively
implementing a distributed controller in the presence of
band-limited channels does not guarantee stability.

Another existing body of work considers control under
band-limited channels and time-varying delays. Among
others, Fagnani and Zampieri (2004); Heemels et al.
(2010); Fridman and Dambrine (2009); Nesic and Liberzon
(2009) considered stability and performance for a system
with nonlinearity arising from saturation, quantization,
and time-varying delay. As seen in review of Hespanha
et al. (2007); Nair et al. (2007), it is most common to con-
struct an invariant set of the state trajectory by Lyapunov-
Krasovskii method. Similar lines of research is by Aysal
et al. (2008), Liu et al. (2011) that combine distributed
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consensus with sampling, quantization, or delay. These
methods, dealing with delay and band-limited channels,
nonetheless cannot account for complex information shar-
ing constraints.

Our proposed framework resolves the apparent discrep-
ancy between these two bodies of work. We offer de-
sign tools for systems with both information sharing con-
straints and band-limited channels. Additionally, we show
how to guarantee stability and performance by linear
programming without using Lyapunov-Krasovskii method
which uses semidefinite programming. This largely reduces
computation complexity and enhances scalability. The in-
tuition behind the proof technique used in this paper
can be found in Nakahira et al. (2015), which shows the
analytical formula of system performance as a function of
channel capacity.

We describe the problem formulation in Section 2. The
design process — controller synthesis and channel design —
is in Section 3. We present the feasibility condition of the
propose program in Section 4, followed by a concluding
remark in Section 5.

Table 1. List of controller synthesis literature.

Centralized L1 optimal (linear programming)

Dahleh and Diaz-Bobillo (1994)

Distributed

Lamperski and Doyle (2012b); Lamperski and Lessard (2013)
Shah et al. (2011); Lessard and Lall (2012)

Totally distributed (localized)

Wang et al. (2014); Wang and Matni (2014)

Notation

e We denote the set of positive integers by N, the set of real
numbers by R, and the set of non-negative real numbers by
R4.
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e We denote the i-th entry of a vector by ;, the (7, j)-th entry
of a matrix by A;;.

o We use z(t), t € Ry, for a continuous signal, z[k], k € N, for a
discrete sequence. Bold front lower case is used to represent a
sequence, i.e., x = {z(t)}+er, or x = {z[k]}ren-

e We denote the space of continuous signals with bounded
infinity norm by £ £ {x : z(t) € R",||x[|lcc < 00} where
1%loo = SUPycgr, Max; |zi(t)|. The space of discrete sequences
with bounded infinity norm by {%, £ {x : z[k] € R", ||x]c <
oo} where ||x||oo £ supy ey max; |z;[k]|.

e We use > to represent elementwise inequality, i.e.,

T>Ly <= Vi, x; >y (1)

e We denote the space of stable rational proper transfer matrices
by RHoo, and the space of stable rational strictly proper
transfer matrices by %RHOO.

Preliminaries
In this section, we review mathematical preliminaries.

Systems and norms: A stable linear time-invariant causal operator
P:ucll —y €l can be written in the form

e[k + 1] = Az[k] + Bulk] (2)
ylk] = Calk] + Dulk],

where A has all its eigenvalues inside the open unit circle. We use
the notation P = |:é, g] . The transfer matrix of P is P = C(zI —

A)~1B+D, where  is used for operators/sequences z-domain. Notice
that P and P are different representations of an equivalent object.
Additionally, we define

LD k=0

to be its impulse matrix. The I3 norm is ||P||; = max; Zj,k | P;;[K]|,
which is also the induced norm of operator on ls. In a similar

manner, let |M| be the element-wise absolute value of a matrix
[Mus| - |Min]

M € R™*" je., |M| = , using which we

[Mma| - |[Mmm|
define the induced matrix as follows.
Definition 1. The induced matriz of a stable linear time-invariant

causal operator P : [Z — I} is defined by
(e o)

Plew 2 |Pk]| € 7™ ()
k=0

This induced matrix can be well defined when the linear time-
invariant operator is stable. Notice that we can use |P|c.w to bound
the operator output. Recall from notation that > denotes element-
wise incqualitl. If for any k € N, |%[k]| <4 ¢, then

ikl = |y Pl —iJulil| <+ Y |Plk—i)||uli]| <+ [Plew ¢
1=0 =0

Quantizers: A quantizer partitions the input space into disjoint
sets, and maps each set onto its representative point. We considers
uniform quantizers.

Definition 2. An uniform quantizer with L € N" level and satura-
tion X € R} is a mapping Qr,x : z € R® = y € R™ defined as
following: for X < oo,

X [ X
X+ = if x; € *OO,*X1+24)
L; L L;
X, . I X Xi
—-X;+3— feg; e | - X;+2—,—-X; +4—
) L; L L; L;
Yi =
X [ X
X, — = ifa; € | X; —2=, 00|,
Li L L'L

and for X = oo, Q.  is a identify map, i.e., z = Q. oo .

This type of uniform quantizer Q7 x has a useful property which
greatly simplify the analysis: if |z;| < X, then |z; — Qp x®;| <
X;/L;. Let invdiag(L) denote an n X n square matrix

Ly' i=j

0 i#j.

This property has an alternative expression:

invdiag(L);; = {

if |z] <4 X, then |z — y| <4 invdiag(L)X. (5)
2. PROBLEM DESCRIPTION

We formulate the problem in Section 2.1, and explain its
motivation behind using an engineering example in Section
2.2.

2.1 Problem formulation

Consider a sampled data system of the form:

(t) = Az(t) + Biw(t) + Bau(t)

z(t) = Crx(t) + Du(t) (6)

y(t) = Cax(t),
where z(t) € R™ is the state, y(t) € R™ is the sensor
measurement, w(t) € R is the disturbance, and u(t) €
RP is the control action. The output y(¢) is sent to
the controller using a communication channel every T
seconds. This channel is a uniform quantizer defined by
the mapping Qr, y : R™ — R™ from definition 2. Let y[k]
be the channel output, i.e.,

ylk] £ Qr, vy(ts), (7)

for any & € N and t, 2 kT. The controller K =
Sy %K [i] is a strictly proper linear time-invariant sys-
tem. The desired control action u*[k] is computed from

k
u[k] = Z Klilylk — . (8)

Note that we denote the raw measurement by y(tx), and
quantized measurement by y[k] = Qr, yy(tx). The desired
control action u*[k] is sent to the actuators using another
communication channel Qr, ¢ : RP — RP. The control
command received by the actuators at time t = ¢, is

ulk] £ Qr, vu*[k]. (9)
For generality, we consider the case when there are two
communication channels — one between sensor and con-
troller, another between controller and actuators. How-
ever, the design and analysis technique can be trivially
extended to systems with only one channel. The control
action is executed with time-varying delay di € [0, h]
where h < T'. Thus, the actual control action is

C(ulk—1] t€ [t dy)
u(t) = {u[k] te [d];,t:H).

for any t € [tg,tr+1). Additionally, we make following
assumptions:

A. The controller satisfies K € S, where S, is a subspace
of %R?—Loo specifying the information sharing pattern
(see remark 1).

B. The pair (4, C) is observable. Equivalently, the pair

(eAT, ) is observable.
. The disturbance satisfies ||w||s < 1.
. The initial condition of the system is x(0) = 0.

Ao
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E. The delay upper bound h is known to the system
designer. However, the controller does not have access
to the actual value of dj..

Given the hardware limitation parametrized by (L., Ly, h),
our goal is to design a stabilizing control law defined by
the triple (K,Qr, v,Qr,,y) such that

2]lc0 < v

sup
ol oo <1 (10)
Remark 1. The information sharing constraints are ex-
1 1
R
yARSS yARY
pressed as K € 8, with S, = 1 R 1 , where
2721 zT22

R is the space of proper real rational transfer matrices
and 7;; € N. Roughly speaking, the information sharing
constraints S, specify the delay larger than the sampling
time 7', whereas the time-varying delay dj specifies delay
smaller than the sampling time.

2.2 Motivating example

In large scale systems, each node may not be able to access
the current state of the whole system upon deciding its
control action. Some multi-agent systems with underwater
vehicles or low power sensor networks have limited commu-
nication capacity, and the communication between agents
is subject to errors arising from quantization, saturation,
and delay. The design of these systems is challenging as
explained in section 1. We show below, for illustrative
purpose, a simple example where the design problem can
be formulated in the form presented in section 77, whereas
our problem formulation holds in more generality.

A group of m unmanned vehicle is following a leader.
We enumerate each follower by ¢ = 1,2,--- ,m. Every
T seconds, the first vehicle senses its distance from the
leader, and the i-th vehicle senses its distance from the (i—
1)-th. This sampled data system has a discrete controller
acting on its continuous dynamics: the position/velocity
of each vehicle p;/v; satisfies m;v;(t) = F;(¢),p; = v
where m; is the mass, F; is the control action. A naive
design without utilizing communication between vehicles
— the first vehicle following the leader, and the i-th ve-
hicle following the ¢ — 1-th vehicle — would have limited
performance (the distance between the m-th vehicle and
the leader will be large: the first vehicle takes more than
T second to sense the leader and reflect on its move-
ment; the second vehicle takes more than 27T seconds;
and so does the remaining ones). In contrast, if one adds
a communication channel between neighbouring vehicles,
the m-th vehicle can follow the leader as quickly as it
can communicate, achieving faster response. Let the state
and control action of the dynamical system be defined
by z = [v1 =" p1—p*, va —v1, p2 —p1, "']T,U =
[F1, Fa, ---]" where (p*, v*) is the leader’s position /velocity.
The information sharing structure considered in Lamper-
ski and Doyle (2012a) corresponds to the case when i-th
vehicle at time ¢ have the 'perfect’ information of Z;(t) =
{pi()—pi—1(t), pica(t=T)—pi—2(t=T), pis1(t=T)—pi(t—
T),---}. On the other hand, when the communication
channel has limited information capacity, the i-th vehi-

cle may not have ’perfect’ information, producing errors
arising from quantization and saturation. Moreover, the
transmission speed may vary with environmental condition
and the distance between each vehicles. These factors are
modelled into the time-varying delay. Assumption E is
made in order to account for this delay that is unknown
to other vehicles.

3. DESIGN METHOD

In this section, we present the design method. The com-
munication channel and actuation delay render the overall
system nonlinear, and thus a controller stabilizing the
discretized system is not enough to guarantee stability.
We first extract a linear dynamics on which we can de-
sign a controller satisfying information sharing constraints
(Section 3.1). Then, we design the communication channel
so that the overall system is stable with the presence of
quantization, saturation, and delay (Section 3.2).

3.1 Distributed controller for linear dynamics

In this section, we show how to design a discrete controller
satisfying information sharing constraints.

Lemma 1. Define the discrete sequences

o[k] £ x(ty) (11)

trk41
wlk] £ eAT/ C_A(T_tk)Blw(T)dT (12)

tr

tr+dy
eu[k] 2 eAT/t e AUt Bydr (u[k —-1] - u*[k])
k

tet1
—&—eAT/t_H e_A(T_t’“)Bng(u[k] —u*[k]) (13)
k+d

eylk] = y[k] — y(te), (14
where for any k € N, t, = kT. Let A £ 4T, B,
fOT |6*A(T*T)Bl| dr, and By £ AT fOT e~A7 Bodr. Then,
the discrete system dynamics satisfies

z[k + 1] = Az[k] + w[k] + Bau*[k] + e, [k]
ylk] = Coxlk] + ey[K]
lwlk]| <4 Bi1,

where 1; € R! be a vector of all one entires.

~—

(1>

(15)

Proof. See appendix. O

Lemma 1 suggests the nonlinearity from communication
and delay can be absorbed into the term (e,,e,). Now we
can design the discrete controller on the linear plant:

Existing literature has proposed various controller synthe-
sise methods for a linear system of this form. We list some
of them in table 1. Assume now that we have obtained the
stabilizing controller for G:

(16)

where K is a strictly stable proper transfer matrix. The
relation between the sequences (w,e,, e,) and (x,u) per-
mits an explicit formula stated in the next lemma.
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Lemma 2. If K is a strictly proper stabilizing controller

for G the input sequences (é,,, é €y, W w) and output sequences
(g, @*) satisfy the linear relation:

] [RNR
| = AQ .
where

R2 (21 = A—ByKCy)™' N 2 RBK
M2 KCyR Q2K+ KCyRBK

(17)

Proof. Singe K is a stabilizing controller for G, the term
zI — A— BK(j is invertible. Combining (15) and (16), we
have

(2 — Az = By
9= CaT + ¢, (19)
W = K7.

We obtain (17) after simple transformation. O

3.2 Invariant set for nonlinear dynamics

Theorem 1 designs a communication channel that con-
straints the error dynamics inside an invariant set. Com-
bining with corollary 1, we obtain stability of the overall
system.

Definition 3. Consider a sequence e defined by e[k + 1] =
Fy(e[0:k], w[0:k]) where {F} }ren is a sequence of mapping
and w € S is the input to the mapping. If for all k € N,
following statement holds: for any w € 5,

Vi <k —1,e[i] € FE implies e[k] € E,

then F is an invariant set of e.

Theorem 3. Let (L, Ly, h) from Section 2 be fixed param-
eters representing the capacity and delay of the communi-
cation channel, K be the stabilizing controller obtained in
Section 3.1, and ¥4, ¥y, p,, be the following matrices:

= sup ’/ —A(r— T)Bng‘
de0,h]
= sup

’/ _A(T T)Bng)
de(0,h]

T
Pw :/ ’67A(T?T)B1’ dT].],
0

where the supremum is taken element-wisely. Define a
linear program Pr, r,n as follows:

(20)

ek
subject to U >, 0,Y >, 0 (21)
U= IM‘E-w. (pu +pw) + |Q|e.w.py ( )
Y= |C2R|€.w.(pu +pw) + |02N|€~w-py (23>
pu = (2V1(h) + ¥a(h)invdiag(L,)) U (24)
py = invdiag(L,) Y, (25)
where | - |c..,. is defined in (4). If the program Pr, 1 5 is
feasible with solution (U,Y’), then under the control law
(k, QLu,Ua QLy,Y)7 the set

E={(eu,ey) : ey €RP e, € R™, |ey| <4 pusley] <4 pyt

is an invariant set for the sequences e, and e,,.

Proof. Let (U, Y) be the solution of the program Py, 1, n-
Assume for any j < k — 1, e,[j] < p, and ey[j] < py. We
will show below that eu[k‘} < p, and ey[k] < p,. Firstly,
from (15), |w(j)| <4 py for any j € N. Secondly, we bound
the value of u*[j], 7 < k, as follows:

j—1

ZM J = il(euld] + wli]) + Qi — iley[i]

<+Z\Ma—z<(|eu )|+ [wil]) + QU = il ey i)

<+‘M|ew(pu +pw)+|Q|ewpy_U (27)
Line (26) is from (17), and line (27) is from the assumption
Vj <k~ Lleujll < pusleyljll < p, and (22). Using the
property (5), we obtain

lu* 5l = (26)

[ulk] = w* ]| = [u [} - Qu, o’ ] < inveliag(L,)U(28)

Now we are ready to bound e, [k].

tr+dg
leu[k]] = / e~ A=) Bdr (ulk — 1) — u'[4])
23
th+1
+ / e_A(T_tk_T)Bsz(u[k] —u*[k‘}) (29)
tp+dy
tr+dg
< / e—A(T—tk—T)B2d7. |:”U/[k? u*[k‘}”
tr
tht1
+ / e~ AC—t=T) B, 47 ’u[k] —u*[k]’
tr+dy
< 201 (WU + a(h)invding(L)U = pu (30)

The equality (29) is from (13). Notice |u*[j]| < U implies
|u[j]] < U. We obtain the inequality (30) is from (20) and
(28). Similarly, combining y(tx) = Caz[k], (17) and (23)
to have

ly(tr)| =

k—1
> CoR[k — i) (euli] + wli]) + CaN[k — ile ]
1=0

§+ |02R|e.w‘(pu +pw> + |CQN|e.w.py =Y
Combining the property (5) with (25) to have
ey k1] = [y(t)~Qu, v y(te) | <1 invdiag(L,)Y =p, (32)

Therefore, the set E is an invariant set of e,, e,. O

(31)

Corollary 1. If the linear program Pr, r,n is feasi-
ble with solution (U,Y’), then under the control law

(K, Qr,,v,Qr,.,y), both the state x and the ouput z are
bounded.

Proof. From Theorem 1 and initial condition z(0) = 0
(assumption D), we obtain |ley||co < Du, |ley|lco < py- Since
K is a stabilizing controller for é7 the transfer matrices
R,N,M,Q from (18) are stable. From & = Ré, + Néy +
Rw, = Mé, + Qéy + Mw, we obtain that the sequences
x and u are bounded. Therefore, the output sequence z is
also bounded. O

3.8 From stability to performance

Next, we bound the sub-optimality gap of the sys-
tem performance. Recall from (10) that our goal is to
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achieve sup|, <1zl < v. Let v, be the value of

SUp|y| . <1 |#llc When the distributed controller K from
(16) is used with perfect communication and no delay, i.e.,

ylk] = y(tx), u*[k] = u[k] and h = 0. Let v. = v — v, the
performance criteria (10) is equivalent with
sup [|2(t)[|oo < vp + Ve. (33)
w

Intuitively, v, captures the performance degradation due
to information sharing constraints, and v, due to unreli-
able communication. We assume v, > 0.

Theorem 4. Let
£ (Cy {21 (h)|M]c.. + U1 (T) (invdiag(Ly,) + 1) M.
+ [ Re.. } + [C2M|ec .
& Oy 1201 ()| QLo + 4 (T) (invdiag(Ly) + 1) Qo)
+ e Nle.w. } +[C2Qlew (34)
£ 10y |{204 () + W (T) (invding( L) + 1) HM], 0,
If the linear program Qr,, r, n:
B
subject to  (21) — (25)
max{rypy + rypy + rvpw} <vp  (35)
is feasible, then the overall performance is bounded by

sup [|z]|oo < vp + ve. (36)

In above theorem, the constraint (21) — (25) is same
with the program Pr, 1, n, and it guarantees system
stability. The additional constraint (35) is used for system
performance.

Proof. See appendix. O
4. ANALYSIS

In this section, we consider the issues related to the
feasibility of the proposed linear program. If the program is
not feasible for a given hardware constraint parametrized
by (Lu, Ly, ), then we need to enhance channel capacity
by increasing L., L, or to reduce delay by decreasing
h. The next theorem states that the proposed program
is asymptotically feasible. We mean by ’asymptotically
feasible’ that enhanced communication or reduced delay
will eventually lead to feasibility. The constructive proof
of Theorem 5 also suggests the necessary and sufficient
condition for the feasibility, which is given in corollary 2.

Theorem 5. Given a controller K stabilizing G there

exists L, € NP ,Ly € N™ and h € R, such that the
program Pp, . n is feasible if all the inequalities below

hold: L, >4 Eu,Ly >4 Ey, and h > h.

Proof. By eliminating p,,,p, in (22)-(25), we have

U AV P
a-5)[7] = | S | (37)
where
E |M|€'w ‘Q|ew
‘C2R|ew |C2N|ew

[2\1/1(h) + Wy(h) invdiag(L,) 0 ]
x 0 invdiag(L,)

Recall Wy(h) = supgepo ) ’fo Alr— t)BQdT‘ Using the

following properties: ¥;(h) is an increasing function of h,
limW¥y(h) =0, lim [invdiag(L,)]; =0, and
h—0 [Ly)i—o0

L lim y)]ii = 0. The spectral radius of E
yli—o0

is a continuous function of E. Combining with above
properties at limit points of h,L, and L,, we obtain
that for some L, € NP, L, € N™ and h € Ry, for any
Ly >4 Ly, Ly >4 Ly, h > h, the spectral radius of E is
strictly less than 1. If the spectral radius of F is strictly
less than 1, the square matrix (I — E) is invertible with
its inverse be given by (I — E)~! =Y / E™. Thus, there
exists (U*,Y™*) such that

U* _ - n IM‘ew
[Y*]—ZOE e e

Since [M|c .., |CoR|c.w., E, pw are all element-wisely posi-
tive matrices, we obtain

[invdiag(L

U*>,0, Y*>,0.
Therefore, (U*,Y™*) is an unique feasible solution of the
linear program Pr., . - O

Corollary 2. (Feasibility Condition) The program Py, Ly.h

is feasible if and only if the spectral radius of £ defined ‘in
is strictly less than 1.

The argument above also holds for the linear program
Qr,.L,.n We present this result below, but omit its proof
due to space constraint.

Theorem 6. Given a controller K stabilizing G and e >0,
there exist L, € NP, L, € N™ and h € R, such that the
program Qr, .1, h 18 feas1ble if all the inequalities below

hold: L 2+Lu;L >+Ly,h>h

5. CONCLUSION

Our method greatly enhances the scalability in terms
of implementation and design. The use of [, signal is
essential in capturing quantization, saturation, and time-
varying delay as well as producing computationally cheap
design methodology.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Marco Pavone and
Dr Fulvio Forni for insightful discussion.

REFERENCES

Aysal, T.C., Coates, M.J., and Rabbat, M.G. (2008). Distributed
average consensus with dithered quantization. IEEE Transactions
on Signal Processing, 56(10), 4905-4918.

Dahleh, M.A. and Diaz-Bobillo, 1.J. (1994). Control of uncertain
systems: a linear programming approach. Prentice-Hall, Inc.

Fagnani, F. and Zampieri, S. (2004). Quantized stabilization of linear
systems: complexity versus performance. IEEE Transactions on
Automatic Control, 49(9), 1534—1548.

Fridman, E. and Dambrine, M. (2009). Control under quantization,
saturation and delay: An lmi approach. Automatica, 45(10), 2258—
2264.



Yorie Nakahira et al. / IFAC-PapersOnLine 48-22 (2015) 034-039 39

Heemels, W.M.H., Teel, A.R., Van de Wouw, N., and Nesié¢, D.
(2010). Networked control systems with communication con-
straints: Tradeoffs between transmission intervals, delays and per-
formance. IEEE Transactions on Automatic Control, 55(8), 1781—
1796.

Hespanha, J.P., Naghshtabrizi, P., and Xu, Y. (2007). A survey of
recent results in networked control systems. Proceedings of the
IEEE, 95(1), 138.

Lamperski, A. and Doyle, J.C. (2012a). Dynamic programming
solutions for decentralized state-feedback lqg problems with com-
munication delays. In ACC, 6322-6327.

Lamperski, A. and Doyle, J.C. (2012b). Output feedback h_2 model
matching for decentralized systems with delays. arXiv preprint
arXw:1209.3600.

Lamperski, A. and Lessard, L. (2013). Optimal decentralized
state-feedback control with sparsity and delays. arXiw preprint
arXw:1306.0036.

Lessard, L. and Lall, S. (2012). Optimal controller synthesis for the
decentralized two-player problem with output feedback. In ACC,
6314-6321. IEEE.

Liu, S., Li, T., and Xie, L. (2011). Distributed consensus for
multiagent systems with communication delays and limited data
rate. SIAM Journal on Control and Optimization, 49(6), 2239
2262.

Nair, G.N., Fagnani, F., Zampieri, S., and Evans, R.J. (2007). Feed-
back control under data rate constraints: An overview. Proceed-
ings of the IEEE, 95(1), 108—137.

Nakahira, Y., Doyle, J.C., and Matni, N. (2015). Hard limits on
robust control over delayed and quantized communications. CDC.

Nesic, D. and Liberzon, D. (2009). A unified framework for design
and analysis of networked and quantized control systems. IEEE
Transactions on Automatic Control, 54(4), 732-747.

Rotkowitz, M. and Lall, S. (2006). A characterization of convex prob-
lems in decentralized control. IEEE Transactions on Automatic
Control, 51(2), 274-286.

Shah, P., Parrilo, P., et al. (2011). An optimal controller architecture
for poset-causal systems. In CDC-ECC, 5522-5528. IEEE.

Wang, Y.S. and Matni, N. (2014). Localized distributed optimal
control with output feedback and communication delays. In
Annual Allerton Conference on Communication, Control, and
Computing, 605-612. IEEE.

Wang, Y.S., Matni, N., and Doyle, J.C. (2014). Localized lqr optimal
control. In CDC, 1661-1668. IEEE.

Appendix A. PROOFS

Proof. (Lemma 1) From (6), we haye
k

2(tpr1) = e Ta(ty) + AT e~ AT=te) Br(r) +

ty

tet1

+eAT/ eiA(Titk)Bgu(T)dT
th

By definition, the first term on the right hand side of the equation

equals to Axz[k], and the second term equals to w(k]. The third term

satisfies

tpt1
eAT/ e~ A=) Bou(r)dr

ty

tht1
=eAT / A1) By (w* (K] + u(r) — u*[k])dr
tk
= Bou*[k] + eu[k].
This yields x[k + 1] = Az[k] + w([k] + Bau*[k] + ey [k]. The equation
ylk] = Cax[k] + ey[k] is immediate from definition. From assumption
C, we can bound

T
\w[k}|§+/ le= =T By |dr1, <4 Bily.
0

Proof. (Theorem 4) In order to bound the value v., we decompose
the discrete state z[k] into two terms: the term due to the disturbance
Xp, and the term due to unreliable communication xc, i.e.,

k
zp[k] 2 Z Rlk — dJwli]  ze[k] 2 z[k] — zp[K]-
i=0

The controller output u[k] also admits the decomposition:
uplk] 2 Z Mk — dwli]  uelk] 2 u*[k] — uplk].
i=0
The continuous counterparts of the four terms can be defined as
follows: for any p € [0,T), let

tp+p
@p(t + p) £ eAPxy k] +/ e~ ATt =T) Bluy(r)dr
tk

tp+p
+/ A=t =T) By, [k]dr

ty
ze(t + p) 2 e aclk]

tr+p
+/ e~ A=t =T) By (u(7) — up[k])dr

ty

up(t + p) = uplk]

ue(te + p) £ ul(ty + p) — up[k],
This formulation satisfies z(t) = xp(t) + zc(t) and u(t) = up(t) +
uc(t). Now we use these terms to separately bound system output:

sup [|2(t)]loo < sup [[Crap(t) + Dup ()]l (A1)
w w
+sup [[Crze(t)[|oo + sup | Duc(t) | oo-
w w

First, notice that when the system has perfect communication and
no actuation delay, the term xp,up remains same while the term
X¢, Ue becomes zero. Thus, the first term on the right hand side of
(A.1) is sup,, ||C12p(t) + Dup(t)||co = Vp. Next, we bound the second
term of (A.1) as follows:

[e(ty + p)| <+ W1 (min(p, h))

ulk = 1] = up 4]

+ W (T)

ulk] — up[k]‘ + |ePaclk]|

‘We have
Wi aminp, 1) [l — 1] =y ]

§+\I!1(h)(|u[k -1]| + \up[k]D
<, 20, (),

where the first inequality is because each element of ¥y (h) is an
increasing function of h, the second inequality comes from |u] <4
U, |up| <4 U (see proof of Theorem 1).

W (T) |ulk] — uplk]|
<4 O (T) ( Julk] — w* k]| + |uclk]] )
<+ Wi (T) (invdiag(Ly) + 1)U

e aelk]] <4 2" Rle.w.pu + € Nle.w py.

Combining above, we obtain

|Chae(t + )] <1 |cl|{|eApR|eAw‘pu + 14PNl 0.y

+ 201 (W)U + Wy (7) (invdiag(L,) + 1) U}.

In a similar manner, we bound the third term of (A.1) by
‘CZUC[IC” <4 |CQM|e.w.pu + |02Q‘e4wpy~
Therefore, from definition (34),

sup ||C1z¢(t)] oo + sup ||[Duc(t)|loo <+ TuPu + TyDy + TwPw,
w w

which combining with (35) yields sup,, ||z|lcc < vp + max{ryp. +
TyDy + Twpw} < Vp + Ve. ]



