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Abstract— The modern view of the nervous system as layering
distributed computation and communication for the purpose of
sensorimotor control and homeostasis has much experimental
evidence but little theoretical foundation, leaving unresolved the
connection between diverse components and complex behavior.
As a simple starting point, we address a fundamental tradeoff
when robust control is done using communication with both
delay and quantization error, which are both extremely hetero-
geneous and highly constrained in human and animal nervous
systems. This yields surprisingly simple and tight analytic
bounds with clear interpretations and insights regarding hard
tradeoffs, optimal coding and control strategies, and their
relationship with well known physiology and behavior. These
results are similar to reasoning routinely used informally by
experimentalists to explain their findings, but very different
from those based on information theory and statistical physics
(which have dominated theoretical neuroscience). The simple
analytic results and their proofs extend to more general models
at the expense of less insight and nontrivial (but still scalable)
computation. They are also relevant, though less dramatically,
to certain cyber-physical systems.

I. INTRODUCTION

Figures 1 and 2 minimally sketch some of the extreme
heterogeneity that is present in the speed and resolution of
the human nervous system at both the system and component
level. While neuroscience has accumulated seemingly end-
less details underlying these cartoons, there is no theoretical
foundation that rigorously connects the system and compo-
nent scale tradeoffs, a situation we aim to change here.

Figure 1 shows three important control loops for visual
tracking in the presence of object and head motion that
illustrates the extreme heterogeneity in system level behavior
(timescales span 106×). This is a popular experimental
system because many elements are easily manipulated. To
demo the effects of these loops, place your hand in front of
your face, close enough to clearly see the fine details of the
lines in your palm. Then move your hand horizontally back
and forth, increasing the frequency until the lines blur, which
typically occurs at a few Hertz. In contrast, hold your hand
still and shake your head (in a ”no” pattern) at increasing
frequencies until blurring occurs. This typically occurs at a
much higher frequency than when the hand is moved, and
most people are limited by the speed of head motion before
there is significant blurring. Hand motion is tracked by slow
(delay > 200ms) vision which uses much of the cortex,
whereas head motion is tracked by a completely separate fast
vestibulo-ocular reflex (VOR, delay ≈ 10ms). Both systems

Yorie Nakahira, Nikolai Matni, and John C. Doyle are with the Control
and Dynamical Systems Department of California Institute of Technology.
Email: {ynakahir,doyle,nmatni}@caltech.edu

Fig. 1: Control of visual tracking via the actuation (“Act”) of eye muscles
to compensate for object and head motion. Object tracking uses slow
(cortical) visual feedback (delay > 200ms) whereas head uses the separate,
fast vestibulo-ocular reflex (VOR, delay ≈ 10ms). The gains of these two
loops must match, so neural mechanisms involving the cerebellum and the
accessory optical system (AOS) tune the VOR gain (minutes to days).

Fig. 2: Axons per nerve (∝ resolution) versus mean axon diameter (∝ speed)
for four key cranial nerves, and the largest (Aα) sensorimotor axon which
occurs in spinal and peripheral nerves (in copies from 1 to hundreds).

are needed for athletes (or hunters) as objects can be at any
distance and move at high speeds, but the greatest angular
rates that must be tracked by eye movements arise from
the motion of the athlete’s own head and body, for which
vision is too slow. Since vision and VOR gains must match,
the slow tuning mechanism shown involving the cerebellum
is necessary (but can be disrupted by e.g. prism glasses or
ethanol).

While this demo is trivial and artificial, what it illustrates
regarding the source of errors at the extremes of performance
(when the hand begins to blur) is both fundamental and
essential. Sensorimotor control performance is dominated by
tradeoffs at the hardware level in the nervous system between
temporal and spatial resolution. The hand (or other object
with fine detail) at a sufficient distance, or in the visual
periphery, will also blur due to resolution limits even when
there is no motion. So either delays in tracking motion or
limits of visual resolution, or both, can cause blurring, and it



is the tradeoff between speed and resolution (temporal versus
spatial [1]) that is the most fundamental to understanding
sensorimotor control (and Figure 1). Of course, blurring
per se is of consequence only when it effects the ability
to take timely and accurate action involving muscles (and
tools), so the speed/resolution tradeoff extends throughout
sensorimotor control, and not just perception.

Speed versus resolution tradeoffs also occur at the neuron
level [2]. Figure 2 shows axon size versus number for
four of the human’s twelve cranial nerves, plus a single
large axon of the types that appear in 31 spinal nerves.
These nerves are bundles of fibers (axons) that carry action
potentials throughout the body, and their composition is
extremely variable. Axons are extreme in size and number,
with peripheral nerves having single large (> 20µ) axons,
while the olfactory nerve has 6 million small (mean ≈ .1µ)
axons. So axons vary > 200× in diameter, and > 40, 000×
in area (which is more relevant to the metabolic cost to
build and maintain the nerves). The result is an extremely
broad tradeoff in action potential propagation speed (∝ axon
diameter) and nerve resolution (∝ number of axons), as well
as spike rate (not shown in Figure 2 but also roughly ∝ axon
diameter).

Our main goal is a theoretical foundation to rigorously
connect the extreme tradeoffs in Figures 1 and 2. We start
with a minimal but physiologically motivated model and
derive simple analytic formulas for the impact of delay
and quantization on robust performance, and argue that the
resulting tradeoffs between speed and resolution are essential
the function and evolution of the human nervous system.
We later discuss how the math scalably extends to more
complex and biologically plausible models. While a signif-
icant departure from the theories that have dominated neu-
roscience, every piece of our new framework is remarkably
well established in neuroscience and robust control theory, if
not previously integrated or appreciated. The literature is so
extensive that a scholarly review is beyond the scope of this
short paper, but will hopefully be the subject of future work.
Here we will aim only to give a few pointers to relevant
review papers and books, wherein more complete reference
lists can be found.

Notation: Let N be the set of non-negative integers, C be
the set of complex numbers. We use lower case boldface
letters to denote sequences, i.e., x = (x(0), x(1), . . . ), and
denote the space of all such bounded sequences as l∞. This
is a Banach space when equipped with the norm ‖x‖∞ ,
supt∈N |x(t)|. We use upper case boldface letters such as P
to denote maps from l∞ to l∞. We define the L1 norm of
such a map P to be ‖P‖L1 := sup‖w‖∞≤1 ‖Pw‖∞. Finally,
for a sequence x, we use x(ta : tb) to denote the truncated
sequence from time ta to tb, i.e., x(ta : tb) = {x(ta), x(ta+
1), . . . , x(tb − 1), x(tb)}.

II. MINIMAL MODEL AND THEORY

In this section we derive robust performance limits for a
simplified model of sensorimotor control and communication

that is delayed and quantized. We later use these results to
connect Figures 1 and 2, and the issues that they raise.

A. Simplified Model

Consider an initial minimal model with dynamics

x(t+ 1) = ax(t) + w(t− Tw) + Q(u(t− Tu))
u(t) = K(x(0 : t), w(0 : t), u(0 : t− 1)),

(1)

where x(t) ∈ R is the state, w(t) ∈ R is the disturbance,
u(t) ∈ R is the control action generated by the controller
K, and Q : R → SR, for SR ⊂ R a finite set of
cardinality 2R, is a quantizer that limits communication
between the controller and the actuator to R bits/sampling
interval. The form of the control law in system (1) implies
that the controller is Full Information (FI), as the control
signal u(t) is allowed to depend on all current and past states
x(0 : t), current and past disturbances w(0 : t) and past
control actions u(0 : t− 1).

Fig. 3: Feedback system model for sensorimotor control.

A schematic for this model is shown in Fig. 3, where we
use P to denote the plant defined by equation (1). The control
signal u is transmitted to the actuator (colocated with the
physical plant P) via the communication channel C, which
is defined by the composition of the quantizer Q with the
delay block Tu. This delay block implies that the controller
command u(t) takes Tu(≥ 0) sampling intervals to reach
and be executed by the actuators, i.e., u(t) only affects the
plant Tu + 1 sampling intervals later. We initially assume
that the channel C is memoryless and stationary with rate
R, allowing us to restrict the quantizer Q to be memoryless
and static as well. Note that because Q and the delay block
commute (as Q is assumed to be static) the dynamics (1)
and Fig. 3 are indeed consistent. We assume ‖w‖∞ ≤ 1 and
x(0) = 0. The disturbance is known to the controller with
an advanced warning of Tw(≥ 0) sampling intervals, i.e., the
controller has access to w(0 : t) even though the disturbance
only affects the plant Tw + 1 sampling intervals later.

The robust control problem can then be posed as

minimize
(K,Q)∈QR

sup‖w‖∞≤1 ‖x‖∞
s.t. dynamics (1)

(2)

where QR is the space of control laws defined by the pair
of mappings (K,Q), with Q constrained to be a static
memoryless quantizer of rate R, i.e., Q : R → SR. This



cost function is standard in L1 robust control [3], except
that a communication channel C, composed of a quantizer
Q and a delay Tu, is inserted into the feedback loop.
Perhaps surprisingly, this problem formulation still allows
for a simple and intuitive analytic solution.

Remark 1: Without quantization or delay, the control law
u(t) = −ax(t)− w(t) ensures that x(t + 1) = 0. Thus any
errors in the state is a direct consequences of quantization
and/or delay, or to saturation of the control signal u.

B. Fundamental Limits due to Delay and Quantization

In this subsection, we provide an exact solution to the
robust control problem (2): in particular, we show that the
worst-case state-deviation can be expressed as a function of
the plant pole a, the channel rate R, and the net delay of
the system T

∆
= Tu−Tw. The achievable performance takes

a different form depending on the net delay regime that the
system is operating under. When the net delay T is positive
(T > 0), this corresponds to a system in which the control
action u(t) can only affect the plant T sampling intervals
after the disturbance w(t) affects the state. Conversely, when
the net delay T is non-positive (T ≤ 0), this corresponds
to a system in which there is advanced warning of the
disturbance, allowing the controller to act in advance. These
two qualitatively different cases are treated separately.

Theorem 1: Suppose that 2R > |a|. Then the minimal
state-deviation achievable in robust control problem (2) is∑T

i=1 |ai−1|+ |aT |
(

2R − |a|
)−1

if T > 0(
2R − |a|

)−1

if T ≤ 0.
(3)

Conversely, if |a| ≥ 2R, then the system cannot be stabilized,
and the optimal value to optimization problem (2) is infinite.

Remark 2: In the plant dynamics (1), and consequently in
Theorem 1, we impose a priori that the channel be defined
by a static memoryless quantizer Q : R→ SR. In §VI, we
state and prove a more general result, which shows that a
static and memoryless quantizer is indeed optimal within a
broad class of encoder/decoder pairs operating subject to a
data-rate limit of R bits per sampling interval. Theorem 1
then follows as a special case of this more general result.

The performance limits (3) are remarkably simple and
intuitive. The net warning case (T ≤ 0) has only one
term due to quantization, with the stabilizability condition
2R > |a| well-known from existing literature [4]. With no
dynamics (a = 0) this reduces to a trivial rate distortion
theorem with error 2−R.

The net delayed case (T < 0) is more interesting, with
the first term due to the delay alone, and the second term
the additional contribution due to quantization. As expected,
both grow rapidly with increased net delay T and unstable
a > 1, for reasons familiar and intuitive. In order to prove
this part of the result, we establish a separation principle and
show that the detrimental effects of the net delay T and the
errors causes by the quantizer Q contribute to the worst-case
state-deviation in an additive and independent way.

Specifically, we show that the state x(t) can be decom-
posed into two components, xd(t) and xq(t), such that
x(t) = xd(t) + xq(t), where xd(t) is the state-deviation due
solely to the net delay T > 0, and xq(t) is the state-deviation
due solely to the quantizer Q. Our first step is to notice that
the net delay T > 0 implies that the effects of w(t − Tu :
t− Tw) are independent of the signal u(0 : t− Tu − 1), as
this information about the disturbance is not yet available to
the controller for times t < t−Tu. It follows that the effects
of this subset of the disturbance signal w on x(t) is

xd(t) ,
T∑
i=1

ai−1w(t− i− Tw). (4)

Defining xq(t)
∆
= x(t)−xq(t), it is straightforward to show

that xq(t) is strictly a function of w(0 : t − Tu − 1) and
u(0 : t− Tu − 1). It then follows that optimization problem
(2) can be rewritten as

sup
‖w‖∞≤1

‖xd‖∞ + inf
(K,Q)∈QR

sup
‖w‖∞≤1

‖xq‖∞

subject to the dynamics (1). To see this, it suffices to note
that for a fixed t, disjoint subsets of the disturbance signal
w affect the delay induced error xd(t) and the quantization
induced error xq(t), and that xd(t) is independent of the
chosen control law. Finally, the result follows by showing

sup
‖w‖∞≤1

‖xd‖∞ =

T∑
i=1

|ai−1|, and (5)

inf
(K,Q)∈QR

sup
‖w‖∞≤1

‖xq‖∞ = |aT |
(

2R − |a|
)−1

. (6)

Although we do not emphasize this fact in Theorem 1, our
proof also provides an exact expression for the optimal con-
troller K, allowing us to explicitly quantify sup‖w‖≤1 ‖u‖∞.
We use this fact to comment on the biological implications
of actuator saturation in §III.B.

III. NEURO-SPECIFIC DETAILS

Our model assumes that the channel delay Tu and the
data rate R are given, but the performance limits (3) allow
us to explore neuro-specific tradeoffs between Tu and R.
Concretely, reconsider Figure 1 but for a task like stalking
and chasing prey while hunting with primitive weapons, a
task humans are well adapted to, and presumably drove the
evolution of much of our physiology and nervous system,
particularly those aspects that differ most from our ape ances-
tors (and current robots). Modern athletic scenarios include
chasing and catching a frisbee or ball. Here the “object” is
moving but at least initially at a remote distance, so vision
is providing sensorimotor control with substantial advanced
(but possibly uncertain) warning about object motion, allow-
ing for advanced planning. Beyond the simplified tracking
problem that we model by the dynamics (1), several other
complex control tasks must occur. For example, the VOR
system must control eye tracking despite head motion due to
running and other disturbances, a myriad of other reflexes are
needed to run and catch, and neuroendocrine control systems



must maintain internal homeostasis [5]. In contrast to our
simple model (1), these systems are distributed and work in
parallel, leading to further delays in reaction time.

Thus there are two very different and opposite kinds of
delays, modeled initially here by Tu and Tw. Internal delays
in vision, VOR, and other reflexes are due to sensing, compu-
tation, communication, and actuation, all using slow neural
hardware and making control difficult. These are diverse and
distributed but in our initial model and theorem are lumped
into the single delay Tu. Conversely, sensors like vision and
hearing can often sense an external disturbance w(t) such
that there is a delay of Tw until the disturbance impacts
the plant, thus giving the controller advanced warning and
making disturbance rejection easier. These disturbances and
sources of advanced warning are also diverse, but we initially
just consider a single disturbance and delay.

A. Instabilities, saturation, and worst-case scenarios

A universal feature of almost all biological systems is
that the physical “plants” being controlled are unstable. In
our minimal model this corresponds to |a| > 1 and large
a aggravates all the tradeoffs, but particularly those for
the delayed cases. Concretely, while running or cycling,
all variables of interest from upright balance to internal
temperature and arterial blood pressure and oxygenation
must be tightly controlled by very complex neuroendocrine
control systems or they will crash, often fatally.

Further aggravating the impact of instability is that biologi-
cal actuators saturate, just like their engineering counterparts,
so in addition to state and output error due to disturbances,
delays, and quantization, we must also pay close attention
to sup‖w‖∞≤1 ‖u‖∞. For unstable systems (|a| ≥ 1), the
minimum stabilizing control saturation level (cf. Proof of
Theorem 2 in §VI) is given by

|aT |+ |aT+1|
(

2R − |a|
)−1

(7)

Surprisingly, the optimal control action to minimize ‖x‖∞
in Theorem 1 is u(t − Tu) = −aTw(t − Tu) − axq(t),
yielding a worst-case control cost that is exactly the same as
the expression (7). Thus there is no tradeoff in this problem
between minimizing worst case error versus control. This
optimal ‖u‖∞ increases rapidly with delay and instability at
a slightly faster rate than the state error. Since the control
and error norms are so similar we focus on error, but keep
in mind the importance of control saturation.

The biological importance of actuator saturation is one
among many motivations for studying ‖u‖∞ and our other
assumptions. While we can only raise the most basic ques-
tions here, the best problem formulation is a rich topic about
which we hope to engage both controls and neuroscience
researchers. We aim to show that limits on the achievable
robust performance of the human nervous system (HNS) are
central to understanding its evolution and organization. In
considering the various concrete scenarios described above,
none of the HNS features matter if the actuators (e.g.
muscles) are not strong or fast enough to execute the required

actions. In this context ‖u‖∞ is more relevant than ‖u‖2
or variance, although more internal variables, such muscle
fatigue, are essential in defining more realistic models.

All of our motivating scenarios suggest ‖x‖∞ and worst
case disturbances are also appropriate, whether predator or
prey, athlete, runner, or biker, or threading needles. Sur-
prisingly, the resulting proofs are simpler than their H∞
and Bode Integral counterparts (emphasized in [6]), and the
inclusion of channels seems more straightforward (compare
with [7]). Most obviously different in this l∞/L1 theory is
the lack of frequency domain or stochastic interpretations,
but we expect this to be more feature than bug, though
stochastic disturbances and crash probabilities might make
sense in some situations. The overwhelmingly most attractive
feature of our model and theory is that we can easily add
essential features of neural physiological tradeoffs and plug
these directly into tradeoffs of data rate R against net delay
T in (3) and (7), allowing us to make connections between
the component and system levels of sensorimotor control.

B. Speed vs. Accuracy Tradeoff
We now add a tradeoff between temporal and spatial

resolution in neural signaling to our model via the net delay
T and data rate R that we believe is the first important
constraint in explaining the large scale features discussed
above. The nervous system communicates between compo-
nents and the body with a variety of nerves, which are
bundles of axons. Axons are the wiring by which spiking
neurons communicate long range using action potentials,
and it is possible to derive some rough tradeoffs from well-
known physiology. Figure 2 shows some of the tremendous
diversity of axon numbers and sizes among the cranial and
peripheral nerves. We argue that much of this arises due to
hard constraints on speed versus accuracy.

We suppose that our channel C (cf. Fig. 3) is a single
nerve with uniform signaling delay Ts, and assume that
the total delay Tu is the sum Tu = Ts + Tc with an
additional fixed delay Tc due to grey matter computation
and other communications. Initially we assume that Tc is
fixed and given, and that Ts is variable and depends on the
nerve composition, as in Figure 2. We also assume that the
physical layout of white and grey matter is fixed and given:
hence the lengths of axons are also fixed. We assume that
a nerve has fixed cross-sectional area α, and use this as a
measure of the resources devoted to the nerve. Assume each
nerve is composed of m axons of uniform radius ρ, such
that α ≈ πmρ2. If we further assume a digital, error-free,
discrete-time code operating at some maximal firing rate φ,
with 1 represented by the presence of an action potential,
and 0 by its absence, the total bit rate R = mφ with delay
Ts. We want a direct relationship between R and Ts.

Because of energy considerations [2], both the propagation
speed and firing rate of an action potential in a myelinated
axon is roughly proportional to its radius ρ, so φ ∝ ρ and
the signal transmission delay Ts ∝ 1/ρ. Thus R = mφ ∝
mρ ∝ α/ρ ∝ αTs, which we will write simply as

R = λαTs (8)
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where λα is a resource measure that scales with the axon area
α. (Channel error would reduce R and coding in inter-spike
timing would increase R.) This is most plausible for the large
nerves and axons on the right half of Figure 2 (i.e. reflexes)
[2]. No bit errors is surprisingly plausible for large axons,
and worst case bit flips can exactly though expensively be
removed with Hamming codes. More seriously, no nerves
can persistently fire at their maximal rate so some form
of sparse coding would be needed. Both would reduce λα.
More complex error and rate models would lead to more
complicated formulas R = λα(Ts) but we do not expect
these changes to dramatically alter the consequences below.
Validating this will be the focus of future work.

IV. IMPLICATIONS

A. Impact of Speed and Accuracy on System Performance

Next we explore the surprisingly rich consequences of the
constraint R = λαTs on our minimal model of sensorimotor
control using Theorem 1. For simplicity, We write λ from
now on as the resource dependence is understood.

Corollary 1: If R = λTs and Tu
∆
= Ts + Tc, then

the optimal optimal performance specified in Theorem 1
becomes∑T

i=1 |ai−1|+ |aT |
(

2λTs − |a|
)−1

if T > 0(
2λTs − |a|

)−1

if T ≤ 0.

Figure 4 shows the system performance when varying de-
lay Ts (and thus channel rate R) for Tc = Tw = 0 and a fixed
resource level α. Increased delay increases the delay error
term sup‖w‖∞≤1 ‖xd‖∞ but reduces the quantization error
term sup‖w‖∞≤1 ‖xq‖∞. Consequently, the optimal system
level performance is achieved at intermediate levels of delay
and channel rate. Because of the exponential dependence
there is no analytic formula for the optimum, but the error is
convex and the minimum easily found numerically. Next we
consider in more detail the consequences of these formulas
by varying the additional delays and plotting the resulting
optimal errors, bits, and delay.

B. Delayed vs Warned System
Figure 5 shows the optimal delays Ts (and resulting net

delay T ) and channel rate R = λTs that achieves the
minimum total error when varying Tw ≥ 0 and Tc ≥ 0
separately in the two special cases (i) T = Tu − Tw ≤ 0
(warned) and (ii) T = Ts+Tc > 0 (delayed). What results are
clearly two distinct regimes with distinct physiology. When
the computation delay Tc is greater than 0, the system has
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a net delay T and the delay cost increasingly dominates the
total cost, leading to both the data rate R and signaling delay
Ts becoming constant (with a large and constant radius ρ),
independent of Tc. This corresponds to the reflexes on the
right half of Figure 2 with nerves having a relatively few
large axons. The total error, due mostly to delay, can be
much larger than the disturbance. Concretely, in running or
cycling on rough terrain or through heavy traffic, a relatively
small but well placed perturbation to the foot or wheel can
be amplified into a crash, even a fatal one – this effect gets
worse at high speeds when the delay is relatively larger. Our
nervous system invests in large nerves, axons, and muscles
to avoid such crashes, consistent with the theory.

With increasing advanced warning Tw > 0 the net delay
T becomes non-positive, and in this case the errors due to
quantization increasingly dominate the total cost. Further,
this total cost goes to zero as Tw increases, exactly the oppo-
site of the delayed case. Further, as the advanced warning Tw
increases, so does the data rate R, and consequently the axon
radius ρ decreases (as α ≈ πRρ2 is fixed). This corresponds
to the left side of Figure 2 with many relatively small axons.
In running or cycling we can start with huge errors to
remotely located objects, and given enough time drive them
to zero. Here we are limited largely by the resolution of
our vision or other sensing in accurately locating the object,
again consistent with the theory.

Thus we have an extremely simple model that connects
the system level requirements of advanced warning and
planning (e.g. as enabled by vision) to the low-level control
implemented by fast reflexes. We further introduce minimal
neuro-motivated constraints on accurate versus rapid signal-
ing, allowing us to connect our theoretical results to the
known physiology illustrated in Figure 2. In the sequel we
explore further aspects of this model, and introduce consider
additional constraints and generalizations.

C. A Minimal Network

One of the most important features of a visual system (in
Fig. 1) is its distributed nature, in which sensors, actuators,
and computational components are interconnected via sparse



Fig. 6: Modeling Visual processes as a hierarchical control system.

communication. Figure 6 sketches a minimal model of this
kind that is composed of two copies of each component
in Figure 3. The plant dynamics are given by x(t + 1) =
ax(t)+u(t)+w(t) except the disturbance is now composed
of two terms w(t) = v(t)+r(t−Tr), as is the control action
u(t) = uL(t−TL)+uH(t−TH), each generated by their own
sensors, computing, and communication components. Visual
trajectory planning is done through the control loop involving
QH which is responsible for tracking, via the control signal
uH(t), a visual target whose change in position is expressed
by r. We assume a very simplified view of vision whereby
remote (in space) sensing means that r(t) is seen but it
takes Tr for the disturbance to arrive, effectively creating
an advanced warning of Tr, though the physical details are
all causal.

On the other hand, local (reflex) compensation is done
through the control loop involving QL. Disturbances such
as those caused by body and head motion are captured by
v, and are sensed directly by the VOR, which computes a
control action uL(t) to compensate. The control commands
(uH(t), uL(t)) from both loops are sent to the plant through
different signaling pathways, modeled by channels with rates
RH and RL and delays TH and TL, respectively, after which
their gains are summed to produced the final previously
described control action u(t) = uL(t− TL) + uH(t− TH).

Using the tradeoff (8) in both signaling pathways, and
bounding ‖v‖∞ and ‖r‖∞ from above by 1 and δ, respec-
tively, the optimal performance is then given by{
TL∑
i=1

|ai−1|+ |aTL |
(

2RL − |a|
)−1

}
+ δ
(

2RH − |a|
)−1

.

This result follows by noting that the total system can be de-
composed into two independent subsystems, corresponding
to the QH and QL loops, and thus so can its performance.
The first subsystem is a delayed system driven by v and
controlled by uL, while the second subsystem is a warned
system driven by r and controlled by uH . From our previous
analysis, it is expected that the first system achieves better
performance when its nerves are composed of a few large
and fast axons, whereas the second system achieves better
performance when its nerves are composed of many small
and slow axons. This phenomena can be indeed observed in
the real visual systems [2]. Specifically, the optic nerve has

approximately 1M axons of mean diameter 0.64µm with CV
0.46µm, while the 20K vestibular axons have mean diameter
2.88µm with CV 0.41, significantly larger and less numerous
and slightly less variable.

D. Additional reading

The related literature in both neuroscience and control
theory is vast and there is not space for a scholarly or
historical review, but we’ll give a few pointers for further
reading, emphasizing reviews and books. While the study of
tradeoffs has a long and rich history, there is surprisingly
little connecting the levels of description in Figs. 1-3. Hard-
ware tradeoffs as in Fig. 3 are beautifully and extensively
explored in a new book [2]. Optimal (and more recently
robust [8]) control theory have been extensively applied as
in Fig. 3, but rarely connect to mechanisms even as in Fig.
1, even though experimentalists often interpret their find-
ings using such diagrams (see [1] for particularly insightful
examples). Indeed, the kind of reasoning we used here,
including speed vs resolution tradeoffs, is ubiquitous among
experimentalists, but is rarely formalized. In retrospect, it
seems clear that a major disconnect has been that control
and learning theory [8] treats delay, but information theory
(e.g. [9]) largely ignores delay but dominates theory in the
hardware layers [2], [1]. This paper seems to be the first
attempt to impose minimal but plausible hardware constraints
on system level robust performance. It is admittedly a small
step but hopefully in a useful new direction, though one that
will admittedly be strongly rejected by many mainstream
theorists for its emphasis on the importance of delay in
sensorimotor control. On the control theory side, we can now
exploit a vast and exciting but also fragmented collection of
results in distributed optimal control. In particular, recent
results have identified a broad class of distributed control
problems that are convex [10], [11] and that admit solutions
that are scalable to compute and implement [12]. A key
feature of these results is that the control problem becomes
“easy” if certain architectural requirements (often related to
density of actuation, sensing and communication) are met
by the controller – tractable approaches to designing such
favorable architectures have also been developed [13], [14].
An important remaining challenge is to combine these results
with complementary ones from network control [4].

V. GENERAL MODEL AND PROOF

In this section, we show that even if we allow the
controller to be time-varying and the encoder, channel and
decoder to have memory, the control architecture assumed in
system (1) and Fig. 4 remains optimal for the robust control
problem (2). We state and prove this general result in this
section, from which Theorem 1 follows immediately as a
special case.

Consider a feedback system with dynamics

x(t+ 1) = ax(t) + w(t− Tw) + u(t)
s(t) = Et(x(0 : t), w(0 : t), s(0 : t− 1))
s(t− Tu) = C(s(0 : t− Tu))
u(t) = Dt(s(0 : t− Tu))

(9)



where x(t) ∈ R is the state, w(t) ∈ R is the disturbance,
s(t) ∈ SR is the codeword produced by the encoder Et,
and u(t) ∈ R is the control action produced by the decoder
Dt. Here Et is a possibly time-varying encoder that maps
the state, noise and symbol history to a finite alphabet SR

of cardinality 2R. The cardinality of the space SR to which
the encoder Et and channel C map imply that R bits per
sampling interval arrive at the decoder Dt with a delay of
Tu. We allow the decoder to utilize all past codewords to
decide the current control action, and we allow the overall
control strategy to be time varying.

We assume that x(0) = 0, that Tu ≥ 0, and that Tw ≥ 0.
The control action u(t) is thus generated by the encoder Et
and the decoder Dt. From the definition of s(t) in equation
(9), it follows that the controller is still FI. The cardinality of
the space SR to which the decoder Et and channel C map
imply that R bits per sampling interval arrive at the decoder
Dt with a delay of Tu. We allow the decoder to utilize all
past codewords to decide the current control action, and we
allow the overall control strategy to be time varying.

The robust control problem of interest is then

inf
(E,D)∈GR

sup‖w‖∞≤1 ‖x‖∞ (10)

where GR is the space of control laws defined by sequences
of mappings E = {Et} and D = {Dt} as described after
(9). We show below the solution presented in Theorem 1 is
in fact optimal for the robust control problem (10).

Theorem 2: A control law of the form (K,Q) ∈ QR, is
the solution to the robust control problem (10), i.e.,

inf
(E,D)∈GR

sup
‖w‖∞≤1

‖x‖∞ = inf
(K,Q)∈QR

sup
‖w‖∞≤1

‖x‖∞. (11)

In particular, the encoder E can be taken to be the composi-
tion of a state-feedback controller K with a static memory-
less quantizer Q, and the decoder D can be taken to satisfy
Dt(s(0 : t− Tu)) = s(0 : t− Tu).

In the interest of brevity, we only prove the result here for
the case of T > 0 – a nearly identical (and slightly simpler)
argument holds for the case of T ≤ 0.

We begin with a technical lemma.
Lemma 1: Assume that T > 0, and let

xq(t)
∆
= s(t− Tu − 1)− u∗(t− Tu − 1)

u∗(t− Tu)
∆
= −aTw(t− Tu)− axq(t),

(12)

and xd(t) be as defined in equation (4). Then if Dt(s(0 :
t− Tu)) = s(0 : t− Tu), it holds that

x(t+ 1) = xd(t+ 1) + xq(t+ 1)
= xd(t+ 1) + s(t− Tu)− u∗(t− Tu).

(13)
In particular, u∗(t) is a causal function of w(t), s(t−1) and
u∗(t− 1).

Proof: The claim holds trivially for all t ≤ Tu, as
s(t) = 0 and u∗(t) = 0 for t < Tu. We now proceed by
induction, and assume that relation (1) holds at time t. It
can be checked by direct calculation that

axd(t) + w(t− Tw) = xd(t+ 1) + aTw(t− Tu). (14)

It then follows that
x(t+ 1) = ax(t) + w(t− Tw) + s(t− Tu)

= axd(t) + w(t− Tw) + axq(t) + s(t− Tu)
= xd(t+ 1) + aTw(t− Tu)

+axq(t) + s(t− Tu)
= xd(t+ 1) + s(t− Tu)− u∗(t− Tu)
= xd(t+ 1) + xq(t+ 1),

where the first equality follows from the dynamics (9) and
the assumed form of the decoder D, the second from the
induction hypothesis, the third from relation (14), the fourth
from the definition (12) of u∗(t−Tu) and the fifth from the
definition (12) of xq(t+ 1).

With this technical lemma in hand, we may now make
formal the argument made after Theorem 1.

Proof: (Theorem 2) Using Lemma 1, and following the
argument after Theorem 1, the optimal performance can be
written as:

inf
(E,D)∈GR

sup
‖w‖∞≤1

‖x‖∞ =

inf
(E,D)∈GR

sup
‖w‖∞≤1

‖xd‖∞ + inf
(E,D)∈GR

sup
‖w‖∞≤1

‖xq‖∞

= sup
‖w‖∞≤1

‖xd‖∞ + inf
(E,D)∈GR

sup
‖w‖∞≤1

‖xq‖∞. (15)

Recall that for a fixed t, xd(t) is the component of the
state response that is uncontrollable due to the net delay
T . Thus, when T ≤ 0 (advanced warning case), it follows
that xd(t) is identically zero, and when T > 0, the terms
xd(t) and xq(t) are independent – specifically, xd(t) is a
linear function of w(t − Tu : t − Tw − 1), and xq(t) is
the error due to quantization in the control action that is
attempting to cancel the effects of w(0 : t − Tu − 1) on
the state. Thus, the supremums of sup‖w‖∞≤1 |xd(t)| and
sup‖w‖∞≤1 |xq(t)| are simultaneously attainable by a single
disturbance signal w, as disjoint subsets of the disturbance
affect each of xd(t) and xq(t) separately.

Thus it remains to show that the value of these terms
are given by equations (5) and (6). The equality (5)
follows immediately from definition (4). The equality
(6) is proved by computing upper and low bounds on
inf(E,D)∈GR sup‖w‖∞≤1 ‖xq‖∞.

Achievable performance (upper bound). Let the encoder
be defined by the mapping E that generates codeword s(t)
according to the following procedure. Let u∗(t − Tu) =
−aTw(t−Tu)−axq(t) denote the nominal control law that
would be applied if no data-rate limits where present. Define
s(t) = Et(x(0 : t), w(0 : t), s(0 : t− 1)) as follows:

s(t− Tu) =
(1− 1

2R )Ψ if u∗(t− Tu) ∈ [(1− 2
2R )Ψ,∞]

(1− 3
2R )Ψ if u∗(t− Tu) ∈ [(1− 4

2R )Ψ, (1− 2
2R )Ψ)

...
(−1 + 1

2R )Ψ if u∗(t− Tu) ∈ [−∞,−(1− 2
2R )Ψ)

,

where Ψ
∆
= |aT+1|(2R−|a|)−1+|aT |. It is clear that s(t) can

take one of the at most 2R values in SR
∆
= {(1− 1

2R )Ψ, (1−



3
2R )Ψ, . . . , (−1+ 1

2R )Ψ}. It then follows that the output s(t)
from the channel C is simply given by a suitably delayed
form of the above expression, and that the optimal decoder
D is simply the identity map taking SR into R, generating
the control action u(t) = Dt(s(0 : t− Tu)) = s(t− Tu).

We use mathematical induction to show that
sup‖w‖∞≤1 ‖xq‖∞ ≤ |aT |(2R − |a|)−1. Assume
that |xq(t)| ≤ |aT |(2R − |a|)−1 holds for time
xq(t) (this is trivially true for t = 0). It follows
that |u∗(t − Tu)| = | − aTw(t − T ) − axq(t)| ≤
|aT | + |aT+1|(2R − |a|)−1 = Ψ. Further, from Lemma 1,
we have that xq(t + 1) = s(t − Tu) − u∗(t − Tu); since
u∗(t− Tu) ∈ [−Ψ,Ψ], we then have that

|xq(t+ 1)| = |s(t− Tu)− u∗(t− Tu)|
≤ 2−RΨ = |aT |(2R − |a|)−1

holds at time t+ 1, thus proving the claim. In particular, we
have that

inf
(E,D)∈GR

sup
‖w‖∞≤1

‖xq‖∞ ≤ |aT |
(
2R − |a|

)−1
.

Performance limit (lower bound). Seeking a contradiction,
we suppose that there exists a control law (E,D) that
achieves sup‖w‖∞≤1 ‖xq‖∞ = Γ for some Γ strictly smaller
than |aT |(2R − |a|)−1.

Following a similar argument to that of Lemma 1 we have
that xq(t+ 1) = u(t)− u∗(t− Tu), and that u∗(t− Tu) can
only take on values lying in the set

E
∆
= {q ∈ R : q = aq + aTw, q ∈ [−Γ, Γ], w ∈ [−1, 1]}

=
[
− |a|Γ− |aT |, |a|Γ + |aT |

]
.

Since the channel can only transmit R bits of information,
there are at most 2R different control actions that can be
taken. As u∗(t− Tu) = −axq(t) +−aTw(t− Tu) can take
any value in the interval, it follows that

sup
‖w‖∞≤1

|u(t) − u∗(t − Tu)| ≥ 2−R
(
|a|Γ + |aT |

)−1

is the best performance that one can achieve. Using
|aT |(2R − |a|)−1 > Γ twice we obtain

2−R
(
|a|Γ + |aT |

)−1

> |aT |
(

2R − |a|
)−1

> Γ,

contradicting our assumption that sup‖w‖∞≤1 ‖xq‖∞ = Γ.
Thus we have shown the desired equality (6). Further the
control law described above has a clean interpretation: a
nominal control action u∗(t) is computed and then quantized
(via the static and memoryless encoder E) before being
transmitted across the channel. Note in particular that the
resulting optimal controller/communication architecture is
compatible with the Quantizer + Delay scheme proposed in
Theorem 1, thus proving the equality (11).

Remark 3: It is shown in [4] that the optimal perfor-
mance is bounded above by |aT |−1

|a|−1 + 2R|aT |
2R−|a| when a 6=

1. The first term on right hand side is exactly equal to
sup‖w‖∞≤1 ‖xd‖∞. The second term is an upper bound of

inf(K,(E,D)∈GR) ‖xq‖∞ = |aT |
2R−|a| because 2R ≤ 1. This

performance gap is due to the fact that in our setting, the
encoder has access to w(0 : t).

Remark 4: The upper bound for quadratic distortion for a
Gaussian process x(t + 1) = x(t) + η(t), η(t)

i.i.d.∼ N(0, 1)
by a channel with rate R is shown to be (22R − 1)−1 [15].
Notice that our worse-case cost is inf sup‖w‖∞≤1 ‖xq‖ =

(2R−1)−1 when a = 1. This suggests the impact of channel
capacity on LQG cost scales in a similar manner.

Remark 5: The generalization of this results for MIMO
system is given in [16].
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