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Abstract: This talk, the opening plenary, aims to accessibly describe progress on a theory of network architecture relevant to
neuroscience, biology, medicine, and technology, particularly Software Defined Networks and Network Function Virtualization
(SDN/NFV) and cyberphysical systems. Key ideas are motivated by familiar examples from neuroscience, including live demos
using audience brains, and compared with examples from technology and biology. A major challenge is to both broaden the
applications and impact of control theory and make it more accessible to larger audiences. This paper briefly summarizes some
background with links to additional material online, and particularly a series of videos for which this talk can be viewed as a
short trailer.
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1 Introduction

This talk will review recent research aimed at develop-
ing a more “unified” theory for complex networks moti-
vated by and drawing lessons from neuroscience [1] [2],
cell biology [3], medical physiology [4] [5], and multiscale
physics [6] [7] [8]. Most of these case studies mixed “off the
shelf” theory and algorithms with somewhat hand-crafted
upgrades, and were published in domain journals, but in
parallel we have been developing new theory specifically
aimed at complex network architecture, control, and evo-
lution. This theory involves several elements: hard limits,
tradeoffs, and constraints on achievable robust, efficient per-
formance ( “laws”), the organizing principles that succeed
or fail in achieving them (“architectures” and protocols), the
resulting high variability data and “robust yet fragile” behav-
ior observed in real systems and case studies (behavior, data,
statistics), the processes by which systems adapt and evolve
(variation, selection, design, layering), and their unavoidable
fragilities (hijacking, parasites, predation, zombies). A final
crucial element is scalable algorithms to allow study and de-
sign of complex networks using this theory.

A ubiquitous tradeoff is between robustness and efficiency
as illustrated in the cartoon in Fig. 1. Humans are roughly
4 times more efficient at long distance running than chimps,
our closest primate relatives, but are much slower, weaker,
and more fragile. Adding a bicycle improves efficiency but
further increases fragilities to even small disturbances. Ex-
tending control theory to make robust efficiency tradeoffs
precise and rigorous have been crucial to resolving long-
standing mysteries regarding the origins and nature of gly-
colytic oscillations [3], heart rate variability [5], and tur-
bulence [7]. Of course, robustness and efficiency are just
two “principal components” in a high dimensional cyber-
physical design space, and each has many additional dimen-
sions. For example, within control systems, robustness often
contains further speed accuracy tradeoffs (SAT), which can
be nicely illustrated with examples from vision, cognition,
and sensorimotor control (e.g. Fitts’ Law). This will be the
starting point in the talk and in this background paper.
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Fig. 1: Robustness efficiency tradeoffs in primate locomo-
tion.

2 Case study in sensorimotor control

Human sensorimotor control systems have particularly in-
teresting tradeoffs between achieving low delay versus low
signaling error in nervous system communication. This phe-
nomenon can be illustrated using the experiments described
in Fig. 2. First, place your hand in front of your face, then
move your hand horizontally back and forth at increasing
frequency until the lines in your palm start to blur. Second,
hold your hand still and shake your head (in a ”no” pattern)
at increasing frequencies until blurring occurs. The blurring
for hand motion occurs at just a few Hz., whereas the blur-
ring for head motion normally occurs at much higher fre-
quency than for the hand motion. While the actuators are the
eye muscles in both cases, there is a large delay heterogene-
ity in the systems that control the eye muscles depending on
the source of the disturbance and sensors involved [9].

Fig. 3 is a minimal cartoon block diagram of the physiol-
ogy underlying this experiment. For both hand and head mo-
tion, the eye muscles are the actuators that move the eye to
compensate, and keep the image clear and in the high resolu-
tion central fovea of the eye. Object motion is compensated
for by the visual system, which has a relatively slow but high
resolution optic nerve and large amounts of cortical compu-



Fig. 2: Experiments that demonstrate delay heterogeneity in
different feedback loops in the visual system.

tation before actuating the eye muscles, resulting in large de-
lays (greater than 200ms) and relatively poor performance.
In constrast, the vestibular-ocular reflex (VOR) system di-
rectly measures head motion using sensors in the inner ear,
and is connected directly to the eye muscles via the fast but
low resolution vestibular nerve, with much less delay (ap-
proximately 10ms) and thus much better performance. The
gains on these two loops must match, and there is a gain
module on the VOR system that is tuned by the cerebellum
using the auxillary optical system (AOS) on timescales of
hours to days.

Fig. 3: Control of eye motion including vision, the
vestibular-ocular reflex (VOR), and the auxilary optical sys-
tem (AOS)

Thus the delays in just Fig. 3 vary by at least six orders
of magnitude, with even greater heterogeneity in other parts
of the neuroendocrine control system. Fig. 4 shows compa-
rable heterogeneity in the composition of several cranial and
spinal (sciatic) nerves. Nerves are discrete bundles of ax-
ons that connect collections of neurons over long distances.
While the nerves in Fig. 4 all have roughly the same cross
sectional area, they differ widely in the size and number of
axons [10, 11].

This heterogeneity in delay and composition in perfor-
mance and physiology motivates a minimal model to explain
the connection between them and explore the design prin-
ciples involved, as well as other issues suggest by Fig. 3,

(a) Illustration of existing nerves.

(b) Size and number for different types nerves [10].

Fig. 4: Composition of cranial and spinal nerves.

and particularly layered, distributed, and localized control.
We will also briefly consider scalability of design, compu-
tation, and implementation to the large scale and extreme
complexity of the full nervous system, and related scalabil-
ity in technological systems. In Section 2.1 we introduce
the simplest possible theory that studies the impact of delay
and signaling error, and the insights it gives into the visual
system in Section 2.2, which summarizes the work [2]. Its
content is extended in the forthcoming papers [12, 13] from
theoretical point of view and [14] from experimental point
of view. Specifically, the work [12] shows a parallel result
for linear quadratic cost function, and [13] studies the effect
of zeros on system performance. The effect of zeros are also
demonstrated in stick balancing, a popular case study in both
sensorimotor control and engineering literature [14]).

2.1 Impact of delay and quantization on robust perfor-
mance

The impact of delay and quantization on achievable robust
performance have been widely studied (e.g. [15][2]). As
a minimal toy model, let the scalar x(t) be the difference
between the true state and the desired state with dynamics

x(t+ 1) = ax(t) + u(t− T ) + w(t). (1)

The sequence u(t − T ) is the control action with delay T
and w(t) is the disturbance. The achievable robust perfor-



mance using a controller with delay T ≥ 0 and bandwidth
R (sampling per unit time) is given by

max
‖w‖∞≤1

‖x‖∞ =

T∑
i=0

|ai−1|+ |aT |(2R − |a|)−1 (2)

The optimal performance using a controller with just delay T
is
∑T
i=0 |ai−1| (denote as the delay cost). The optimal per-

formance using a controller with bandwidth R (and T = 0)
is (2R − |a|)−1 (denote as the quantization cost). Surpris-
ingly, the achievable performance using a controller with de-
lay T and bandwidth R is a simple combination of these two
terms. While the proofs are a bit tedious, they can be done
entirely with high school algebra.

Assuming the lengths of nerves are given and constrained
by other physiology, the metabolic overhead to build and
maintain a nerve is roughly proportional to its cross sec-
tional area [11]. For a fixed area (and thus cost) there is
then a tradeoff between having high bandwidth with many
small axons, or high speed (and low delay) with fewer larger
axons. This tradeoff can be approximately quantified in [2]
as:

R = λTs. (3)

Fast but inaccurate signaling is achieved by nerves with a
few large axons, whereas slower but more accurate signal-
ing occurs in nerves with many small axons. The constant λ
is proportional to the resource (space and energy) consump-
tion of the signaling nerve fibers. The tradeoffs in Fig. 4 can
be redrawn assuming R = λTs to give the speed-accuracy
tradeoff in Fig. 5. What follows does not depend crucially on
the specific function R = λTs but simply that there is some
tradeoff between bandwidth and delay, and thus this frame-
work would readily incorporate alternative assumptions.

Fig. 5: Speed and accuracy for different nerves.

If we initially assume that the signaling delay in nerve
fibers are the only cause of delay in control, i.e., T = Ts
then combining with (1), the achievable robust performance
can be written as

max
‖w‖∞≤1

‖x‖∞ =

T∑
i=0

|ai−1|+ |aT |(2λT − |a|)−1 (4)

Figure 6 shows the system performance when we vary delay
T = λ−1R for fixed resource λ and a = 1, which simplifies
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Fig. 6: Impact of speed versus accuracy. The cost of de-
lay, the cost of quantization, and the total cost is shown with
varying delay T = λ−1R when λ = .1 and a = 1. This plot
assumes that the signaling delay in nerve fibers are the only
cause of delay in control, i.e., T = Ts.

the cost to

max
‖w‖∞≤1

‖x‖∞ = T + (2λT − 1)−1 (5)

Increased delay increases the delay cost but reduces the
quantization cost. Consequently, the optimal system level
performance is achieved at intermediate levels of delay and
bandwidth. This contrasts dramatically with what is sug-
gested by information theory, which has dominated theoret-
ical neuroscience [16], and emphasizes maximizing mutual
information, and thus bandwidth, and entirely neglects de-
lay.

Next we add additional delay or advance warning in other
parts the feedback control loop and discuss its impact on ro-
bust performance and optimal nerve physiology. Assume
now that the total delay or warning in control T is deter-
mined by nerve signaling delay Ts, some additional com-
putational delay Tc, and also advanced warning Tw due to
remote sensing such as vision, as

T = Ts + Tc − Tw = Ts − τ (6)

where τ = Tw − Tc. Then we focus on optimal design of
one nerve with all other components fixed, and assume this
nerve has the bandwith/delay tradeoff R = λTs.

Figure 7 shows the optimal signaling delay Ts and band-
width R = λTs that achieve the minimum total error when
varying Tw ≥ 0 and Tc ≥ 0 separately in the two special
cases: (i) τ = Tw − Tc > 0 (denote as the warned system);
(ii) τ = Tw − Tc < 0 (denote as the delayed system). As
a consequence, there are two qualitatively distinct regimes
with strikingly different optimal physiology:

(i) The delayed system: When the computation delay Tc
is greater than the advanced warning Tw, then τ < 0 and
the controller unavoidably has a net positive delay T > 0.
Since the delay cost dominates the total cost in this regime,
relatively small bandwidth R and signaling delay Ts is opti-
mal. Furthermore, the total cost grows as Tc increases (and
τ decreases).

(i) The warned system: When the advanced warning Tw
is greater than the computation delay Tc, then τ > 0, and



the controller can potentially exploit this advanced warning
of future disturbance. Since the quantization cost now dom-
inates the total cost, large bandwidth R and signaling delay
Ts is optimal. Furthermore, the total cost goes to zero as Tw
increases, exactly the opposite of the delayed system.

Fig. 7: The behavior of the delayed and warned system.

2.2 Comparing theory and experiment
This section briefly compares qualitatively the experi-

ments from Fig. 2, the minimal block diagram cartoon in
Fig. 3, the nerve compositions in Fig. 4, and the toy model
summarized in Figs. 5, 6, and 7. The most obvious connec-
tions is in comparing the VOR and vision systems. Any top
predators that stalk and chase their prey using vision, like hu-
mans, must be able to maintain sharp visual tracking despite
large, fast head motions, and thus the sensors, communica-
tion, and control via the VOR and vestibular nerve clearly
fit the “delayed” left side of Fig. 7, with relatively few but
large axons for relatively low delay and accuracy. The sciatic
nerve is even more extreme, and is involved in even faster
and lower accuracy communications in lower limb reflexes.
In general, the left side of Fig. 7 applies to the fast, auto-
matic, unconscious, and reflexive components that prevent
the crashes as depicted as cartoons in Fig. 1.

The vision system as used in the hand motion experiment
is extremely suboptimal compared to VOR for tracking fast
moving nearby objects, but this is fortunately not a task it
needs to do well for survival. Instead, central vision is used
to provide high resolution images of remote objects and their
motion, giving advanced warning for control, and thus is on
the “warned” right side of Fig. 7, with relatively many but
smaller axons and thus with high delay and accuracy. With
the advanced warning and planning that vision enables, hu-
mans are able to take huge initial condition errors and with
time, drive them nearly to zero, consistent with the far right
side of Fig. 7. Peripheral vision in contrast is fast and low
resolution, and not used for tracking but instead to provide
rapid alerts to fast moving objects in the periphery.

Thus we have a simple and direct connection between the
neuron-level physiology in Figs. 4 and 5 and behavioral

plausible system level tradeoffs as in Fig. 7.

3 Generalizations

The story so far is remarkably relevant to sensorimotor
control given how extremely simplified it is, and for the first
time rigorously connects neuron-level tradeoffs such as in
Fig. 5 with system level robust performance as in Fig. 7.
But real control systems are not only delayed and quantized
but also layered, distributed, and localized, and all are neces-
sary to make controller synthesis and implementation scal-
able. For large-scale systems such as the smart grid, soft-
ware defined networks, automated highway systems, and bi-
ological systems, centralized controllers cannot be imple-
mented due to the delay constraints imposed by the commu-
nication network interconnecting different subsystem con-
trollers. Specifically, the underlying assumption of the cen-
tralized scheme is that the information from all the subsys-
tems in the network must be collected instantaneously and
transmitted perfectly. Similar to the SISO model described
in the previous section, the practical communication delays
degrade the performance of the centralized scheme substan-
tially and make it unappealing to large-scale systems.

3.1 Distributed and Localized Control
The delay constraints between sensors, actuators, and sub-

system controllers in a network system lead to an asym-
metry in the information available to each of the local de-
cision makers. This makes the MIMO control problems
with delays fundamentally different from the SISO control
problems with delays. In particular, even in a system with
2 states, the asymmetry in information can make the dis-
tributed optimal control problem computationally intractable
(i.e., non-convex, non-linear, and NP-hard) [17, 18]. Due
to the fundamental difficulties of solving general distributed
optimal control problems, recent approaches have shifted to-
ward the identification of tractable subclass of distributed op-
timal control problem.

It has been shown that the tractability of the distributed
optimal control problems is determined by the relation be-
tween the delay constraints and the physical plant. Specifi-
cally, when the delay constraints satisfy a technical condition
known as quadratic invariance [19–21], then the distributed
optimal control problem can be solved via convex optimiza-
tion. Roughly speaking, quadratic invariance holds when lo-
cal controllers can communicate with each other faster than
their control actions propagate through the physical system.
This assumption is valid for many of the applications we are
interested in (power grid, software-defined networking, au-
tomated highway systems, and neuroscience applications).
Following the idea of quadratic invariance, we have made
various progresses in finding finite dimensional reformula-
tions of the optimal control problem or deriving explicit for-
mulas for specific structured systems [22–24].

As promising as all of these results have been, they all suf-
fer from a limitation that is inherent to quadratic invariance
based distributed optimal control: they are not scalable to
large systems. In particular, for a system with strongly con-
nected dynamics, a controller architecture is quadratically
invariant if and only if each sub-controller eventually col-
lects and estimates the global system state. In particular, this
implies that although the distributed optimal controller re-



spects the communication constraints of the system, its con-
trol law is actualy more difficult to compute and/or imple-
ment than that of a corresponding centralized controller.

In order to circumvent the issues of scalability, we have
introduced the localized optimal control and estimation
framework [25–27]. By relying on an alternative parame-
terization of the controller in terms of system closed loop re-
sponses, we are able to impose arbitrary convex constraints
on the controller architecture. In particular, this means that
we can formulate distributed optimal control problems in
which each local sub-controller only needs to collect a lo-
cal subset of state measurements, and only requires a local
sub-model of the full system. In this way, the complexity of
the synthesis and implementation of a distributed controller
depends only on the size of these local sub-problems, poten-
tially allowing for arbitrary scalability. The caveat is that we
ask for a slightly stronger condition on the communication
delays: they must be such that local sub-controllers can co-
ordinate to localize the effect of disturbances, effectively iso-
lating disparate but overlapping sections of the global plant
from each other. Using these techniques, we have been able
to compute near globally optimal controllers for heteroge-
neous systems with over 50,000 states [26]. We note that the
computational bottleneck in this case was the need to simu-
late such a system using a single laptop – if such a system
were actually implemented in parallel the scalability of our
approach would essentially be infinite.

3.2 From theory and practice
These theoretical results, while important, do not lend

themselves to direct practical application due to the poten-
tially unrealistic assumptions that need to be made to be
able to answer them. These include the use of communi-
cation channels with infinite bandwidth and constant delay,
the availability of good state-space models, and fixed con-
troller architecture. Other lines of our research program aim
to systematically address these unrealistic assumptions, with
the ultimate goal of closing the gap between theory and prac-
tice.

In [28], we study the stability and optimal perfor-
mance for distributed discrete time controllers with time-
varying delay, quantization, saturation, sampling, and ex-
ternal disturbances. We propose method that designs dis-
tributed/localized controllers for such sytems with linear
programing complexity. In [29], new identification results
based on recursive Lasso have been proposed, which enables
identification accuracy using a small number of noisy sam-
ples with theoretical guarantees.

On the other hand, the controller architecture, i.e., the ac-
tuators, sensors and communication network between them,
can also be designed rather than as something given. Lever-
aging tools from Quadratic Invariance and Structured Lin-
ear Inverse Problems, we have developed a unifying com-
putationally tractable framework built around convex opti-
mization for the co-design of a controller architecture and
its corresponding optimal control law [30]. We also ex-
tended the regularization for design (RFD) framework to
work in conjunction with localized optimal control. Specifi-
cally, we have shown how the Localized LQR Optimal con-
trol problem can be suitably modified to simultaneously de-

sign a sparse actuation architecture and the corresponding
optimal localized control law, despite pre-specified locality
constraints [31].

3.3 Theory of Architecture
Network protocols in layered architectures have histori-

cally been obtained on an ad hoc basis, and many of the re-
cent cross-layer designs are also conducted through piece-
meal approaches. Network protocol stacks may instead
be holistically analyzed and systematically designed as dis-
tributed solutions to some global optimization problems. On
the other hand, the controller can also be built in separate
layers. The work [32] proposed the Layering as Optimiza-
tion (LAO) framework that modeled the overall communi-
cation network as a generalized network utility maximiza-
tion problem, where each layer corresponds to a decomposed
subproblem. The interfaces among layers are quantified as
functions of the optimization variables coordinating the sub-
problems.

Recently, we generalized the Layering as Optimization
(LAO) framework to incorporate not only optimization, but
dynamics and control as well [33]. We show that by suit-
ably relaxing an optimal control problem that jointly ad-
dresses determining and following an optimal trajectory, one
can naturally recover a layered architecture composed of a
low-level tracking layer and a top-level planning layer. The
tracking layer consists of a distributed optimal controller that
takes as an input a reference trajectory generated by the top-
level layer, where this top-level layer consists of a trajectory
planning problem that optimizes the weighted sum of a util-
ity function and a “tracking penalty” regularizer. This latter
term can be viewed as the planning layer’s “virtual model”
of the underlying physics of the system, and serves as a bal-
ance between the two by ensuring that the planned trajectory
can indeed be efficiently followed by the tracking layer.

4 Additional material

Additional materials (slides, videos, and references) can
be found in the following websites:

John Doyle’s website:
www.cds.caltech.edu/ doyle
Nikolai Matni’s website:
http://www.cds.caltech.edu/ nmatni/home/Welcome.html
Yorie Nakahira’s website:
http://users.cms.caltech.edu/ ynakahir/
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