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Abstract— Understanding how a biomolecular system
achieves various control objectives via chemical reactions is
of crucial importance in cell biology. However, unlike typical
control problems where full information about the system is
assumed to be known, typically, only a small portion of the
entire biomolecular system can be characterized with certainty.
In order to gain insights in these situations, we use control and
information theory to derive the performance bounds when
chemical species implement feedback control via the production
rate or the degradation rate of chemical species. We expand
the approach of the pioneering work Lestas et al. to treat
more general scenarios and derive explicit lower bounds on the
achievable Fano factor of the controlled species. Our results
suggest that control and sensing via the degradation rates,
compared with those via the production rates, benefit from the
additional design freedom to choose degradation efficiencies, in
addition to previously considered signal rate, which helps to
lower the Fano factor of the controlled species. We compare
our lower bounds with achievable performance via simulation
of chemical master equations.

I. INTRODUCTION

Since the rise of systems biology and synthetic biology at
the beginning of this century, a central objective has been
to understand how biomolecular systems in a cell could
perform complex control objectives, such as cell differen-
tiation, homeostasis, and accurate timing of cell cycle [1].
Recent years have seen fruitful applications of established
frameworks from control theory to biological systems [2]–
[6]. The connection between complex biological systems and
engineered ones became even more apparent with the advent
of large scale engineered hardware and software systems [7],
[8].

However, in contrast to engineered systems with full
specifications in control theory [9], biomolecular systems
encountered in biology are often a small part of a larger
unknown network inside a cell. Adding to the difficulty, the
stochasticity in the dynamics of molecules is considerable
due to a cell’s small size [10]. Finally, the state of the system
is represented by discrete counts of molecules. Therefore, a
deeper understanding of biomolecular systems necessitates
the development of a robust control framework that takes
stochasticity and discrete state into account.

One such approach was pioneered by Lestas et al. [11].
They considered the problem of centering the count of a
chemical species X around a mean and suppressing the noise
by controlling its production rate through other chemical
species. By treating other parts of the network as an arbitrary
control function with a constraint on communication, they
were able to lower bound the variance of the species being
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controlled. Then, to connect to physical and measurable
parameters of the biomolecular system, they expressed the
communication constraint in terms of the channel capacity
of a signaling chemical species C, whose production rate
is influenced by X and therefore communicates information
about X . This type of analysis proved to be highly insightful
in applications, as discussed in [12], [13].

In this work we explore the approach of [11] further and
provide more general results with fewer constraints, therefore
enabling wider applications. First, we lift the constraint
that control can only act through production rate and allow
degradation rate control as well. Second, we also allow
signaling species C to communicate information about X
through its degradation rate. Third, we formulate the control
action and stochasticity in a more comprehensive fashion,
so as to genuinely represent possible actions of a biomolec-
ular network with many unknown species, generalizing the
approximate formulation in [11].

A. Related work in control and information theory

As the problem studied in this work arises in a biological
context, we provide a brief discussion here connecting the
control problem studied to the general field of control and
information theory.

Control under communication constraints has been exten-
sively studied. The comprehensive surveys [14]–[17] cover
important issues in the field of networked control. The nec-
essary and sufficient data rate through the feedback loop in
order to achieve system stability in linear stochastic control is
studied in [18]–[20]. The optimal controller structure, separa-
tion principles, performance bounds are studied in [21]–[29].
Some of the important results include separation principle
between the controller design and communication proto-
cols [22], [30], [31], and the relation between optimal cost
and the causal rate-distortion function [32]–[34].

The amount of information can be quantified via mutual
information [22], [35], anytime capacity [36], and directed
information [27], [37], among others. In the classical setting
of information theory, the source and channel codes can be
designed separately without loss of optimality in the limit
of infinite coding delay [38]. However, if the system has
dynamics, then separating the design of source and channel
can perform strictly worse compared with designing them
jointly [39], [40]. The causal rate-distortion function on
Polish spaces is also considered in [41], [42].

In this paper, communication via chemical reactions is
modeled as Poisson-type channels [43]. The information
capacity of various Poisson-type channels is shown in [11],
[44], [45]. Relevant properties of the Poisson point process



are summarized in [46], [47]. In particular, the mutual
information can be shown to be expressed by the Liptser–
Shiryaev formula [47], which is the key to connecting
the communication problem with the filtering (estimation)
problem [48]–[50], and plays a major role in the proof of
our main result (Theorem 2 in Section IV-B).

B. Notations

For a continuous time process {X(t)}t∈R+
, abbreviated

as X(t), we use the notations XT , {X(t) : t ≤ T},
XT− , {X(t) : t < T}, and Xt1

t2 , {X(t) : t1 ≤ t ≤
t2}. The expected value and the variance of X(t) at time
t are denoted by E[X(t)],Var[X(t)] respectively; stationary
mean and variance are denoted by E[X] , limt→∞ E[X(t)],
Var[X] , limt→∞Var[X(t)], provided that the said limits
exist.

II. MOTIVATION: THE BIOMOLECULAR SYSTEM

In this section, we describe the biomolecular system
studied in this paper.

A. Representation of chemical reactions

A biomolecular system in a cell may contain many molec-
ular species. The evolution of the molecule counts X(t) of a
species X at time t can be modeled as a birth-death process,1

defined as follows [51]:

• X(t) ∈ Z+, t ∈ R+, is a Markov chain taking values
in the set of non-negative integers.

• The infinitesimal transition probabilities of X(t) are
given by2

P [X(t+ h) = n+m|X(t) = n]

=


λ(t)h+ o(h) if m = 1

µ(t)nh+ o(h) if m = −1

o(h) if |m| > 1,

(1)

where n ∈ Z+, m ∈ Z, λ(t) ≥ 0 is the production rate,
µ(t) ≥ 0 is the degradation rate, and µ(t)X(t) ≥ 0 is
the degradation propensity.

We use the following shorthand notation for the above
process:

X
λ

−−−−−→ X + 1, X
µX

−−−−−→ X − 1. (2)

The degradation propensity is the product of the number
of molecules X(t) and the degradation rate µ(t) because
a typical molecular degradation process acts on the whole
population of species X .3

1With slight abuse of notation, X represents both the species and the
number of molecules of this species, interchangeably.

2The standard notation f(h) = o(g(h)) signifies that f(h)/g(h) → 0
as h→ 0.

3This is according to a physical model of chemical dynamics called mass
action. See [52] for a historical perspective with useful references about
mass action.

B. Control via chemical reactions

The noise suppression process in a biomolecular system is
implemented via chemical reactions among different species.
We study the following basic scenario: one species, X ,
affects the production or degradation rate of another species,
C, which in turn controls the production or degradation
rate of X , possibly through other existing species (Fig. 1).
Here, species X is the target of control, whereas species C
and other species can aid the control process. The control
objective is to center the stationary mean of X(t) around
a desired value x? subject to a constraint on the stationary
variance, i.e.,

E[X] = x?, Var[X] ≤ D. (3)

The stochastic process {X(t)} is sensed by another species
C, whose number of molecules C(t) obeys the following
birth-death process:

C
ν

−−−−−→ C + 1, C
ξC

−−−−−→ C − 1. (4)

Species X transmits information to species C by setting
either the production or the degradation rate of C to an
arbitrary function V (Xt) of Xt as follows:

SP: sensing via the production rate by letting ν(t) =
V (Xt) while keeping degradation rate ξ(t) ≡ ξ
fixed to a constant.

SD: sensing via the degradation rate by letting ξ(t) =
V (Xt) while keeping production rate ν(t) ≡ ν
fixed to a constant.

Species C then acts on X through control action {U(t)},
and U(t) is assumed to impact species X in either of the
following manners:

CP: control via the production rate λ(t) = U(t) given
a constant degradation rate µ(t) ≡ µ.

CD: control via the degradation rate µ(t) = U(t) given
a constant production rate λ(t) ≡ λ,

where λ, µ govern the transition probabilities of {X(t)}
according to (1). We assume that the only pathway by which
species X can send information about Xt to the controller
is via modifying the statistics of Ct, i.e.

PU(t)|Ut−,Ct,Xt = PU(t)|Ut−,Ct . (5)

Any causal control policy is completely determined by
specifying the probability kernels in (5).

Combining the signaling and control settings, the system
described above can be categorized into four regimes, labeled
by their acronyms:

SP/CP: sensing and control via production;
SD/CP: sensing via degradation and control via production;
SP/CD: sensing via production and control via degradation;
SD/CD: sensing and control via degradation.
Because the production rate and the degradation rate

impact the transition probabilities differently, these four
regimes lead to different limitations and tradeoffs, which are
elucidated in Section V.



Fig. 1. The molecular control model studied. The control cloud may contain
other chemical species.

C. Approximating chemical reactions

When the number of molecules X(t) is sufficiently large,
the number of birth events of species X in the time interval
[t, t + h] can be approximated by N (λ(t)h, λ(t)h); like-
wise, the number of death events can be approximated by
N (µ(t)X(t)h, µ(t)X(t)h) [53].4 Thus, we can approximate
the dynamics of X(t) as

dX = (λ− µX)dt+ σdW, (6)

where λ ≥ 0, µ ≥ 0, and {W (t)} is a Wiener process. The
signal σ(t) satisfies

σ(t)2 = λ(t) + µ(t)X(t). (7)

Equation (6) is known as the chemical Langevin equa-
tion [53].

If the expected value of X(t) converges to a unique
stationary value as t → ∞ as required by the constraint
in (3), then the time average of the production rate and that
of the degradation propensity must be equal, i.e.,5

`1-lim
T→∞

1

T

∫ T

0

λ(t)dt = `1-lim
T→∞

1

T

∫ T

0

µ(t)X(t)dt. (8)

Moreover, if the process λ(t) is ergodic, then condition (8)
further leads to

`1-lim
T→∞

1

T

∫ T

0

σ(t)2dt = `1-lim
T→∞

2

T

∫ T

0

λ(t)dt ≡ 2E[λ], (9)

where recall that E[λ] denotes the stationary mean of λ(t).
In the sequel, we analyze X in Section III using the

continuous-state approximation in (6) and analyze C in
Section IV without the approximation.

III. CONTROL PROBLEM

In this section, we consider an abstract control problem
that includes the biomolecular control in Section II-B as a
special case and characterize the minimum capacity of the
channel between between the control action and the system
state necessary to achieve the constraints on the first and
second moments of X(t).

4N (µ, σ2) denotes a Gaussian random variable with mean µ and variance
σ2.

5`1-lim denotes the limit in mean.

A. Fundamental limitations in feedback control

Consider the stochastic differential equation (SDE)

dY = FY dt+Gdt+ σdW, (10)

where Y (t) is the state, and W (t) is a Wiener process,
as before. The variables F (t) ∈ R and G(t) ∈ R are
deterministic functions of the control action U(t), and the
coefficient σ(t) is allowed to depend on Y (t), F (t), and
G(t). We assume that

lim
T→∞

1

T

∫ T

0

σ(t)2dt = Σ, (11)

lim
T→∞

1

T

∫ T

0

F (t)dt = F , (12)

for some constants Σ > 0 and F . Furthermore, we assume
that {F (t)} is uniformly bounded, i.e., |F (t)| ≤ Fmax for
some constant Fmax. We use the continuous-time directed
information to quantify the amount of information that can
be transmitted in a feedback loop.

Definition 1 ( [50]): Let Y (t), U(t), t ∈ R+ be a pair of
stochastic processes. The directed information from Y (t) to
U(t) is defined as

I(Y T → UT ) = inf
t∈T (T )

n∑
i=1

I(U tktk−1
;Y tktk−1

|U tk−1

0 ), (13)

where T (T ) is the set of all finite partitions of the time
interval [0, T ), i.e.

T (T ) = {t : 0 = t0 < t1 < · · · < tn = T, n ∈ N}. (14)
Definition 1 is the continuous-time version of the discrete-
time directed information introduced by Massey [37], which
can be thought of as the causal counterpart of Shannon’s
mutual information [35].

Our first goal is to characterize the minimum amount of
directed information required for the existence of a control
and communication policy that achieves

E[Y ] = 0, Var[Y ] ≤ D, (15)

where E[Y ],Var[Y ] denote the stationary mean and variance
of the process Y (t). Towards that end, we introduce the rate-
cost functions in continuous time.6

Definition 2: The rate-cost function in control for the
continuous-time system in (10) is defined as

Rc(D) = inf lim
T→∞

1

T
I(Y T → UT ), (16)

where the infimum is over all conditional distributions (con-
trol policies) PU(t)|Y t,Ut− achieving (15).

Definition 3: The rate-cost function in estimation for the
continuous-time system in (10) is defined as

Re(D) = inf lim
T→∞

1

T
I(Y T → Ŷ T )

where the infimum is over all conditional distributions (esti-
mation policies) PŶ (t),U(t)|Y t,Ut− achieving

E[Y − Ŷ ] = 0, Var[Y − Ŷ ] ≤ D. (17)
6The discrete-time rate-cost function in control is proposed in [29].



The conditioning on U t− in the optimization variable
PŶ (t),U(t)|Y t,Ut− allows the impact of control action on
the state to be known by the estimator. The subscripts
‘c’ and ‘e’ in Rc(D) and Re(D) stand for ‘control’ and
‘estimation’, respectively. The rate-cost function in control
gives the normalized minimum directed information from the
system state to the control action that is required to sustain
the performance requirement (15) over the class of all causal
communication policies, both stochastic and deterministic.
The rate-cost function in estimation is the minimum directed
information rate from the system state to the state estimate
that is required to sustain the estimation accuracy over the
class of all causal communication policies. Reminiscent of
the separation between estimation and control, we record the
following:

Proposition 1: The rate-cost function in control and the
rate-cost function in estimation satisfies

Rc(D) ≥ Re(D). (18)

Proof: See Appendix A.
Proposition 1 essentially states that we can solve the rate-

cost function in estimation in order to lower-bound the rate-
cost function in control. Furthermore, the rate-cost function
in estimation admits a closed-form formula.

Theorem 1: The rate-cost function in estimation is lower-
bounded by

Re(D) =
Σ

2D
−F . (19)

Theorem 1 generalizes the result of [32], [33] to time-varying
F (t), which potentially depends on causal information on
Y (t). Due to the space limit, we outline the proof ideas
of Theorem 1 below and refer to the supplementary mate-
rial [54] for a complete proof. We first show the optimal
estimator structure that achieves the rate-cost function in es-
timation. Relying on that structure, we then derive an explicit
formula on the minimal amount of directed information as
a function of the required estimation accuracy D and the
statistics on F (t) and G(t).

Combining Proposition 1 and Theorem 1, we lower-bound
the rate-cost function in control as

Rc(D) ≥ Σ

2D
−F (20)

The bound (20) generalizes the discrete-time result of [22]
to continuous time, and the continuous-time result of [11] to
the scenario in which the control action acts via F instead of
G, and/or the statistics of future disturbances depend on the
control action chosen. Furthermore, it allows us to obtain
the performance bounds in bimolecular control, which are
presented in Section III-B and III-C.

B. Molecular control via production

Consider the regime of CP (control via production) in
Section II-B. We perform the coordinate transformation

Y (t) = X(t)− x?, Ũ(t) = U(t)− µx?. (21)

From the chemical Langevin equation of X(t) in (6), the
dynamics of Y can be approximated using the stochastic
differential equation

dY (t) = −µY (t)dt+ Ũ(t)dt+ σ(t)dW (t), (22)

where σ(t) is given in (7) and W (t) is a Wiener process, as
before. This corresponds to system (10) with

F (t) ≡ −µ, G(t) = Ũ(t), F = µ, (23)

and the control objective given in (15).
Recall that E[λ] is the mean of the stationary distribution

of λ(t). If the control action U(t) = λ(t) is chosen so that
the random process λ(t) is ergodic, then from (8), (9) and
(11), we obtain

Σ = `1-lim
T→∞

2

T

∫ T

0

λ(t)dt = 2E[λ]. (24)

Substituting (23) and (24) into (20), we obtain the minimum
directed information from X(t) to U(t) in order to sustain
the performance requirement (3) for the dynamics (22):

lim
T→∞

1

T
I(XT → UT ) ≥ E[λ]

D
− µ, (25)

when control is performed via the production rate. Addi-
tionally, there exist communication policies that attain the
performance lower bound of (25) closely (see Example 1 in
Section V-B). This extends the existing result [11] to the case
when the control action U(t) is not a deterministic function
of Ct, allowing the control action to be generated by species
in the system other than C.

C. Molecular control via degradation

Consider the regime of CD (control via degradation) in
Section II-B. We perform the coordinate transformation

Y (t) = X(t)− x?, Ũ(t) = U(t)− λ

x?
. (26)

The dynamics of {X(t)} can be approximated using

dY (t) = −(U(t)Y (t) + Ũ(t)x?)dt+ σ(t)dW (t), (27)

where σ(t) is given in (7) and W (t) is a Wiener process, as
before. The dynamics of Y corresponds to system (10) with

F (t) = −U(t), G(t) = −Ũ(t)x?, Σ = 2λ (28)

and the control objective given in (15). If the control action
U(t) = µ(t) is chosen so that the random process {µ(t)} is
ergodic, then

F = `1-lim
T→∞

1

T

∫ T

0

µ(t)dt = E[µ]. (29)

Using the same argument as in Section III-B, a necessary
amount of directed information to sustain the performance
requirement (15) is

lim
T→∞

1

T
I(XT → UT ) ≥ λ

D
− E[µ), (30)

when control is performed via the degradation rate. The
tightness of the bound in (30) and the structure of the optimal
controller remain open problems.



IV. COMMUNICATION PROBLEM

Our results in Section III enable us to obtain minimum
capacity of the feedback channel necessary to satisfy the
constraints on the first and second moments of X(t). In this
section, we bound the capacity of the molecular channel that
transmits information via modifying either the production
rate or the degradation rate of species C.

A. Communication via production rate

Consider the regime of SP (sensing via production) in
Section II-B. The information about species X is encoded in
the production rate of species C, i.e., ν(t) = V (Xt), which
defines the transition probabilities of C(t) according to (4).
The degradation rate of C can be an arbitrary process that is
independent of Xt. Let Np(t) be the number of birth events
of species C during time interval [0, t]. Then Np(t) evolves
according to

Np
ν

−−−−−→ Np + 1, (31)

giving rise to a communication channel with input ν(t) and
output Np(t). We further assume that

E[ν] = mV , Var[ν] ≤ σ2
V , (32)

where recall that E[ν],Var[ν] denote the stationary mean
and variance of the process ν(t). The constraints in (32)
arise naturally in biomolecular systems, as the production
and maintenance of the molecules in the system carry costs.
The channel capacity, which quantifies the capability of a
channel with feedback to deliver information, is defined as
follows.

Definition 4 ( [55]): The capacity of the communication
channel from input ν(t) and output Np(t) is defined as

Cν,Np
= sup lim

T→∞

1

T
I(νT → NT

p ), (33)

where the supremum is taken over all distributions Pν of the
input process {ν(t)}t∈R+

.
Definition 5: If the following condition holds,

Pν(t)|νt−,Nt
p

= Pν(t)|νt− , (34)

then we call that the channel is used without feedback.
If the channel is used without feedback,7 then the channel
capacity in (33) equals the usual Shannon capacity [37]. The
capacity of the channel in (31) satisfies

Cν,Np
≤ sup lim

T→∞

1

T
I(νT ;NT

p ) (35)

= mV log

(
1 +

σ2
V

m2
V

)
. (36)

The first inequality holds because the the directed informa-
tion is no greater than than the mutual information. The
second equality is shown in [11, Appendix B].

7In other words, the space over which the supremum in (33) is taken over
cannot use feedback.

B. Communication via degradation rate

Consider the regime of SD (sensing via degradation) in
Section II-B. The information about species X is encoded
in the degradation rate of species C, i.e., ξ(t) = V (Xt),
which defines the transition probabilities of C(t) according
to (4). The production rate of C can be an arbitrary process
that is independent of Xt. Let Nd(t) be the number of death
events of species C during time interval [0, t]. The process
Nd(t) evolves according to

Nd
ξC

−−−−−→ Nd + 1, (37)

giving rise to a communication channel with input ξ(t) and
output Nd(t). Recall that in contrast to communication via
the production rate, the degradation rate acts on the whole
population of species C. We further assume that

E[C] = C̄, E[ξ] = mV , Var[ξ] ≤ σ2
V . (38)

Theorem 2: The capacity of the causal communication
channel with input process ξ(t) and output process Nd(t)
under constraints (38) is upper-bounded by

Cξ,Nd
≤ mV C̄ log

(
1 +

σ2
V

m2
V

)
. (39)

Proof: See Appendix E.

V. TRADEOFFS IN MOLECULAR CONTROL

In this section, we combine the results on control in
Section III and the results on communication in Section IV to
obtain closed-form formulas that characterize the fundamen-
tal limitations in molecular control. Recall the biomolecular
control system presented in Section II-B. We additionally
assume for the rest of this section that the control policy
is chosen so that the stochastic processes X(t), C(t), U(t),
and V (t) have bounded first and second moments that are
globally converging to their unique stationary values as
t → ∞; that the processes U(t) and C(t) are ergodic;
that the SDEs (22) and (27) accurately approximate the
actual transition dynamics of {X(t)}; and that the chemical
reaction channel in (31) or (37) is used without feedback
(see Definition 5).

A. Fundamental limits

We first define two biologically important quantities and
then study their impact on the control performance. We
define the degradation efficiency of X and µ as follows:

γX ,
E[X]E[µ]

E[Xµ]
=

E[X]E[µ]

E[λ]
(40)

γC ,
E[C]E[ξ]

E[Cξ]
=

E[C]E[ξ]

E[ν]
(41)

where the second equalities in (40) and (41) follow from
the assumption that the mean of X(t) and C(t) converge
to their stationary values. If a species’ degradation rate is
fixed, then the degradation efficiency of that species takes
the default value one. Otherwise, the degradation efficiency



is determined by the statistical dependence between the
species’ count and its degradation rate.

Let `X be the average lifetime of species X . If the
degradation rate is constant, i.e., µ(t) ≡ µ, then µ−1 is
the average lifetime for the molecules of species X . From
Little’s results [58], `X also satisfies

`X =
E[X]

E[λ]
. (42)

Let NX and NC be the average number of birth (or death)
events of X and C, respectively, made during a time interval
of length `X , the average lifetime of species X , i.e.,

NX = `XE[λ] = E[X] NC = `XE[ν]. (43)

Counting the number of birth events is essentially the same
as counting the number of death events because both num-
bers must be roughly equal in order to maintain constant
E[X(t)] over time (see (8)). We define the signal rate to
be NC/NX . The signal rate, originally proposed in [11],
describes the sensing frequency of species C relative to the
control frequency of species X .

Bounds for a general causal encoding function. The Fano
factor of X(t), Var[X]/E[X] is bounded below as follows:8

SP: sensing via production

Var[X]

E[X]
≥
{
NC
NX

E[X] log
(
1 + cv(ν)2

)
+ γX

}−1

(44)

SD: sensing via degradation

Var[X]

E[X]
≥
{
NC
NX

E[X] log
(
1 + cv(ξ)2

)
γC + γX

}−1

(45)

The bounds in (44) and (45) quantify the variance reduc-
tion of species X in terms of the control effort by species C.
Without feedback control, limT→∞

1
T I(XT → (λ, µ)) = 0

and Var(X)/E[X] = 1 is the minimal achievable variance
for any mean constraint E[X] = x?. This performance can
be achieved by setting the production rates λ, ν and the
degradation rates µ, ξ in (2) and (4) to be constant over time.
The stationary variance of X(t) then becomes

Var[X] =
λ

µ
= x? = E[X] (46)

Under communication constraints and at the expense of
fluctuations of the production or degradation rate of species
C, from formulas (44)–(45), the stationary Fano factor
Var[X]/E[X] can be further reduced inverse-proportionally
to the mean production rate (or mean degradation rate) of
species C; inverse-logarithmically to the squared coefficient
of variation of the production rate (or degradation rate) of
C; and inverse-logarithmically to the degradation efficiency
of species X or C.

Bounds for linear encoding functions. Now we constrain
the encoding function to be a memoryless and linear function
of Xt, i.e.,

V (t) = αX(t). (47)

8cv(Z) refers to the coefficient of variation of a random process {Z(t)}.

Combining (43) and (47) leads to NC = α`XE[X] under
the regime of SP (sensing via production), and NC =
α`XE[CX] under the regime of SD (sensing via degrada-
tion). Then, the Fano factor of X(t) is lower-bounded by

Var[X]

E[X]
≥ 2

{
γX

(
1 +

√
1 + 4

γC
γ2
X

NC
NX

)}−1

(48)

=

{
(γX)−1 γX � γCNC/NX

(NX/γCNC)1/2 γX � γCNC/NX
.

The bound in (48) includes the results of [11] as a special
case: if sensing and control are performed via production
rates, then the Fano factor of X is lower bounded by (48)
with γX = 1, γC = 1. In contrast to control or sensing via
the production rate, control or sensing via the degradation
rate enjoys an additional design freedom to choose the
degradation efficiency γX or γC in (40). The impact of
degradation efficiency of species X is particularly salient
at γX � γCNC/NX , and almost negligible at γX �
γCNC/NX . Furthermore, if the policy of control or sensing
via degradation is chosen so that γ· ≈ 1, then its resultant
performance bound with respect to the signal rate (48) is
qualitatively similar to that via the production rate.

B. Achievable performance

Example 1: Consider the regime of SP/CP (control and
sensing via production). The performance bound (25) in SDE
approximation of X(t) = Y (t)+x? can be attained arbitrar-
ily closely using the following communication policy [27],
[54]:

dNp = αY +
√
αY dWc

dX̂ = (Ũ − µX̂)dt+ L(dNp − αX̂)dt.
(49)

The process Wc(t) is a Wiener process independent of W (t)
in (22). The matrix L is the Kalman gain defined by L =
p/Y, where the process p(t) satisfies a Riccati differential
equation dp = −2µp−p2α/Y +σ(t)2, p(0) = E[Y 2]. Using
similar argument in Section V, we show that the policy (49)
achieves

Var[X]

E[X]
≈ 2

(
1 +

√
1 + 2

NC
NX

)−1

. (50)

Note that this requires the assumption that the number of
molecules in species C, its production and degradation rates
are large enough so that the dynamics of species C can
be approximated using the chemical Langevin equation. In
Fig. 2, we reversed the process in Section II-C to find
the production rate of C(t) (such that chemical Langevin
equation of C(t) matches (49)) and computed the Fano
factor of X(t) for different signal rate NC/NX . Although
the performance formulas are derived for the continuous-state
approximation, Fig. 2 suggests that they closely approximate
the actual discrete-state performance. The approximation of
C is accurate if C has high count, small noise, and fast
dynamics [59].

Example 2: There are many ways to encode the informa-
tion about X(t) into V (t). Assuming memoryless encoding,



Fig. 2. Achievable performance and lower bound for Var[X(t)]/E[X].
Green dots represent the empirical statistics of each sample; blue line
represents (50), the theoretically achievable values in the continuous-time
approximation; the red line represents (48) with γX = γC = 1, the
theoretical lower bound in the continuous-time approximation.

at one extreme, V (X(t)) can be a switching function of
X(t), i.e.,

V (t) = V (X(t)) =

{
a X(t) ≥ `
b X(t) < `

(51)

The proof of Theorem 2 suggests encoding by a switching
function can be beneficial [54]. At another extreme, V (X(t))
can be a linear function of X(t). What lies between the two
extremes is the Hill function 9

V (t) = V (X(t)) = (a− b)
{(

`

X(t)

)n
+ 1

}−1

+ b, (52)

where a, b > 0. Linear encoding appears most often in
biology, as it describes the case where X acts as a catalyst
that produce or degrade C, e.g., X could be mRNAs that
translates into proteins, C. The Hill function was first derived
from chemical kinetic models to capture the cooperative
effect of ligand binding with hemoglobin [60]. Since then,
it has been used to describe other phenomena, such as
transcription factors’ effect on gene expression [61]. Further-
more, there exists a physical motivation for Hill-function-like
dynamics based on thermodynamic models [62].

To test our bound on channel capacity in (35) and (39), we
used the method in [63] to estimate the mutual information
between C and X . In Fig. 3, we compared the empirical val-
ues of mutual information with the theoretical lower bounds
in (35) and (39). In both cases, the bounds can be attained
by a switching encoding function, while the decrement in
mutual information by other classes of encoding functions
remains small.

VI. CONCLUSION

In this paper, we study the fundamental limits and
achievable performance in biomolecular control. The diffi-
culty of analyzing discrete state CMEs is circumvented by

9This is a smooth monotone function that takes the value V (t) → a
as X(t) → 0+, and the value V (t) → b as X(t) → ∞. At one end,
as n→∞, the Hill function approximates the switching function in (51).
Specifically, when `/X(t) < 1, V (t)→ a as n→∞; when `/X(t) > 1,
V (t) → b as n → ∞. At the other end, as n → 1, the Hill function
approximates a linear function of X(t) if X(t)/`� 1.

Fig. 3. Achievable performance 1
T
I(νT ;NT

p ) (top) and 1
T
I(ξT ;NT

d )
(bottom). Each dot represents a randomly selected parameter in switching,
linear, or hill functions. The red lines represent the lower bounds (35) and
(39) in the top figure and the bottom figure, respectively.

continuous-state approximation using SDEs. Our analysis
also takes into account the impact of control on future system
noise and the nonlinearity arising from control via degrada-
tion. The derived performance bound also allows the sensing
species (species C in Section V) to act on the target species
indirectly via other species in the system. Consequently, our
results extend the applicability of the pioneering work [11]
to a wider range of biomolecular systems.
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