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Abstract

Image processing problems have always been challenging due to the complexity of the

signal. These problems comprise image enhancement, such as denoising, inpainting

or digital zoom, decomposing the image into relevant parts, such as background sub-

traction and segmentation, image compression, object identification or recognition,

and others. The complexity of the signal comes from the dimension of the images

and by the large number of variations that can occur, such as contrast, luminance,

occlusions, perspective, scale, rotation, etc.. This variety of problems has been tack-

led with different methods, with many of them depending on a transformation of

the signal into a more meaningful representation. For instance, image compression

relies on the fact that images can be accurately represented by a small number of

elements of a proper basis. These include the Fourier or wavelet domains, but in fact

any collection of elements can be used to efficiently represent images, as long as they

constitute sources commonly found in images. This suggests that images belong to a

type of signal that can be targeted by the sparse coding framework.

Sparse coding assumes that a certain class of signals can be expressed linearly by

a small number of elements from a given set or frame. A range of image processing

problems can then be solved by cleverly formulating an optimization problem with

three main components: an objective function that matches the criterion to optimize,

an appropriate frame or dictionary, and a penalty or constraint that enforces sparsity

of the image representation. Strictly speaking, the sparsity of a vector is defined by
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the number of non-zero elements (`0−norm), but this measure renders the problem

NP-hard. Its convex relaxation, the sum of absolute values (`1−norm), also measures

sparsity to some extent and is commonly used as an alternative. When the optimiza-

tion problem is convex, the compressive sensing theory guarantees uniqueness (or at

least bounded error) of the recovered sparse signal under certain conditions. This,

in turn, leads to guarantees of performance for the solution of the image processing

problems based on sparse coding. It turns out that many image processing prob-

lems that were solved with tailored methods can be solved with sparse coding with

state-of-the-art results, specially when they use a dictionary learned from a dataset

of images.

However, the toll that is paid for the state-of-the-art performance is a large com-

putational cost. Although sparse coding solvers are now much faster than the first

ones, the time to solve is still a major drawback. Finding faster solvers is still a

compelling topic of research, since it will drive a large number of applications in the

practical domain.

The first contribution of this dissertation is to benchmark several solvers under

different conditions. These cover several values for the coherence of the dictionary,

sparsity of the true signal and the regularization parameter. The benchmark confirms

that the solver named Dual Alternating Direction Method of Multipliers (DADMM)

has generally the best performance and therefore can be set as a standard and is a

solid base to create faster solvers. The same algorithm is benchmarked with greedy

methods for `0−norm based problems to compare speed and recovery properties.

Contrary to the common belief that greedy algorithms are faster than convex solvers,

DADMM outperforms most of them in terms of speed. Regarding recovery properties,

the theoretical guarantees are better when the sparsity is measured by the `1-norm

than for any greedy solver. In practice, the opposite is seen, i.e., greedy solvers have

better recovery properties than `1−norm based solvers.
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This work proposes a new version of DADMM, in which the penalty parameter

can be adjusted at each iteration at no extra cost. As a consequence, additional

simplifications are possible that accelerate the algorithm. A thorough study is under-

taken to evaluate what is the best sequence of penalty parameter values, its relation

to variables existent in the algorithm and how it improves convergence. A relation

between optimal penalty parameter and reconstruction error is proposed, which im-

proves performance for the problem in question. Several examples are presented that

show that the proposed DADMM reaches the same convergence level in less than half

the time compared with standard DADMM.

Furthermore, the unique properties of DADMM are further explored to accelerate

Virtual Probe (VP), a method used to reduce wafer test cost by reducing the number

of effective measurements required. The wafer map for each test item constitutes an

image, for which compressive sensing can be applied. The properties of DADMM

become an advantage when the dictionary is a partial fast transform, as is the case

of the DCT transform used in VP. Results show that DADMM tailored to VP can

reach speed-ups up to 38× compared with a standard interior-point solver.

The algorithm could potentially be further improved by reducing the complexity

of matrix-vector multiplications, with particular advantage for highly overcomplete

dictionaries. This could be achieved by predicting the zero elements in the next iter-

ated solution and avoiding the computation of the corresponding vector dot-products,

since their value is irrelevant. Furthermore, a better and broader penalty parameter

rule could be attained if the suggested methodology was used in a larger range of test

cases. The result would certainly be a parameter-free standard solver for `1−norm

regularized problems.
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Resumo

Problemas de processamento de imagens têm sido sempre um desafio devido à com-

plexidade do sinal. Estes problemas incluem melhoria de imagem, como remoção de

ruído, recuperação de pixeis ou zoom digital; decompor a imagem em partes rele-

vantes, como a subtração de fundo e segmentação; compressão de imagem; identifi-

cação ou reconhecimento de objetos, entre outros. A complexidade do sinal advém da

dimensão das imagens e pelas variações que podem ocorrer, tais como no contraste, na

luminância, oclusões, perspectiva, escala, rotação, etc.. Estes vários problemas foram

resolvidos com métodos diferentes, muitos deles dependendo de uma transformação

do sinal para uma representação mais significativa. Por exemplo, a compressão de

imagem baseia-se no facto de que as imagens podem ser representadas com precisão

por um pequeno número de elementos de uma base adequada. Estas bases incluem

os domínios de Fourier ou de wavelet, mas, de facto, qualquer conjunto de elementos

pode ser usado para representar imagens de forma eficiente, desde que estes con-

stituam padrões normalmente encontrados em imagens. Isto sugere que as imagens

pertencem a um tipo de sinal que pode ser visado pelo método de codificação esparsa.

A codificação esparsa assume que uma certa classe de sinais pode ser expressa

de forma linear por um pequeno número de elementos de um dado conjunto. Uma

série de problemas de processamento de imagem pode ser resolvido através de uma in-

teligente formulação de um problema de otimização com três components: uma função

objectivo que captura o critério a optimizar, um dicionário (conjunto de elementos)
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adequado, e uma penalização ou restrição que impõe esparsidade na representação

da imagem. Na realidade, a esparsidade de um vetor é definida pelo número de ele-

mentos diferentes de zero (norma `0), mas esta medida torna o problema NP-difícil.

A sua relaxação convexa, a soma dos valores absolutos (norma `1), também mede

esparsidade e é normalmente usada como alternativa. Quando o problema de opti-

mização é convexo, a teoria de compressive sensing garante unicidade (ou pelo menos

um erro limitado) do sinal esparso recuperado. Por sua vez, leva a garantia de de-

sempenho para a solução dos problemas de processamento de imagem baseada em

codificação esparsa. Sendo assim, acontece que muitos problemas de processamento

de imagem que foram resolvidos com métodos adaptados podem ser resolvidos com

a codificação esparsa com melhores resultados, especialmente quando eles usam um

dicionário aprendido a partir de um conjunto de dados de imagens.

No entanto, o preço a pagar pelo desempenho acrescido é um grande custo com-

putacional. Embora os métodos usados são agora mais rápido do que no início do

desenvolvimento da codificação esparsa, o tempo de convergência ainda é uma grande

desvantagem. Desenvolver métodos mais rápidos é ainda um tema de pesquisa im-

portante, uma vez que irá conduzir um grande número de aplicações para o domínio

prático.

A primeira contribuição desta tese é a comparação de vários solucionadores de

codificação esparsa sob diferentes condições. Estas abrangem vários valores para a

coerência do dicionário, esparsidade do verdadeiro sinal e para o parâmetro de regular-

ização. A comparação confirma que o método denominado Dual Alternating Direction

Method of Multipliers (DADMM) geralmente tem o melhor desempenho e, portanto,

pode ser definido como um padrão e é uma base sólida para criar solucionadores mais

rápidos. O mesmo algoritmo é comparado com solucionadores gulosos para proble-

mas que usam a norma `0 para avaliar propriedades de velocidade e recuperação do

sinal. Contrariamente à opinião comum de que algoritmos gulosos são mais rápidos
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que solucionadores convexos, DADMM supera a maioria deles em termos de veloci-

dade. Em relação às propriedades de recuperação, as garantias teóricas são melhores

quando a esparsidade é medida pela norma `1 do que para qualquer solucionador gu-

loso. Na prática, o oposto é visto, ou seja, solucionadores gananciosos têm melhores

propriedades de recuperação do que solucionadores baseados na norma `1.

Este trabalho propõe uma nova versão do DADMM, no qual o parâmetro de pe-

nalização pode ser ajustado a cada iteração, sem nenhum custo extra. Como conse-

quência, são possíveis simplificações adicionais que aceleram o algoritmo. Um estudo

completo é realizado para avaliar qual é a melhor sequência de valores do parâmetro

de penalização, sua relação com variáveis existentes no algoritmo e como ele melhora

a convergência. Uma relação entre o parâmetro de penalização ideal e o erro de re-

construção é proposta, o que melhora o desempenho para o problema em questão.

Vários exemplos são apresentados que mostram que o DADMM proposto atinge o

mesmo nível de convergência em menos de metade do tempo em comparação com o

DADMM original.

Adicionalmente, as propriedades únicas do DADMM são exploradas para acelerar

Virtual Probe (VP), um método utilizado para reduzir o custo de teste de wafers,

reduzindo o número de medições efectivamente necessárias. O mapa da wafer para

cada item de teste constitui uma imagem, onde compressive sensing pode ser aplicado.

As propriedades de DADMM tornam-se uma vantagem quando o dicionário é uma

transformada rápida parcial, como é o caso da transformada discreta de cosseno

usada em VP. Os resultados mostram que DADMM adaptado para VP pode atingir

melhorias de velocidade até 38× em comparação com um método de ponto interior

padrão.

O algoritmo poderia ser melhorado através da redução da complexidade das mul-

tiplicações matriz-vetor, com particular vantagem para dicionários altamente sobre-

completos. Isto poderia ser conseguido prevendo os elementos que estarão a zero na
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próxima solução iterativa e evitando o cálculo dos produtos internos correspondentes,

uma vez que o seu valor é irrelevante. Além disso, uma regra para a atualização do

parâmetro de penalização melhor e mais ampla poderia ser obtida se a metodologia

sugerida fosse utilizada numa gama maior de casos de teste. O resultado seria certa-

mente um algoritmo de referência, livre de parâmetros, para problemas regularizados

com a norma `1.
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Chapter 1

Introduction

1.1 Signal Representation

Signal representation is an important field in engineering that has impacted our lifes,

with applications such as compression, pattern recognition, classification, segmenta-

tion, signal enhancement, etc.. The major goal of signal representation is to transform

a certain signal into the most suitable representation. The meaning of suitable de-

pends on the application: for compression, it is a representation that leads to the

least amount of data to be stored; for a classification problem, it is a representation

that leads to a set of features that easily differentiates members of different classes;

for object tracking, it is a representation that separates the target object from the

background; or in pattern recognition, it may be a representation that decomposes

the signal into relevant constituent parts. Therefore, transforming a raw signal is a

fundamental step to many signal processing applications.

Any signal, represented as a vector, can be expressed by a linear combination of

a set of patterns, as long as those patterns span the entire vector space. When the

patterns are linearly independent, they form a basis. Principal Component Analy-

sis (PCA) [32], for example, builds a basis from a set of observations in a way that

1
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the patterns/components are ordered in terms of the energy they contribute to each

observation. The first components make the largest contribution to the set of obser-

vations and the last ones are usually negligible. When the patterns are not linearly

independent, their collection is more commonly known as a frame or dictionary. A

dictionary is more general than a basis and it has the potential to express a signal

with a smaller set of patterns. In addition, the vectors, or atoms, that compose the

dictionary can be selected from any source, such as directly from a training set, from

pre-defined bases, or learned to best represent the signal.

In the last decade, two promising frameworks are bringing to the signal process-

ing field a new way to solve signal representation problems with dictionaries: sparse

coding and dictionary learning. Sparse coding is related to finding the sparsest combi-

nation of coefficients given a certain dictionary and a set of observations. Dictionary

Learning is concerned in finding the dictionary that produces the sparsest coefficients,

given a dataset of observations, and uses sparse coding extensively. This dissertation

focus on the sparse coding part. Although sparse coding is just a method of encoding

a signal into a representation containing a small selection of atoms, it is formulated

as an optimization problem. This, in turn, gives it enough flexibility to be adapted to

a variety of signal processing problems. A number of them can be applied to images.

1.2 Sparse Coding

Sparse coding can be generally stated as the process of finding the set of sparsest

coefficients that, linearly combined by the atoms of a dictionary, can provide a good

approximation of the given observations. It is based on the assumption that the

observation can indeed be explained by a small set of atoms. Sparse coding is often

divided in the noiseless and noisy settings, for which there are different problem

statements.
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In the noiseless setting, the observations are entirely generated by the sparse

coefficients and it is possible to have a zero approximation or reconstruction error.

The problem is stated as

minimize: (sparsity) subject to (reconstruction error) = 0. (1.1)

In some conditions, there is only one possible set of coefficients with the lowest spar-

sity. Therefore, sparse coding is able to recover that unique set of coefficients.

In the noisy case, noise is added to the original observations and the reconstruction

is intended to be accurate up to the level of noise. In that case, the problem is always

based on a compromise between the sparsity of the coefficients and the accuracy of

the reconstruction, since both work in opposing directions. The compromise is often

controlled by a parameter λ:

minimize: (reconstruction error) + λ(sparsity). (1.2)

In this case, the regularizing parameter plays an important role, since a value too small

uses too much coefficients to explain the content of the observations below noise level

and a value too high will prevent important coefficients from being selected.

The sparsity can be measured by two different norms, the `1−norm (the sum of

absolute values of the coefficients) and the `0−norm (the number of non-zero coeffi-

cients). Although the `0−norm is the real measure of sparsity, the problems (1.1) and

(1.2) become NP-hard, for which there is no optimal algorithm except brute force.

Therefore, greedy algorithms are used that often lead to acceptable sub-optimal solu-

tions. In this case, the problems are dubbed L0 problems in this dissertation. On the

other hand, when the sparsity is defined by the `1−norm, the problems (1.1) and (1.2)

are convex and a well defined theory named compressive sensing provides guarantees

to the error bounds. For this case, they are named L1 problems.
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1.2.1 Compressive Sensing

Compressive sensing theory, introduced by Candés and Tao [11] and Donoho [20],

provides guarantees for the recovery of the original sparse signal even if its indirect

observation has a lower dimensionality. It makes the assumption that the sparsity

(number of zero coefficients) of the underlying signal under a given frame is below

a certain level, i.e., that the observed signal was formed by a subset of the frame.

Under the compressive sensing theory, the reconstruction is done by an `1−norm

based minimization problem. One of the biggest drawbacks of this problem is the

heavy computation necessary to solve it, since the `1−norm is non-differentiable and

there is no closed-form solution. Hence, faster ways to solve this problem is still an

important topic of research.

Consider that the transformation y = Ax of the original signal x reduces its

dimensionality. The dimensionality of y ∈ Rm is smaller than the dimensionality of

x ∈ Rn, hence the system is underdetermined: there is an infinite number of solutions

x that can produce the same observations y. Then, it seems that it is impossible to

recover x, knowing y and A. Compressive sensing theory defines the conditions in

which x can be recovered with a convex minimization problem. In particular, the

theory relies on a single property of the mixing or sensing matrix A: the Restricted

Isometry Constant (RIC) δk is the smallest value for which the following equation is

valid for any k−sparse (with only k non-zero elements) signal xk:

√
1− δk ‖xk‖2 ≤ ‖Axk‖2 ≤

√
1 + δk ‖xk‖2 , ∀xk. (1.3)

The matrix A is said to satisfy the k-Restricted Isometry Property (RIP) with

RIC δk. The sharpest bound found so far for this constant that guarantees exact

recovery of any k−sparse signal is δk ≤ 0.3 [8] or δtk ≤
√

(t− 1) /t for t > 4/3

[9]. This constant decreases with the number of rows of A (which is the number of
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observations), thus setting a lower limit to the number of samples that still allows

exact recovery of the original signal. There are also error bounds for the cases where

the observations are subjected to noise (y = Ax + n) and/or x is k−compressible

(the remaining elements are not zero, but small compared to the highest k elements),

making compressive sensing a highly practical theory.

The minimization problem that recovers the true solution is an `1−regularized

regression:

min
x
‖x‖1 s.t. y = Ax , noiseless case (1.4)

(L1) min
x

1
2 ‖y−Ax‖2

2 + λ ‖x‖1 , noisy case. (1.5)

Other equivalent formulations of (1.5) are

min
x
‖y−Ax‖2

2 s.t. ‖x‖1 ≤ s (1.6)

min
x
‖x‖1 s.t. ‖y−Ax‖2

2 ≤ ε. (1.7)

The imposition on the sparsity of x leads to a solution that captures the essential

elements in A that represent y. The regression in (1.6), known as LASSO [54], was

originally used in statistics, where y was data, A was a full column rank matrix

with m > n representing a set of parameters (each column is a parameter), and x

would provide the linear regression that explains the data with the smallest subset of

parameters. With the advent of compressive sensing, this regression was also applied

to cases where A was overcomplete (m < n) and not full-column rank, so long as

it respected the bounds of the Restricted Isometry Property (RIP). Since then, its

application in the image processing field exploded.
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1.2.2 Applications

This section reports several applications of sparse coding found in the literature.

Every application is based on the assumption that any observation vector z can be

represented in a sparse (or at least compressible) set of coefficients x under some

frame A:

z ≈ Ax. (1.8)

1.2.2.1 Denoising

Often images are contaminated by noise, which can modeled by adding a random

vector n to the original signal z, producing the only observable signal y:

y = z + n. (1.9)

The goal is to remove the noise from y to recover z. Assuming that the dictionary rep-

resents the content of the image and not the noise, the optimization of equation (1.7)

or equation (1.5) returns a sparse set of coefficients x̂ that will hopefully capture z

and not n. Depending on the value of the penalty parameter λ or error bound ε,

a large amount of the final error ‖y−Ax̂‖2
2 is the added noise, since it is not well

captured with dictionary A. The clean signal is then estimated with the operation

ẑ = Ax̂. The work in [23] focus on learning a proper dictionary, given the image

dataset, and shows better results when that dictionary is used.

1.2.2.2 Inpainting

The goal of inpainting is to fill missing pixels (e.g. erased or painted over) based on

the remaining pixels. Each pixel can be given a binary weight, 0 for the missing pixels

and 1 otherwise. If W is a diagonal matrix containing those weights, the solution of:
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x̂ = arg min
x
E(x) = ‖W (y−Ax)‖2

2 + λ ‖x‖1 , (1.10)

essentially finds the underlying signal under frame A, since the painted pixels do not

count for the reconstruction error. The clean signal is then estimated with the oper-

ation ẑ = Ax̂. More advanced versions of inpainting based on sparse representation

can be found in [48].

1.2.2.3 Background Subtraction

An important task in object tracking and video surveillance is background substrac-

tion, i.e., the removal of the background from current frames to point out the fore-

ground objects. In [12], each image x is subsampled by a mixing matrix Φ and

the compressed samples y = Φx are transmitted by a constrained communication

channel. Information about compressed background images ybi is aggregated in a

gaussian distribution: log ‖ybi − yb‖2
2 ∼ N (µb, σ2

b ), where yb = 1
N

∑N
i=1 ybi. Test im-

ages yt, differentiated from the background by the foreground objects, will follow the

same distribution, but with different parameters log ‖yt − yb‖2
2 ∼ N (µt, σ2

t ). As a

result, the presence of an object is detected by a simple thresholding involving the

metric log ‖yt − yb‖2
2. In case of detection, since the difference image xd = xt − xb is

sparse in the spatial domain (assuming the foreground objects occupy only a fraction

of the scene), the reconstruction of the foreground objects follows from solving the

inverse problem:

x̂d = arg min
x
‖yd −Φx‖2

2 + λ ‖x‖1 , (1.11)

where yd = yt−yb. To improve robustness against background shifts, [74] builds the

possible backgrounds as a collection of atoms in a dictionary A. Hence, a background

image yb can be sparsely represented in A (yb = Axb, where xb is sparse). Given a
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frame y = yf + yb, where the foreground yf = y − yb = y − Axb is sparse in the

spatial domain, the solution to

x̂b = arg min
x

∥∥∥∥∥∥∥∥
 y

0

−
 A

λI

x

∥∥∥∥∥∥∥∥
1

(1.12)

gives an estimation of the current background. The foreground comes from ŷf =

y−Ax̂b.

1.2.2.4 Digital Zoom

The goal of the digital zoom is to create high-resolution images out of low-resolution

ones [66]. The method assumes that there is a dictionary Ald from which low-

resolution images are well reconstructed, as well as another dictionary Ahd with their

high-resolution counterpart. First, a sparse representation for the observations, under

dictionary Ald, is found by:

x̂ = arg min
x
E(x) = ‖y−Aldx‖

2
2 + λ ‖x‖1 . (1.13)

Then, apply Ahdx̂ to obtain the high-resolution image.

1.2.2.5 Single Pixel Camera

The single pixel camera (SPC) [21] is a type of spatial-multiplexing camera (SMC)

that focuses the incident light in a single sensor element (or pixel). In general, spatial-

multiplexing cameras are imaging architectures that employ a spatial light modula-

tor (SLM), such as a digital micro-mirror device (DMD) or liquid crystal on silicon

(LCOS), to optically compute a series of linear projections of the scene, which are

equivalent to the rows of the dictionary A. Since the absorption of light beyond

the visual spectrum often requires sensors built from expensive materials, the use

of a small sensoring area reduces the overall sensor cost significantly, in contrast to
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full-frame sensors which intend to maximize the same area.

In particular, the SPC focuses the light from the scene onto a programmable

DMD, which in turn directs it from only a subset of activated micro-mirrors onto the

photodetector. The programmability of the DMD controls if the light incident in each

micro-mirror is directed towards the photodetector or away from it. As a result, the

voltage measured at the photodetector corresponds to an inner product of the image

focused on the DMD and its activation pattern.

In the recovery stage, the original incident image is estimated from the collected

compressive measurements, for example, by solving (1.5) or its variants.

1.2.2.6 Video Compressive Sensing for Spatial Multiplexing Cameras

Video compressive sensing is significantly harder than image compressive sensing with

SMCs, since the captured scene changes in the time span of the SMC acquiring period.

This, in turn, makes a poor estimate of an initial frame. Consecutive frames, obtained

from motion flow vectors derived from the first frame, inherit its poor accuracy.

The framework in [47] obtains the initial estimate at a lower spatial resolution,

which in turn requires less measurements from the SMC and therefore a shorter time

window. In addition, the spatial downsampling also reduces the temporal resolution of

the captured video. Both impact positively the accuracy of the estimate of the initial

frame. A low-resolution video is reconstructed by using simple least-squares technique

in each frame (the dimension of the low-resolution frame is equal to the dimension

of the measurement vector). Secondly, this low-resolution video is used to obtain

motion estimates between frames. Finally, a high-resolution video is recovered by

enforcing a spatio-temporal gradient prior: the constraints induced by the compressive

measurements (spatial) as well as the constraints due to motion estimates (temporal).

The last step is a sparse coding problem, where sparsity is enforced in the spatio-

temporal gradients using the total variation (TV) norm.
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1.2.2.7 Face Recognition

In [63], sparse representation is used to robustly identify a query face y from a dictio-

nary A formed by several faces. The dictionary is a conjunction of subdictionaries,

each one containing faces of the same subject under different illumination conditions.

Considering that the observed face may be occluded or corrupted, it can be repre-

sented as

y = Ax + e =
[
A I

] x

e

 (1.14)

where x is highly sparse, since only the atoms corresponding to the queried subject

will be non-zero, and e will be non-zero in the locations of the corrupted pixels, since

they cannot be well explained by the term Ax. The variable w =

x

e

 can be found

by solving

min
w
‖w‖1 y =

[
A I

]
w (1.15)

The structure of the dictionary is dubbed the cross-and-bouquet (CAB) model

due to its appearance in a vector space diagram. In it, the matrix I marks a cross

while the set of highly similar atoms A form a bouquet. Despite the high coherence

of the dictionary, both x and e vectors can be exactly recovered, even when e is

dense, as long as the bouquet is sufficiently tight and the dimensions of x and y are

sufficiently high [62].

1.2.2.8 Wafer Test Cost Reduction

In the domain of integrated circuit testing, wafer probing is a stage where multiple

performance items of each die in a wafer are measured. This process can be time-

consuming and the test cost is proportional to the time it takes to complete. One

way to reduce the test cost is through spatial variation modeling: assuming there is



1.3. CONTRIBUTIONS AND STRUCTURE OF THE DISSERTATION 11

spatial correlation in the wafer map, the goal is to measure a subset of the dies and

infer the metrics of the remaining dies by some statistical algorithm. Virtual Probe

[39] formulates the problem as a standard sparse coding problem:

x̂ = arg min
x

1
2 ‖y−Ax‖2

2 + λ ‖x‖1 . (1.16)

where y is the performance measurements of selected dies, A is a subsampled Discrete

Cosine Transform (DCT) basis and x is the unknown DCT coefficient vector. The

assumption that there is spatial correlation in the wafer map implies that the wafer

map in the frequency domain x will be sparse. This is a classic application where

taking measurements is an expensive step, and compressive sensing helps to reduce

them. In this case, the time the solver takes to recover the DCT coefficients counts

towards the test time and reducing it also reduces the test cost.

1.3 Contributions and Structure of the disserta-

tion

This section summarizes the contributions and describes the structure of the disser-

tation:

• Chapter 2 introduces several methods developed in recent years to solve the

sparse coding problem. The chapter is divided in solvers for `1−regularized

problems and `0−norm based problems. The purpose of introducing greedy

solvers is to later compare them with the best solver for `1−regularized problems

and take conclusions from the benchmark. The same chapter further describes

the Duality Theory (DT) and the Augmented Lagragian Method (ALM), which

are both at the base of two particular solvers, named DALM and DADMM. DT

is used to restate the formulation of the `1−regularized problem, while ALM
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solves the new formulation in an efficient way. The chapter also briefly describes

the idea behind dictionary learning, methods in the literature that solve it and

its connection to sparse coding.

• Chapter 3 makes a contribution with the benchmark of several solvers under

different conditions, sweeping several variables such as the coherence of the

dictionary, sparsity of the true signal and the regularization parameter. The

benchmark confirms that DADMM has the best performance and therefore is

a solid base to create faster solvers. The chapter also benchmarks the same

algorithm with greedy solvers for L0 problems to compare speed and recovery

properties.

• Chapter 4 proposes a new version of DADMM, in which the penalty parameter

can be adjusted at every iteration at no extra cost. A thorough study is un-

dertaken to evaluate what is the best sequence of penalty parameter values and

its relation to variables existent in the algorithm. A relation between optimal

penalty parameter and reconstruction error is proposed, which improves per-

formance for the addressed problem. Several examples are presented in which,

for the same convergence level, the proposed DADMM finishes in less than half

the time compared with the standard DADMM.

• Chapter 5 explores unique properties of DADMM to accelerate Virtual Probe

(VP), a method used to reduce wafer test cost by reducing the number of effec-

tive measurements required. The properties of DADMM become an advantage

when the dictionary is a partial fast-transform, as is the case of the DCT trans-

form used in VP. Results show that DADMM tailored to VP can reach speed-ups

up to 38× compared with a standard interior-point solver.

• Chapter 6 concludes the dissertation with a high-level summary of the work

and discusses future improvements over the work presented here.
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1.4 Conclusions

This chapter introduced the concept of sparse coding for signal representation. It

covered the compressive sensing theory that provides recovery guarantees of the un-

derlying signal when sparse coding is applied to overcomplete dictionaries. The va-

riety of example applications that were presented show how broad and flexible the

sparse coding framework is. However, compared with alternatives with closed-form

solutions, it is often seen as computationally expensive and its future use depends

on efficient implementations. The next chapter surveys previous works that aimed

to speed up the `1−norm regularized minimization as well as greedy algorithms that

approximately solve the `0−norm based minimization.
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Chapter 2

Background/Related Work

Ever since the sparse coding framework and the compressive sensing theory emerged,

its potential attracted many researchers to its field. The majority of the research can

be divided in two paths: applications and methods.

Research on applications focuses on ways to use or adapt sparse coding to solve or

improve solutions to problems in different fields. It turns out that sparse coding is a

powerful and flexible tool to general problems of classification, prediction and others,

many of them in the machine learning field.

However, the “achilles heel” of sparse coding is its computational cost. Therefore,

the other major line of research focuses on reducing the cost of sparse coding methods.

Since this is also the focus of this dissertation, the rest of this chapter describes the

history of methods that solve the sparse coding problem and further recall the theory

required for the next chapters.

2.1 Notation

Lowercase and uppercase boldface letters stand for column vectors and matrices,

respectively. The ith entry of a vector x is xi, the ith column of a matrix A is ai and

the ith row of a matrix A is ai. For variables that are iterated, x(k) or x(k) represents

15
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the kth iteration of x. AT is the transpose of a matrix A and A† its pseudo-inverse.

The `p norm of a vector x is denoted by ‖x‖p =
(

n∑
i=1
|xi|p

)1/p
and |x| or ‖x‖0 denotes

its cardinality or `0-pseudonorm (number of non-zero elements). The Frobenius norm

of a matrix A is denoted as ‖A‖F =
√∑

i,j a
2
ij. The support of a vector or matrix is

the set of indices where the elements are non-zero and referred as supp(x). max(x,y)

represents element-wise maximum between the first and second arguments and �

denotes the element-wise product. The function sign (x) is 1 for x > 0, -1 for x < 0

and 0 for x = 0.

2.2 Sparse Coding Solvers

The vast amount of literature on this topic is impossible to be covered, therefore only

the algorithms that standed out will be mentioned. They will be divided under two

classes, the Basis Pursuit Denoising (BPDN)/LASSO algorithms, that solve (1.5)-

(1.7) exactly, and greedy algorithms that solve approximately the same problems

when the `1−norm is replaced by the `0−norm.

2.2.1 Basis Pursuit Denoising (BPDN)/LASSO Algorithms

This section describes the evolution of Basis Pursuit Denoising (BPDN)/LASSO al-

gorithms, which solve the variations (1.5), (1.6) or (1.7).

In 1996, Tibshirani [55] presented the `1-regularization in the context of subset

selection. There, he suggests the iterative ridge regression method

x(t) = arg min
x
‖y−Ax‖2

2 + λ
∥∥∥W(t)x

∥∥∥2

2
, (2.1)

=
(
ATA + λWT

(t)W(t)
)−1

ATy,
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where W(t) is a diagonal matrix with each diagonal entry i equal to 1/
√∣∣∣x(t−1)

i

∣∣∣. As

the algorithm converges (
∥∥∥x(t) − x(t−1)

∥∥∥
2
→ 0), the approximation ‖x‖1 = ∑

i
|xi| ≈

∥∥∥W(t)x
∥∥∥2

2
= ∑

i

 xi√
x

(t−1)
i

2

tends to become more and more accurate. However, he

mentions this method is quite inefficient.

One year later, Gorodnitsky and Rao [28] developed FOCUSS (FOcal Underde-

termined System Solver) summarized by:

Repeat

W−1
(t) = diag(xl(t−1))

z =
((

AW−1
(t)

)T
AW−1

(t) + λI
)−1 (

AW−1
(t)

)T
y

x(t) = W−1
(t) z

t = t+ 1

Until convergence,

where l is the element-wise power of x. With the change of variable z = Wx, the

method proposed by Tibshirani (2.1) becomes

z(t) = arg min
z

∥∥∥y−AW−1
(t) z

∥∥∥2

2
+ λ ‖z‖2

2

= W−1
(t)

((
AW−1

(t)

)T
AW−1

(t) + λI
)−1

AW−1
(t) y (2.2)

and x(t) = W−1
(t) z(t), which is FOCUSS for l = 0.5. Therefore, FOCUSS generalizes

iterated ridge regression for different powers of x. In particular, for l = 1, it approxi-

mates the `0-norm. These early methods avoided the non-smoothness of the `1−norm

by approximating it with a weighted `2-norm.
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Shooting [25] was the first coordinate descent method to be proposed for `1-

regularization. It minimizes the cost function w.r.t. each individual coefficient at

a time, in a sequential fashion. Although not formulated as a proximal operator in

the original work, the minimization involves the proximal operator of the `1-norm,

which is the shrinkage function xi = shrinkλ(zi) = sign(zi) max(|zi| − λ, 0), where zi

is the result of the minimization of the reconstruction error w.r.t to xi. Instead of

optimizing the coefficients sequentially, other coordinate descent methods make an

educated guess of the next best coefficient to update [49], such as the coefficient index

corresponding to the atom with the strongest correlation with the residual. These

methods are able to converge fast with dictionaries with low-correlated atoms, but

struggled when atoms in the dictionary had some correlation between them.

Homotopy [43] is a method that solves (1.5) by finding critical points of the regu-

larization parameter λ, in which a coefficient is added to or removed from an active

set. At each of these critical points, the corresponding atom is added or removed

from the active set, the Hessian is rank-one updated and a quadratic problem is

solved with the exact ∆λ that takes the algorithm to the next critical point. The

complete path of critical points is one that reduces the regularization parameter in a

piecewise fashion. In this sense, they provide the complete regularization path, from

λ =∞ to a prescribed λ. Likewise, Least Angle Regression (LARS) [22] performs an

identical procedure to solve (1.6), in this case sweeping from s = 0 to a prescribed s.

Active-set algorithms, which include Homotopy and LARS, keep track of the coef-

ficients that are different from zero and progress by updating an active set, one atom

at a time, towards the converging support. Feature-sign search [38] replaces the term∥∥∥x(k)

∥∥∥
1
by the dot-product of the active coefficients x(k) and their signs sign

(
x(k)

)
.

The problem with the current active set is thus converted into a smooth quadratic

program and its solution x(k+1) is easily found by its closed-form expression. Then,

the objective function is evaluated at all points in the line between x(k) and x(k+1) in
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which the sign of a coefficient changes. The point with the lowest objective function

value is selected and the step is repeated.

First-order algorithms that solve (1.5) are mostly based on the Forward-Backward

splitting method [16], which can be seen as a generalization of the gradient de-

scent method for functions with non-smooth terms. These are denoted as Iterative

Shrinkage-Thresholding algorithms (ISTA), with its most basic form:

x(k+1) = shrinkλγ
(
x(k) − γAT

(
y−Ax(k)

))
, (2.3)

where γ is the gradient descent step size. FISTA [4] became quite popular, proving

a complexity result f(x(k)) − f(x?) ∝ 1/k2, where x? is the optimal solution, with

almost no added computational complexity to each iteration compared to the most

basic form of ISTA. It does so by using a combination of the last two iterations x(k) and

x(k−1) to build y(k) as the point to descend. SpaRSA [64] is an elaborate framework

to minimize objective functions that include a non-smooth term. The framework

includes extensions such as choosing the step size based on the Barzilai-Borwein

(BB) method [3] or shrinking the regularization term from an upper bound down to

the prescribed value throughout iterations (known as fixed-point continuation).

Augmented Lagrangian methods (ALM) solve constrained problems by iteratively

progressing to the feasible space while optimizing the objective function. In its core,

the Lagrange multiplier and a penalty term push each iteration closer to the feasible

space. The Dual Augmented Lagrangian Method (DALM) [57] converts the primal

problem (1.5) into its dual and solves it through the Augmented Lagrangian Method.

The minimization of each AL step is done through the Newton method. The Al-

ternating Direction Method of Multipliers (ADMM) is identical to ALM, with the

exception that for composite functions h(x, z) = f(x) + g(z), each variable is up-

dated separately, while keeping the other fixed. This divides a potentially difficult

problem into two simpler subproblems. DADMM is similar to DALM, except that
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it applies the ADMM to the dual problem [68]. By doing so, it simplifies the inner

optimizations and provides closed-form solutions for them.

ProPPA [37] builds on top of projected proximal point algorithms, where the

variable is alternatively updated by a proximal operator and projected to the feasible

space of the problem. The evolution of the cost function is known to zig-zag in this

class of methods because the projection often increases the cost, while the proximal

operator reduces it. ProPPA uses a buffer feasible space whose progression towards

the original feasible space is controlled by an update akin to the ALM step. As

a consequence, the projection is smoothed out throughout iterations, reducing the

zig-zag effect and improving convergence.

Although the motivation behind the improvement of these methods was the orig-

inal compressive sensing formulation, they are usually general enough to solve other

kinds of problems involving sparse coding. Hence, the range of applications they can

reach is broader than the algorithms described in the next section. Furthermore, since

they all solve exactly the same problem, they ensure the recovery guarantee presented

by the compressive sensing theory.

Throughout this dissertation, this class of algorithms will be denoted as L1 algo-

rithms.

2.2.2 Greedy Algorithms for `0−norm Regularization

A class of algorithms commonly used for compressive sensing is the one based on the

minimization of the reconstruction error by using a limited number of coefficients

x̂ = arg min
x
‖y−Ax‖2

2

S.T. ‖x‖0 ≤ s, (2.4)



2.2. SPARSE CODING SOLVERS 21

or minimization of the `0−norm with the reconstruction error bounded from above

x̂ = arg min
x
‖x‖0

S.T. ‖y−Ax‖2
2 ≤ ε. (2.5)

Since both problems are NP-hard, greedy algorithms are employed to obtain a solu-

tion. Although it is not guaranteed they will reach the global optimum, they often

provide good results. They are normally used when fast recovery is required. How-

ever, they are not as robust as `1−norm regularization. For example, they often have

the target number of non-zeros as a parameter: an underestimation of the true value

would truncate meaningful coefficients and overestimation results in loss of accuracy

and robustness [19]. Since they work with an active set of atoms, the inverse problem

is often the minimization of the reconstruction error with only the atoms belonging

to the active set.

Orthogonal Matching Pursuit [44, 7] is, by far, the most widely used algorithm

of its class. At each iteration, it selects the atom in the dictionary with the highest

correlation with the residual and adds it to an active set. The inverse problem is then

calculated with only the atoms in the active set and the residual is updated. The

cycle is repeated until the error is sufficiently small or until the defined number of

atoms is reached. Subspace Pursuit (SP) [17] and CoSAMP [41] are nearly identical

algorithms and work as follows for the recovery of a k−sparse signal: they select

the 2k atoms (for CoSAMP) or k atoms (for SP) in the dictionary with the highest

correlation with the residual and add them to an active set. The inverse problem

is then calculated with only the atoms in the active set. Afterwards, only the k

coefficients with largest absolute values are kept and the residual is updated. The

cycle is repeated until a halting criterion is met. SP recovers the signal exactly when
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δ3k < 0.165 and CoSAMP when δ4k < 0.1. SAMP [19] differentiates from others by

working without the knowledge of the sparsity of the original signal. It starts with a

sparsity estimate k that needs to be smaller than the correct sparsity and proceeds in

the same form as SP. If, at some iteration, the norm of the residual increases compared

to the previous iteration, k is increased and the cycle is continued. The algorithm

stops when a halting criterion is reached. SAMP recovers exactly the original signal

if δ3k < 0.06. GraDeS [26] repeatedly takes gradient steps towards a reduction in the

reconstruction error and keeps only the k largest (in absolute value) coefficients to

restore the sparsity of the current solution. The step size for convergence depends on

the Restricted Isometry Property (RIP) of the dictionary. This method recovers the

true solution when δ2k < 1/3.

Since, in essence, these algorithms are solving only approximately the same prob-

lem, they have different recovery guarantees. Although they are generally worse than

the compressive sensing guarantees, it does not mean they have worse recovery per-

formance. The RIP upper bound only states the larger RIC proven so far for which

they are guaranteed to recover the exact signal.

Throughout this dissertation, this class of algorithms will be denoted as L0 algo-

rithms.

2.3 Duality Theory

As will become clear in this chapter, and confirmed experimentally in chapter 3,

duality theory plays an important role in simplifying the problem statement for sparse

coding applications. The duality principle states that a constrained problem can be

viewed under two perspectives, the original primal version and a dual version, which

is obtained by forming the Lagrangian on the original problem. Let us consider the

general constrained case as the primal problem:
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min
x

f(x)

S.T. hi(x) = 0, i ∈ {1, ..., nh}

gi(x) ≤ 0, i ∈ {1, ..., ng}, (2.6)

where hi(x) and gi(x) are scalar functions. For simplicity of notation, we define the

feasible set as X . The Lagrangian function is built by converting the constraints into

penalties weighted by Lagrange multipliers µ and ν:

L(x, µ, ν) = f(x) +
nh∑
i=1

µihi(x) +
ng∑
i=1

νigi(x). (2.7)

It is important to know that, when solving for the Lagrangian function, the mul-

tipliers ν are confined to be non-negative because they are associated with lower-than

inequalities. Since, at a feasible solution of the primal problem, we have hi(x) = 0, i ∈

{1, ..., nh}, gi(x) ≤ 0, i ∈ {1, ..., ng} and νi ≥ 0, i ∈ {1, ..., ng}, we can confidently

state that

L(x, µ, ν) = f(x) +
nh∑
i=1

µihi(x)︸ ︷︷ ︸
=0

+
ng∑
i=1

νigi(x)︸ ︷︷ ︸
≤0

≤ f(x), x ∈ X . (2.8)

Now we introduce the dual function, which is the minimization of the Lagrange

over the primal variable:

q(µ, ν) = inf
x
L(x, µ, ν) (2.9)

By joinining (2.8) and (2.9), we obtain
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q(µ, ν) ≤ L(x, µ, ν) ≤ f(x), ν ≥ 0, x ∈ X (2.10)

Of course, the optimal solution x? of the primal problem is included in the feasible

set. Therefore, we can also confirm that:

q(µ, ν) ≤ f(x?), ν ≥ 0 (2.11)

The dual problem is thus defined as the maximization of the dual function, with

the constraint ν ≥ 0:

max
µ,ν

q(µ, ν)

ν ≥ 0 (2.12)

It is easy to see that if the primal problem was a maximization, the inequalities

and optimizations respective to the dual problem would be inverted.

2.3.1 Duality Gap

Note that generally it is not guaranteed that the optima of the dual q(µ?, ν?) and

primal f(x?) problems will have the same value. The difference between them is

called the duality gap and, in that sense, the dual problem can be seen as providing

the best lower bound for the primal problem:

f(x?)− q(µ?, ν?) = duality gap (2.13)

When certain constraint qualifications are met, the duality gap is zero and is said

that the problem has strong duality. In particular, one of these qualifications, Slater’s

condition, when applied to problems with only equality constraints, is simply that the

primal problem is feasible [6]. As it will be seen in section 2.4, it is very simple to
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add an equality constraint to unconstrained problems. Therefore, the unconstrained

problem addressed by compressive sensing has strong duality as long as there is a

solution for it.

2.4 Dual of the `1−regularized Least Mean Squares

Let us apply the duality theory to the compressive sensing problem:

min
x

1
2 ‖y−Ax‖2

2 + λ ‖x‖1 . (2.14)

First, we add the auxiliary variable r with the equality constraint r = y−Ax:

min
x,r

1
2 ‖r‖

2
2 + λ ‖x‖1

s.t. r = y−Ax (2.15)

Next, we build the dual function:

inf
x,r

L(x, r, µ) = inf
x,r

{1
2 ‖r‖

2
2 + λ ‖x‖1 + µT (r− (y−Ax))

}
(2.16)

and separate minimization problems:

inf
r

{1
2 ‖r‖

2
2 + µT r

}
+ inf

x

{
λ ‖x‖1 + µTAx

}
− µTy

= − sup
r

{
−1

2 ‖r‖
2
2 + (−µ)T r

}
− sup

x

{
−λ ‖x‖1 +

(
−ATµ

)T
x
}

(2.17)

−µTy

The first term of equation (2.17) can be recognized as the Legrendre-Fenchel



26 CHAPTER 2. BACKGROUND/RELATED WORK

transform of 1
2 ‖r‖

2
2, while the second term as the Legendre-Fenchel transform of

λ ‖x‖1. Their relations are:

sup
r

{
sT r− 1

2 ‖r‖
2
2

}
= 1

2 ‖s‖
2
2

sup
x

{
sTx− λ ‖x‖1

}
=


∞ ‖s‖∞ > λ

0 ‖s‖∞ ≤ λ

(2.18)

Compiling equations (2.17) and (2.18), and maximing the dual function, we obtain:

max
µ

−1
2 ‖−µ‖

2
2 − µ

Ty

s.t.
∥∥∥−ATµ

∥∥∥
∞
≤ λ. (2.19)

With a final touch, α = −µ, equation (2.19) becomes

max
α

−1
2 ‖α‖

2
2 + αTy

s.t.
∥∥∥ATα

∥∥∥
∞
≤ λ. (2.20)

In summary, equation (2.20) is the dual version of equation (2.14).

2.5 Dual Augmented Lagrangian Method (DALM)

The Dual Augmented Lagrangian Method applies the Augmented Lagrangian Method

(ALM) to equation (2.20). Before moving on, ALM, which is also known as Method

of Multipliers, will be briefly described.



2.5. DUAL AUGMENTED LAGRANGIAN METHOD (DALM) 27

2.5.1 Augmented Lagrangian Method (ALM)

As the name implies, the method builds an augmented version of the Lagrangian by

adding penalty terms to the original Lagrangian. Consider the general problem:

min
x

f(x)

S.T. hi(x) = 0, i ∈ {1, ..., nh}. (2.21)

The Augmented Lagrangian method builds the Augmented Lagrange function

Lη(x, µ) = f(x) +
nh∑
i=1

µihi(x) + η
nh∑
i=1

hi(x)2, (2.22)

which has an additional term controlled by the penalty parameter η. This term

is always non-negative, which increases the cost function whenever the constraints

are away from zero. The algorithm alternates between optimizing the Augmented

Lagrangian Lη(x, µ(k)) w.r.t. x and stepping the multipliers with the following rule:

µ(k+1) = µ(k) + η(k)h(x(k+1)), (2.23)

where the subscript (.)(k) denotes the variable at iteration k. The update is a form

of gradient ascent with the step size equal to the penalty parameter. It can be

shown that if the sequence {x(k)} tends to the optimum x?, then the updates in

equation (2.23) converge to the corresponding Lagrange multiplier µ? [6, Prop. 4.2.2].

The complete algorithm is described in Algorithm 2.1, where δ is a term that dictates

the geometric progression of the parameter η. Usually, the penalty parameter is

increased heuristically, not too slowly to speed up convergence and not too fast to

maintain stability.
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Algorithm 2.1 Augmented Lagrangian Method

Initialize k = 0, µ(0) and η(0), δ

Repeat
x(k+1) = arg min

x
Lη(k)(x, µ(k))

µ(k+1) = µ(k) + η(k)h(x(k+1))
η(k+1) = δη(k)

k ← k + 1
Until convergence

2.5.2 ALM Applied to the Dual Problem

Starting from equation (2.20) and adding an auxiliary variable ν such that ν = ATα,

the inequality constraint is replaced by ‖ν‖∞ ≤ λ and the problem can be solved by

first building the Augmented Lagrangian:

Lη(α, ν,x) = −1
2 ‖α‖

2
2 + αTy− xT

(
ATα− ν

)
− η

2

∥∥∥ATα− ν
∥∥∥2

2
− δλ(ν) (2.24)

where η is the penalty parameter, x is the Lagrange Multiplier and δλ(ν) is +∞

if any element of ν is greater than λ and 0 otherwise. Recall that since this is a

maximization problem, the signs of the terms in the Lagrange function are inverted.

The solution is found by iteratively maximizing the objective function w.r.t. the joint

variables (α, ν) and updating the multiplier x by

x(k+1) = x(k) + η(k)
(
ATα(k+1) − ν(k+1)

)
, (2.25)

as in equation (2.23).

To obtain the joint maximization, we consider ν(α) and α(ν) as functions of each

other. The maximum is found when the gradients w.r.t. both variables are zero:
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∇νLη(α, ν,x) = 0

∇αLη(α, ν,x) = 0 (2.26)

For ν:

∇νLη(α, ν,x) = x + η
(
ATα− ν

)
− δλ(ν) = 0

ν(α) = P∞λ

(
x
η

+ ATα

)
, (2.27)

where P∞λ (x) is an element-wise projection to the range [−λ, λ]. This is expected,

since no element of ν can be greater than λ in absolute value.

For α:

∇αLη(α, ν,x)

= −α + y−Ax− ηA
(
ATα− ν(α)

)
= −α + y−A

(
x + ηATα− ηP∞λ

(
x
η

+ ATα

))
= −α + y−A

(
x + ηATα− P∞λη

(
x + ηATα

))
= −α + y−A · shrinkλη

(
x + ηATα

)
, (2.28)

where ν(α) was replaced by (2.27) and shrinkλ(x) = max(|x| − λ, 0) · sign(x) is an

element-wise operator. The last step of (2.28) is derived from the Moreau’s decom-

position [46, Theorem 31.5] proxf (z) = z − proxf?(z), where f(z) = λη ‖z‖1 and

f ?(z) = ‖z‖∞λη are conjugate norms, proxf (z) = arg minx
{
f(x) + 1

2 ‖x− z‖2
2

}
is the

proximal operator of function f and z = x + ηATα. The proximal operators of the

above functions are
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proxf (z) = shrinkλ (z) , f(z) = λ ‖z‖1

proxf?(z) = P∞λ (z) , f ?(z) = ‖z‖∞λ . (2.29)

Since there is no closed-form solution to the maximization, DALM [56] updates α

through Newton steps with Hessian:

∇2
αLη(α, ν,x) = −

(
I + ηAΩAΩ

T
)
, (2.30)

where Ω =
{
i : x(k)

i 6= 0
}
is the set of indices where the multipliers are non-zero.

The maximization is only done approximately, since conditions defined in [57] state

that the gradient (2.28) only needs to be below a certain upper bound to guarantee

that the Lagrangian is in fact increased.

The dual variable of the dual problem (which is the primal variable) is updated

according to equation (2.25):

x(k+1) = x(k) + η
(
ATα(k+1) − ν(α(k+1))

)
= x(k) + η

(
ATα(k+1) − P∞λ

(
x(k)

η
+ ATα(k+1)

))
= x(k) + ηATα(k+1) − P∞λη

(
x(k) + ηATα(k+1)

)
= shrinkλη

(
x(k) + ηATα(k+1)

)
(2.31)

where the last line is derived from the Moreau’s decomposition [46, Theorem 31.5] as

in (2.28), with proxf (z) = z − proxf?(z), , with f(z) = λη ‖z‖1, f ?(z) = ‖z‖∞λη, and

z = x(k) + ηATα(k+1).

As a final note, given equation (2.27), it is not difficult to manipulate equa-

tion (2.24) to obtain the simpler form:
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Algorithm 2.2 Dual Augmented Lagrangian Method.

Initialize k = 0, α(0),x(0) and η(0), δ

Repeat

α(k+1) ' arg max
α

{
−1

2 ‖α‖
2
2 + αTy− 1

2η(k)

∥∥∥shrinkλη(k)(x(k) + η(k)ATα)
∥∥∥2

2

}†
x(k+1) = shrinkλη

(
x(k) + η(k)ATα(k+1)

)
η(k+1) = δη(k)

k ← k + 1
Until convergence

†The approximate maximization is obtained by Newton steps with gradient and Hes-
sian defined in (2.28) and (2.30) respectively.

L(α,x) = −1
2 ‖α‖

2
2 + αTy− 1

2η
∥∥∥shrinkλη(x + ηATα)

∥∥∥2

2
, (2.32)

which does not depend on the variable ν. The complete algorithm is described in

Algorithm 2.2.

This approach requires very few iterations, however, the Hessian and its inverse

needs to be recomputed for every outer iteration during the α update. Fortunately,

the rank of the Hessian is equal to the number of active multipliers at a given iteration,

which tends to be small.

2.6 Dual Alternating Direction Method of Multi-

pliers (DADMM)

Although the original DALM converges in few steps, each step is computationally

expensive, since the inverse needs to be recomputed with a new set of active columns.

Furthermore, since there is no closed-form solution to the α update, DALM takes

Newton steps as inner iterations. An alternative approach to solving ALM that has

gain recent attention is the Alternating Direction Method of Multipliers (ADMM).
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Algorithm 2.3 Alternating Direction Method of Multipliers

Initialize k = 0, µ(0) and η
Repeat
y(k+1) = arg min

y
Lη(x(k),y, µ(k))

x(k+1) = arg min
x

Lη(x,y(k+1), µ(k))

µ(k+1) = µ(k) + ηh(x(k+1),y(k+1))
k ← k + 1

Until convergence

2.6.1 Alternating Direction Method of Multipliers

This method is very similar to ALM, except that a potentially complex optimization

is split into two variables and each variable is optimized separately [68]. The method

is applied to problems that are in or can be converted to the form:

min
x,y

f(x) + g(y)

S.T. hi(x,y) = 0, i ∈ {1, ..., nh}, (2.33)

i.e., where the cost function is the sum of two separable functions. The Augmented

Lagrangian is built as in ALM:

Lη(x,y, µ) = f(x) + g(y) +
nh∑
i=1

µihi(x,y) + η
nh∑
i=1

hi(x,y)2, (2.34)

and each variable is updated separately. The complete algorithm is described in

Algorithm 2.3.
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2.6.2 ADMM Applied to the Dual Problem

Note that if we still use the auxiliary variable ν such that ν = ATα, the problem has

the form (2.33), except that it is a maximization, with

f(α) = −1
2 ‖α‖

2
2 + αTy

g(ν) =


0 ‖ν‖∞ ≤ λ

∞ ‖ν‖∞ > λ

h(α, ν) = ATα− ν. (2.35)

The optimization over α becomes:

∇αLη(α, ν(k),x(k)) = −α + y−Ax(k) − ηA
(
ATα− ν(k)

)
= 0, (2.36)

which leads to the closed-form solution

α =
(
I + ηAAT

)−1 (
y−A

(
x(k) − ην(k)

))
. (2.37)

The variable ν and the multiplier x updates remain as in (2.27) and as in (2.31),

respectively. The complete algorithm for DADMM is described in Algorithm 2.4.

If η is kept fixed and the inverse of the Hessian is precomputed, each iteration of

DADMM amounts to three matrix-vector multiplications, although it runs more of

them compared with DALM.

Using the correct penalty parameter η can improve the convergence rate. Recall-

ing the α update (2.37), we can change η at the cost of recomputing the inverse of

the Hessian, or keep it fixed throughout the algorithm and precompute the Hessian
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Algorithm 2.4 Dual Alternating Direction Method of Multipliers.

Initialize k = 0, ν(0),x(0) and η
Repeat
α(k+1) =

(
I + ηAAT

)−1 (
y−A

(
x(k) − ην(k)

))
ν(k+1) = P∞λ

(
x(k)

η
+ ATα(k+1)

)
,

x(k+1) = shrinkλη
(
x(k) + ηATα(k+1)

)
k ← k + 1

Until convergence

at the beginning. Chapter 4 suggests an alternative that not only allows to change

the penalty parameter at no cost, but also makes each iteration faster. A precom-

putation based on eigendecomposition is required. Thankfully, in many applications,

the dictionary is reused and this decomposition needs to be done only once.

2.7 Dictionary Learning

For the sake of completion, it is worth mentioning a concept that propelled sparse

coding usefulness. Most of the benefit of sparse coding comes from the large number

of atoms that the dictionary has available for selection, which increases the probability

of representing an observation with a small number of atoms.

Originally, the dictionary was a composition of bases, such as Discrete Cosine

Transform (DCT), wavelets, etc., or their overcomplete or subsampled versions. An

analysis would be performed to ascertain which type of basis or conjunction of bases

would provide the best results. On the other hand, dictionary learning attempts to

infer the patterns that are common to a class of signals, under the assumption that

each signal used to train the dictionary is formed by a small subset of these patterns.

This approach has the potential to provide a uniform method to learn the best frame

to a certain type of signal, solely based on training samples. It is specially suited to
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new types of data, for which an adequate representation is not yet found. In fact, the

genesis of dictionary learning comes from a paper that aimed to study the underlying

patterns in natural images and point out the similarity to the patterns to which cells

in the primary visual cortex respond best [42]. Although there is not yet a solid theory

for dictionary learning, empirical results of existing algorithms show that is possible

to recover the true dictionary if the coefficients used to produce the training samples

are sparse enough [1, 40, 50, 18, 75]. Since the learned dictionary is, in principle,

better matched to the observations than pre-designed dictionaries, the sparse coding

model reaches higher levels of sparsity for the same reconstruction error, or better

reconstruction for the same level of sparsity.

Much of the current work takes the approach of alternating the minimization

of the reconstruction error between the dictionary and the coefficients. Since the

minimization w.r.t to the coefficients is usually the `0- or `1-regularized problem, most

of the research focuses on the update of the dictionary. The update of the dictionary

is concerned in reducing the reconstruction error while keeping the support of the

coefficient matrix X unchanged:

(
A(k+1),−

)
= arg min

A,X

1
2 ‖Y −AX‖2

F , supp(X) = supp(X(k)), (2.38)

where X(k+1) is obtained by applying sparse coding with dictionary A(k+1). The result

(−) in (2.38) means that the solution of X is not relevant, but it is allowed to change

during the dictionary update. The first paper to work in the perspective of dictionary

learning was the Method of Optimal Directions (MOD) [24], in which the update of

the dictionary is a direct least squares minimization of the reconstruction error w.r.t.

to the dictionary:

A(k+1) = arg min
A

1
2
∥∥∥Y −AX(k+1)

∥∥∥2

F
=
(
Y X(k+1) T

)(
X(k+1) X(k+1) T

)−1
(2.39)
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and a subsequent normalization of each atom of the dictionary to the unit norm. K-

SVD [1] gives a more agressive update of A by considering that if the support of X is

kept constant, then the objective function could be minimized w.r.t A and X simul-

taneously without changing the sparsity of X. Each atom is updated individually,

by applying singular value decomposition (SVD) to an error matrix and obtaining

the largest left and right singular vectors, which correspond to the updated atom

and its new coefficients, respectively. Online Dictionary Learning (ODL) [40] realizes

that the terms Y X(k+1) T and X(k+1) X(k+1) T can be built with aggregated data from

previous samples. For any new measurement y(k+1) and the corresponding estimated

coefficients x(k+1), the new matrices are computed as:

Y(k+1) X(k+1) T = Y(k) X(k) T + y(k+1) x(k+1) T

X(k+1) X(k+1) T = X(k) X(k) T + x(k+1) x(k+1) T (2.40)

As a result, storage complexity is independent of the number of samples used for

training and training can be done in a sample by sample basis (online learning).

Recursive Least Squares - Dictionary Learning Algorithm (RLS-DLA) [50] uses the

Woodbury matrix identity to simplify the operation (2.39) based on the previous

iteration. This is identical in nature to Recursive Least Squares, except that it is

applied in the dictionary learning context. Finally, the authors of [18, 75] identified

that the main cause of fixed points are singularities in the dictionary: points in which

the dictionary becomes insufficiently incoherent for the update of X to proceed. By

changing the formulation of the problem, the singularities are avoided, thus leading

to a better probability of reaching the global minimum.
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2.8 Conclusions

The introduced algorithms for sparse coding take different approaches to solving the

same problem. The variety of options in the literature hint to the facts that a) the

computational time of the proposed algorithms is not yet satisfactory and b) there is

no clear winner for all situations. Depending on the conditions of the problem, some

methods are preferable than others. Dictionary Learning is bringing dictionaries

that closely match the new data to the sparse coding framework, promoting better

results. After reviewing the history of the sparse coding algorithms, this chapter goes

in depth into the ones based on Duality and Augmented Lagrangian, describing its

theory. Their importance will be shown in the benchmarks done in the following

chapter. The remainder of the work in this dissertation is based on this class of

algorithms.
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Chapter 3

Benchmarking L1 and L0 Solvers

In this chapter, a benchmark of several L1 solvers is done, proving that DADMM has

the best performance for the considered test cases. In addition, this chapter performs

a comparison between DADMM and fast greedy algorithms that solve L0 problems.

Although originally there was a large gap between greedy algorithms and L1 solvers

in terms of speed, this chapter shows that this gap has shrinked significantly.

3.1 Benchmarking DADMM with L1 Algorithms

This section compares DADMM and DALM with other algorithms presented in sec-

tion 2.2.1 and shows that DADMM is among the fastest algorithms, while DALM

takes the least number of iterations to converge.

3.1.1 Benchmark Setup

The conditions for image representation may be adverse for sparse coding algorithms.

For instance, images are contaminated by noise and objects in it are often obstructed,

the sparsity level varies in a wide range and the atoms that constitute the dictionaries

learned from natural images have, in general, some level of correlation. Therefore, it

39
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is important that an algorithm behaves well under this range of conditions. Namely,

their performance will be studied for a range of:

• correlations between basis of the dictionary;

• sparsity of the original signal;

• regularization parameter;

Unless otherwise stated, the following settings hold: the results are averaged across

50 trials; the dictionary A ∈ RM×N was made of samples taken from the standard

normal distribution and its columns were subsequently normalized to their `2-norm;

For each trial, the true solution x? ∈ RN was generated by selecting S positions at

random and filling them with random values from the same normal distribution. The

observation was obtained by y = Ax? + n, where each element of n was obtained from

the same distribution and multiplied by 0.01/ ‖Ax?‖2. In each test, the processing

time, the number of iterations, the objective function value and the relative error

‖x̂? − x̂‖2
‖x̂?‖2

, (3.1)

where x̂ is the estimated solution and x̂? is the optimal solution to the problem when

solved with high accuracy, were measured against the test variable. All algorithms,

with the exception of the homotopy method, stopped when the condition:

f(x(k))− f(x̂?)
f(x̂?) < ε (3.2)

was met, where f(x) = 1
2 ‖y−Ax‖2

2 + λ ‖x‖1. ε = 10−3, M = 256, N = 512

and S = 40. The regularization parameter λ was set to 0.01. Setup times of the

algorithms, including operations that do not depend on the observation vectors, were

excluded from the time measurements. All algorithms were implemented in Matlab

and simulated in a Quad-Core i5 @ 2.50GHz CPU with 4GB memory.
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Figure 3.1: Relative error of solution, objective function, processing time and number
of iterations vs. τ , for several L1 algorithms.

3.1.2 Results

3.1.2.1 Correlated Basis of the Dictionary

To produce correlated dictionary basis, a temporary matrix Ã was generated by

taking samples from the standard normal distribution. Then, each column of a matrix

A was computed as ai = τ ã1 + (1 − τ)ãi, for i = 1, ..., N and τ ∈ [0, 1]. Then,

all columns were `2-normalized. Therefore, τ = 1 gave exact replicas of the first

column while τ = 0 disrupted the correlation entirely. Figure 3.1 shows the relative

error, objective function value, processing time and number of iterations for several

algorithms described in section 2.2.1 depending on parameter τ .

As shown in figure 3.1, first-order methods such as FISTA and SpaRSA increase
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Figure 3.2: Relative error of solution, objective function, processing time and number
of iterations vs. S/M , for several L1 algorithms.

their processing time with increased coherence in the dictionary. Other methods

behave more or less steady for the whole range of dictionary coherency. DALM

stands out for its low number of iterations, while DADMM excels in runtime.

3.1.2.2 Sparsity of the Signal

The number of non-zero elements of x? was increased from 1 to M . Figure 3.2 shows

the relative error, objective function value, processing time and number of iterations

for the same algorithms depending on parameter S/M .

As the number of non-zero elements S is increased, all algorithms reduce their

accuracy. However, active-set algorithms such as Homotopy or Feature-sign search,
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Figure 3.3: Relative error of solution, objective function, processing time and number
of iterations vs. λ, for several L1 algorithms.

as well SpaRSA and DALM, suffer a penalty in processing time as S is increased. As

before, DADMM has the best runtime.

3.1.2.3 Regularization Parameter

This test is intented to show how each algorithm performs for different regularization

parameters. For example, the homotopy method is expected to run longer for smaller

λ, since it traces a longer path of λ.

In fact, figure 3.3 confirms that most algorithms increase their processing time

for smaller λ, with the exception of ProPPA. However, it does not perform well for

small λ, as can be seen by the large relative error of the solution. Once again, DALM
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stands out for its low number of iterations and DADMM has the best runtime more

often.

3.2 Benchmarking DADMM with L0 algorithms

This section compares the DADMM L1 algorithm with greedy L0 algorithms pre-

sented in section 2.2.2. Although it is an apples with oranges comparison, this is

relevant to demonstrate that state of the art L1 algorithms do not fall behind L0

algorithms in terms of run time. In fact, the evolution of L0 algorithms has been

to improve theoretical recovery performance at the cost of slower iterations and the

evolution of L1 algorithms has been simply to become faster. This, in turn, shortens

the gap between L0 and L1 algorithms.

3.2.1 Benchmark Setup

The benchmark setup is identical to section 3.1.1, with the following exceptions: for

DADMM, the stopping criterion was now set to

duality gap < εdg, (3.3)

with εdg = 10−4. For the L0 algorithms, the stopping criterion was still the objective

function in equation (3.2), but with ε = 0.02, since some algorithms had a zig-zagging

effect that did not converge with the original ε = 10−3. Since we are interested in

evaluating the recovery performance between L0 and L1 solvers, the relative error

was defined as

‖x? − x̂‖2
‖x?‖2

, (3.4)

where x? is the true solution.
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Figure 3.4: Relative error of solution, norm of residual, processing time and number
of iterations vs. τ , for several L0 algorithms and DADMM.

3.2.2 Results

3.2.2.1 Correlated Basis of the Dictionary

The dictionary was constructed in the same way as described in section 3.1.2.1. Figure

3.4 shows the relative solution error, residual norm, processing time and number of

iterations for several algorithms described in section 2.2.2 and DADMM depending

on parameter τ .

The figure confirms that DADMM has a competitive run time, only compared with

OMP, albeit with worse recovery properties. In particular, OMP has the knowledge of

the true sparsity of the signal and, although SAMP does not, it takes a considerable

amount of time to recover the coefficients. SP, CoSAMP and GraDes cannot recover
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any coefficients if the dictionary is moderately/heavily coherent.

3.2.2.2 Sparsity of the Signal

Greedy algorithms are usually heavily dependent on the number of non-zero elements

S defined for the solution. For instance, OMP iterates S times, while the time com-

plexity of each iteration of SP and CoSAMP is O(S2). Figure 3.5 shows the relative

error, residual norm, processing time and number of iterations for the same algorithms

depending on parameter S. SP, CoSAMP and SAMP share a common structure and

it is not surprising that they behaved similarly in some aspects. Here, they show the

best recovery properties, along with OMP, but have the quickest transition to non-

recoverability. Once again, DADMM presents competitive run time, but falls a bit

short in recovery performance. Take note that L0 algorithms recover the coefficients

with the knowledge of the true sparsity, with the exception of SAMP. DADMM, on

the other hand, only has the λ parameter to indirectly control the sparsity of the

solution, which was left fixed in this case.

3.3 Conclusions

This section takes several conclusions from the information previously presented in

this chapter.

• Among the algorithms that solve the compressive sensing problem, DADMM is

one of the most consistent and fast algorithms in the literature. The benchmarks

done in section 3.1 confirm that DADMM is most of the time the algorithm with

the fastest convergence. The problem under test has an overcomplete dictio-

nary, with more columns than rows. Although this condition is favorable for

algorithms that solve the dual problem, which corroborates the presented data,

it covers most of the applications using sparse coding. The superior performance
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of the noiseless version of DADMM has also been confirmed in the context of

robust face recognition [65], where the dictionaries are very overcomplete.

• The trend of greedy L0 algorithms has been to have better theoretical recov-

ery properties at a higher computational cost. The trend of L1 algorithms has

been to become faster, since the reconstruction properties are guaranteed by the

problem itself. Both trends are converging into algorithms with similar theo-

retical recovery guarantees and run times. In practice, L0 algorithms show bet-

ter recovery properties than L1 algorithms. The reason is that `1−regularized

problems require O(k log(n/k)) measurements to guarantee the RIP with high

probability, while problems based on the `0−norm require only k + 1 measure-

ments to recover the true signal. However, only an exaustive search over the

solutions with a support of size k could find the exact solution of the latter

problems, and greedy algorithms do the same with a number of measurements

somewhere between k + 1 and O(k log(n/k)).

• The problems being solved by L1 and L0 algorithms are not the same, which

renders the comparison done in section 3.2 a bit faulty. The L0 algorithms,

with the exception of SAMP, have the prior knowledge of the exact sparsity

of the true signal, which gives them a recovery performance advantage. This

fact potentially deviates the comparison of the recovery performance between

DADMM (or in fact L1 algorithms) and L0 algorithms. Nevertheless, section

3.2 shows that DADMM is comparable or even surpasses greedy algorithms

in terms of run time when the solution is not extremelly sparse, while having

recovery properties that do not fall much behind L0 algorithms. In particular,

algorithms with excellent recovery properties such as Threshold-ISD [61] run

truncated versions of L1 algorithms in a small number of iterations. Therefore,

L1 algorithms (and their runtime) are fundamental components in this type of
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methods.

In the previous benchmarks, DADMM had a fixed η parameter. As referred before,

using a variable penalty parameter η can improve the convergence rate. However,

changing η during the progression of the algorithm comes at the cost of recomputing

the inverse of the Hessian. The next chapter suggests an alternative that not only

allows to change the penalty parameter at no cost, but also makes each iteration

faster. It also analyzes which η sequence improves convergence and how it relates

with variables existent in the algorithm.
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Chapter 4

Accelerating DADMM with

Eigendecomposition

This chapter presents an adaptation to DADMM that allows the penalty parameter η

to be changed at no extra cost. Furthermore, several simplifications are possible with

the proposed method that make each iteration faster. A thorough analysis will reveal

which η sequence improves convergence the most and how it relates with variables

existent in the algorithm. It will be shown that reducing η as the method progresses

improves convergence. Speeding up sparse coding solvers is particularly important in

time-sensitive applications, such as object tracking [60] or video compressive sensing

[47], or where time equals financial cost [39]. Apart from these, “shaving” time from

methods that are heavily based on sparse coding, which are usually time consuming,

helps the argument to use them.

4.1 Applying Eigendecomposition

The proposed adaptation is based on the eigendecomposition of a term inside the

inverse in algorithm 2.4. Before moving on, recall the α update expression (2.37):

51
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α(k+1) =
(
I + ηAAT

)−1 (
y−A

(
x(k) − ην(k)

))
. (4.1)

The matrix AAT is a square symmetric matrix, for which there is an eigendecompo-

sition, AAT = UΣUT , where the matrix U is orthogonal and Σ is diagonal. This

matrix has the same dimensions as the number of measurements m. Its eigende-

composition takes O(m3) time to compute and complexity O(m2) to store. On the

other hand, second-order methods that solve the primal problem have the term ATA,

whose dimensions are proportional to the (potentially large) number of atoms n in the

dictionary. The storage requirements for the decomposition of ATA is O(n2) and its

computation complexity is O(n3), which becomes impractical as the number of atoms

in the dictionary grows. Therefore, the proposed adaptation, as well as the original

DADMM, becomes more efficient in applications where the number of measurements

is considerably smaller than the number of atoms. These include applications where

the dictionary is built from training samples, such as [63], or applications where larger

dictionaries improve performance, such as image classification based on sparse coding

[67].

By applying eigendecomposition to AAT in (4.1), we obtain

α(k+1) =
(
I + ηUΣUT

)−1 (
y−A

(
x(k) − ην(k)

))
α(k+1) =

(
UUT + ηUΣUT

)−1 (
y−A

(
x(k) − ην(k)

))
α(k+1) = U (ηΣ + I)−1 UT

(
y−A

(
x(k) − ην(k)

))
UTα(k+1)︸ ︷︷ ︸
α′(k+1)

= (ηΣ + I)−1

UTy︸ ︷︷ ︸
y′

−UTA︸ ︷︷ ︸
A′

(
x(k) − ην(k)

)
α′(k+1) = (ηΣ + I)−1

(
y′ −A′

(
x(k) − ην(k)

))
(4.2)
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where steps 2 and 3 are possible because U is an orthogonal matrix. The update

of vector α did not change, yet the matrix to be inverted is diagonal, and therefore,

easily inverted. As a consequence, there is no restriction for the penalty parameter η

to be fixed every iteration.

In addition, note that α is only used in algorithm 2.4 by the operator AT . The

following relation can be confirmed between the original α and the new α′:

ATα = ATUUTα = A′Tα′. (4.3)

Concerning the updates of the remaining variables, z and x, they remain un-

changed, except that the term ATα is replaced by A′Tα′, according to (4.3). For the

calculation of the dual objective value,

− 1
2 ‖α‖

2
2 + αTy = −1

2 ‖Uα
′‖2

2 + (Uα′)T y

= −1
2 ‖α

′‖2
2 + α′TUTy

= −1
2 ‖α

′‖2
2 + α′Ty′ (4.4)

which is identical to f(α) in (2.35), except the new set of variables is used. Regarding

the primal objective function

1
2 ‖y−Ax‖2

2 + λ ‖x‖1 = 1
2
∥∥∥UT (y−Ax)

∥∥∥2

2
+ λ ‖x‖1

= 1
2 ‖y

′ −A′x‖2
2 + λ ‖x‖1 , (4.5)

where the first step can be taken because the multiplication by an orthogonal matrix

does not change the `2−norm. In summary, the new terms α′, A′ and y′ can be used

instead of the original counterparts in all parts of the algorithm.
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The decomposition of AAT is done prior to applying the proposed method. This

method is only useful when the dictionary is reused several times, since the decom-

position is done only once, but the algorithm is applied to a dataset of observations.

By working with the decomposed matrix, the term to be inverted during the α up-

date becomes diagonal, which brings two benefits: the inverse is easily computed

and multiplied and, as a consequence, the penalty parameter can be updated at each

iteration.

4.1.1 Reducing Computational Complexity of α Update

In practice, the algorithm has some room for mathematical manipulation. Note that

the term (x− ην) in (4.2) is not sparse and the multiplication A′ (x− ην) has com-

plexity O(mn). According to equations (2.31) and (4.3), we now have:

x(k) = shrinkηλ
(
x(k−1) + ηA′Tα′(k)

)
= x(k−1) + η

(
A′Tα′(k) − ν(k)

)
. (4.6)

By replacing ην(k) = −x(k) + x(k−1) + ηA′Tα′(k) in (4.2), the α′ update becomes

α′(k+1) = (ηΣ + I)−1
(
y′ −A′

(
x(k) − ην(k)

))
= (ηΣ + I)−1

(
y′ −A′

(
x(k) − x(k−1) + x(k) − ηA′Tα′(k)

))
= (ηΣ + I)−1

(
ηΣα′(k) +

(
y′ −A′

(
2x(k) − x(k−1)

)))
, (4.7)

where the last step is valid since A′A′T = UTA
(
UTA

)T
= UTAATU = UTUΣUTU =

Σ.
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In this case, x is a sparse variable due to the shrinkage operator in (4.6). The

complexity of the multiplication A′x(k) is proportional to the number of non-zero

elements in the term x(k) and not its dimensionality. Therefore, compared to the

complexity O(mn) of A (x− ην) in the original DADMM, the operation A′x(k) re-

quires only ms(k) computations, where s(k) is the sparsity of x(k). This is particularly

useful when the dictionary has a large number of atoms.

In addition, the term A′x(k) is used to calculate the objective function and there-

fore the duality gap, both of which are commonly used for the stopping criterion. As

a result, the original DADMM would require an extra matrix-vector multiplication.

In the following experiments, extra operations necessary to validate the stopping

criterion were not accounted for in the run time.

4.2 Update Rule of Penalty Parameter

An optimal selection of the penalty parameter, fixed or adaptive, for ADMM has

remained elusive. On the theoretical side, [27, 45] determine the optimal fixed pa-

rameter for quadratic problems, which is dependent on the problem properties. No

article was found for the case of `1−regularized problems or for adaptive selection

(selection at each iteration). On the empirical side, it has been shown that an adap-

tive step improves convergence and several heuristics were proposed. [34] chooses to

monotonically increase or reduce η depending on the problem conditions and in [13],

η is increased every iteration. Ultimately, the best η sequence is problem dependent

and should be analyzed in a case-by-case basis.

This dissertation takes a pratical approach by determining the trend of the opti-

mal parameter throughout iterations, during a discovery phase. To that end, in this

phase and at iteration k, the penalty parameter that reduces the term
∥∥∥x(k+1) − x?

∥∥∥
2

the most, where x? is the true coefficient vector, is determined and stored. All steps
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are taken with their best penalty parameter η?(k), leading to the optimal parameter

sequence {η?(k)} for each trial. Note that this is an exploratory phase and it is only

possible because x? is known in advance. This approach is valid when a representa-

tive dataset is available, from which an average penalty parameter sequence can be

obtained.

Analysis of the discovery phase was done for different settings of the following

parameters: number of observations m (figure 4.1), sparsity k of the true signal

x? (figure 4.2), regularization parameter λ (figure 4.3), levels of noise (figure 4.4)

and dictionaries (figure 4.5). Every figure shows in the top row the solution error

against each iteration for different DADMM η configurations (including the discovery

procedure), averaged over 20 trials, while the bottom row has scatter plots of the η

parameter for DADMM in the discovery phase against the residual. Each column

represents a different setting for the parameter under testing. The purpose of the

top row is to show the improvement of the convergence of the algorithm when η

is changed each iteration. The bottom row depicts the relation found between the

optimal η?(k) and the residual
∥∥∥y−Ax(k)

∥∥∥
2
for a given iteration. The red line in the

scatter plots of the bottom row of all figures follows the same equation, described

later. The parameters that were not under testing were defined as λ = 10−4, n = 256,

m = 144, k = 26, SNR = ‖y‖2 / ‖n‖2 = ∞, dictionary filled with entries obtained

from a standard normal distribution and each column normalized to unit-norm. Data

obtained by y = Ax? + n.

Figure 4.1 shows the results for different undersamplingm/n values. In all of them,

compared to any fixed η, the improvement of the discovery procedure is significant. A

lower undersampling does not guarantee accurate recovery of the coefficients, which

scatters the relation between η? and the residual.

Figure 4.2 shows the results for different sparsity levels k/m of the true coefficient

vector x?. In all of them, compared to any fixed η, the improvement of the discovery
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Figure 4.1: Performance comparison for DADMM in discovery phase for several un-
dersampling conditions.
Top row: Solution error for a sequence of steps of DADMM. DADMM in discovery
mode traces the penalty parameter that descends the solution error the most. Bottom
row: Scatter plots of optimal η vs. residual for each iteration of the DADMM. Each
column represents a different undersampling ratio. The red line follows the equation
η = 0.5

∥∥∥y−Ax(k)

∥∥∥
2
/λ.
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Figure 4.2: Performance comparison for DADMM in discovery phase for several spar-
sity conditions.
Top row: Solution error for a sequence of steps of DADMM. DADMM in discovery
mode traces the penalty parameter that descends the solution error the most. Bottom
row: Scatter plots of optimal η vs. residual for each iteration of the DADMM. Each
column represents a different sparsity level of the true coefficient vector x?. The red
line follows the equation η = 0.5

∥∥∥y−Ax(k)

∥∥∥
2
/λ.

procedure is significant. A larger number of non-zero elements does not guarantee

accurate recovery of the coefficients, which scatters the relation between η? and the

residual.

Figure 4.3 shows the results for different values of the regularization parameter

λ. The improvement of changing η reduces as λ increases. In general, a larger λ

is a favorable condition for DADMM, and the margin for improvement gets smaller.

A larger λ also introduces scatter in the relation between the optimal η and the

residual. Among the settings with fixed η, although the setting with the largest

η = 1/λ descends faster, it is the setting η = 0.1/λ that converges first.

Figure 4.4 shows the results for different levels of SNR ‖y‖2 / ‖n‖2. The improve-

ment of changing η reduces as the noise level increases, although the relation between
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Figure 4.3: Performance comparison for DADMM in discovery phase for several reg-
ularization conditions.
Top row: Solution error for a sequence of steps of DADMM. DADMM in discovery
mode traces the penalty parameter that descends the solution error the most. Bottom
row: Scatter plots of optimal η vs. residual for each iteration of the DADMM. Each
column represents a different regularization parameter λ. The red line follows the
equation η = 0.5

∥∥∥y−Ax(k)

∥∥∥
2
/λ.
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Figure 4.4: Performance comparison for DADMM in discovery phase for several noise
levels.
Top row: Solution error for a sequence of steps of DADMM. DADMM in discovery
mode traces the penalty parameter that descends the solution error the most. Bottom
row: Scatter plots of optimal η vs. residual for each iteration of the DADMM. Each
column represents a different level of signal-noise-ratio. The red line follows the
equation η = 0.5

∥∥∥y−Ax(k)

∥∥∥
2
/λ.

the optimal η and the residual still holds. As the SNR reduces, the optimal solution

deviates from the true coefficients, which “fools” the discovery phase: the discovery

phase steps towards the x?, not the optimal coefficients. As before, although the

setting with the largest η = 1/λ descends faster, it is the setting η = 0.1/λ that

converges first.

Figure 4.5 shows the results for different dictionaries. From left to right, 1) a

dictionary Rm×n with entries obtained from a normal distribution, 2) a Rm×n over-

complete 2D-DCT matrix, 3) a complete 2D-DCT Rn×n matrix, with m random rows

selected, 4) a Rn×n haar wavelet matrix premultiplied by a matrix Rm×n with random

entries obtained from a normal distribution. The columns of all dictionaries were nor-

malized to unit-norm. From all the dictionaries, an improvement was not seen only
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Figure 4.5: Performance comparison for DADMM in discovery phase for several dic-
tionaries.
Top row: Solution error for a sequence of steps of DADMM. DADMM in discovery
mode traces the penalty parameter that descends the solution error the most. Bottom
row: Scatter plots of optimal η vs. residual for each iteration of the DADMM.
Each column represents a different dictionary. The red line follows the equation
η = 0.5

∥∥∥y−Ax(k)

∥∥∥
2
/λ.

in the overcomplete 2D-DCT dictionary. The large recovery error indicates that the

settings used were not sufficient to fulfill the Restricted Isometry Propery for this

dictionary and an accurate recovery was not possible. As a result, DADMM in the

discovery phase is stepping towards the optimal solution while selecting η that steps

towards x?. This incoherency breaks down the relation between η? and the residual.

In all scatter plots with a clear relation between η? and the residual, the red line,

defined as:

η(k) = 0.5

∥∥∥y−Ax(k)

∥∥∥
2

λ
, (4.8)

is a good linear fitting. Therefore, given the newly obtained freedom of the penalty

parameter, we would like the progression of η for DADMM with unknown data to

mimick the progression of η? in the discovery phase. The equation (4.8) must be

slightly adapted for a practical use:
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Algorithm 4.1 DADMM-eig.

Initialize k = 0, α′(0),x(0) and η(0)

Repeat
α′(k+1) = (ηΣ + I)−1

(
η(k)Σα′(k) +

(
y′ −A′

(
2x(k) − x(k−1)

)))
x(k+1) = shrinkλη

(
x(k) + η(k)A′Tα′(k+1)

)
η(k+1) = min

0.5

∥∥∥y′ −A′x(k)

∥∥∥
2

λ

∥∥∥x(k)

∥∥∥
2∥∥∥A′x(k)

∥∥∥
2

,
‖y‖1
λm


k ← k + 1

Until convergence

η(k) = min
0.5

∥∥∥y′ −A′x(k)

∥∥∥
2

λ

∥∥∥x(k)

∥∥∥
2∥∥∥A′x(k)

∥∥∥
2

,
‖y‖1
λm

 . (4.9)

The term
∥∥∥x(k)

∥∥∥
2
/
∥∥∥A′x(k)

∥∥∥
2
compensates for the properties of the dictionary and

η(k) needs to be bounded from above, since, depending on initialization, an uncon-

strained update can lead to large η values that may preclude the convergence of the

algorithm. The term ‖y‖1 /(λm) proved to be an upper bound that prevented these

situations. The proposed algorithm, here dubbed DADMM-eig, is summarized in

algorithm 4.1.

Repeating a part of the analysis done for DADMM in discovery mode and adding

DADMM-eig with automatic η update, it can be seen in figure 4.6 that the automatic

update of η follows closely the average η of DADMM in the discovery phase, specially

in the noiseless and small lambda settings. As a result, DADMM-eig sees the same

improvements from updating η in each iteration. Note that the η values for DADMM-

eig in the discovery phase after it converges are irrelevant and do not need to be

followed by the update rule.
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Figure 4.6: Performance comparison for DADMM-eig with the proposed update rule.
For each subfigure, top row: Average solution error for a sequence of steps of
DADMM and DADMM-eig; bottom row: Trace of the average penalty parameter
η for DADMM-eig (variable) and DADMM (fixed) for a sequence of steps of the algo-
rithm. a) Plots for different values of λ. b) Plots for different levels of noise. Averaged
over 20 trials.
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4.3 Experiments

4.3.1 Compressive Sensing

Compressive sensing is the standard example use of sparse coding. The goal is to

infer the underlying signal from a limited number of measurements, obtained directly

or after the transformation by a sensing matrix. When the signal is transformed by

a sensing matrix, each measurement is a linear combination of the elements of the

signal, allowing the use of dictionaries with local atoms such as wavelet basis, where

direct measurements would not.

The compressive sensing problem is formulated as:

min
x

1
2 ‖y− SDx‖2

2 + λ ‖x‖1 , (4.10)

where the dictionary D is known to represent the underlying signal z with a sparse

vector x, S is the sensing matrix and y is the available measurements vector. The

dictionary used in this experiment was the complete DCT transform. DADMM is

applicable to any dictionary, but the DCT transform was used here for simplicity and

because it is known that images have sparse (or at least compressible) representations

in the spatial frequency domain. The sensing matrix was filled with values extracted

from a standard normal distribution. The image to be recovered was divided in

patches of size 32× 32 and each patch was transformed by the same sensing matrix.

The number of rows of the sensing matrix was swept between 20% of the number

of pixels (1024) up to 50%. This ratio is denoted by f in the following experiment.

DADMM-eig was analyzed for the image lena, tracking the reconstruction error as the

time and iterations grow, when solving equation (4.10) with λ = 0.1. Its performance

was compared with DADMM with fixed η = 1/λ and η = 0.1/λ, under the same

conditions. The reconstruction error tracking is shown in figure 4.7, for each DADMM

version and undersampling factor. Although in terms of iterations, the improvement



4.3. EXPERIMENTS 65

0 20 40 60

10
−0.9

10
−0.5

10
−0.1

Iteration

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.20)

0 0.02 0.04 0.06

10
−0.9

10
−0.2

Runtime

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.20)

0 20 40 60

10
−1

10
0

Iteration

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.35)

0 0.02 0.04 0.06

10
−1

10
0

Runtime

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.35)

0 20 40 60

10
−1

10
0

Iteration

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.50)

0 0.05 0.1

10
−1

10
0

Runtime

N
o
rm

a
liz

e
d
 e

rr
o
r

Reconstructed error (f = 0.50)

Figure 4.7: Performance of DADMM-eig for compressive sensing of image lena.
Average reconstruction error of a patch of image lena for DADMM-eig and DADMM.
Top row: Reconstruction error vs. iteration. Bottom row: Reconstruction error vs.
time. Each column represents different number of rows of the sensing matrix.

is not significant, when the runtime is taken into account, DADMM-eig converges

faster. The final recovered image for each undersampling ratio, which is identical for

any DADMM version, can be seen in figure 4.8.

DADMM-eig was also analyzed for several other images under this experiment,

shown in figure 4.9. The procedure applied to image lena was also applied to each

of these images. In this case, the algorithm ran until the normalized duality gap was

below a certain tolerance εdg or the maximum number of iterations was reached. For

each combination of image, number of measurements and DADMM version, the time

and number of iterations to reach convergence, as well as the final reconstruction

error were measured and reported in table 4.1. εdg = 10−3, λ = 0.1 and maximum

number of iterations= 100. DADMM-eig meets convergence significantly sooner than

DADMM with any fixed η. Naturally, a larger number of measurements reduces the

reconstruction error. More surprisingly, the number of iterations reduces with more
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Original image
Reconstructed image (f = 0.20)

PSNR = 25.11 dB

Reconstructed image (f = 0.35)
PSNR = 28.42 dB

Reconstructed image (f = 0.50)
PSNR = 31.38 dB

Figure 4.8: Final recovered lena image for different values of undersampling f .
The PSNR value is defined as 20 log10

(
max(I)/

√∑N

i=1(Ii−Ji)2/N

)
, where I and J are the

vectorized original and reconstructed images respectively and N is the number of
pixels.
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(a) Lady (b) House

(c) Baboon (d) Vegetables

Figure 4.9: Image dataset
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available measurements, but since each computation involving the dictionary becomes

heavier, the outcome is a larger run time. This trend is present in all images.

The setup of the original DADMM involves the precomputation of the inverse of

the Hessian, while the setup of DADMM-eig consists in the eigendecomposition of the

matrix A = SD and computing the term A′ = UTA. The setup times are reported

in table 4.2 for DADMM-eig and the original DADMM for the same sensing matrix

variations used in table 4.1. It can be seen that the setup time is only a small fraction

of the time necessary to complete the recovery of an entire image.

4.3.2 Unsupervised Inpainting

Section 1.2.2.2 presented the supervised version of inpainting as an application of

sparse coding, in which the location of missing (or painted) pixels are known in

advance and excluded from the optimization problem. The unsupervised version of

inpainting is not aware of the location of the missing pixels and assumes that they are

significantly different from the remaining image. Therefore, the missing pixels can be

considered outliers among the image data. Another example of outlier pixels is the

salt-and-pepper noise, recognizable as sparsely occurring white and black pixels. An

image with outliers y can be represented as

y = Ax + e =
[
A I

] x
e

 , (4.11)

where the term Ax captures the image without outliers and e is a vector containing

the outliers. As long as matrix A represents sparsely the image without outliers and

the outliers themselves are sparse, the variable w =

x
e

 can be found by solving
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Table 4.1: Comparison between DADMM and DAMM-eig for compressive sensing for
an image dataset

Normalized reconstruction error, time and number of iterations for convergence until
normalized duality gap < 10−3, for several images, number of measurements and
DADMM versions. Number of iterations per patch were limited to 150.λ = 0.1.
Image (dimensions) # measurements DADMM Rec error Time (s) # Iterations

Lady (256× 256)

0.2
eig 0.1702 1.600 6030

η = 1/λ 0.1739 4.407 9600
η = 0.1/λ 0.1724 4.080 9588

0.35
eig 0.1238 3.307 5165

η = 1/λ 0.1258 8.975 9600
η = 0.1/λ 0.1247 8.606 9573

0.5
eig 0.0903 8.109 4471

η = 1/λ 0.0921 19.585 9600
η = 0.1/λ 0.0911 35.834 9600

Image (dimensions) # measurements DADMM Rec error Time (s) # Iterations

House (256× 256)

0.2
eig 0.0966 2.664 7004

η = 1/λ 0.0991 4.326 9600
η = 0.1/λ 0.0981 4.155 9546

0.35
eig 0.0632 4.408 6590

η = 1/λ 0.0649 9.171 9600
η = 0.1/λ 0.0639 8.521 9511

0.5
eig 0.0423 11.500 6083

η = 1/λ 0.0434 18.799 9600
η = 0.1/λ 0.0429 30.531 9574

Image (dimensions) # measurements DADMM Rec error Time (s) # Iterations

Baboon (512× 512)

0.2
eig 0.1888 10.659 27890

η = 1/λ 0.1913 16.819 38400
η = 0.1/λ 0.1900 16.970 38101

0.35
eig 0.1544 19.551 27463

η = 1/λ 0.1566 47.927 38400
η = 0.1/λ 0.1557 69.746 38149

0.5
eig 0.1231 43.418 25922

η = 1/λ 0.1250 140.894 38400
η = 0.1/λ 0.1242 165.290 38119

Image (dimensions) # measurements DADMM Rec error Time (s) # Iterations

Vegetable (512× 512)

0.2
eig 0.0915 8.956 27247

η = 1/λ 0.0938 16.266 38400
η = 0.1/λ 0.0928 16.689 37985

0.35
eig 0.0640 25.477 25167

η = 1/λ 0.0654 57.658 38400
η = 0.1/λ 0.0646 90.058 38275

0.5
eig 0.0465 63.129 23179

η = 1/λ 0.0478 91.605 38400
η = 0.1/λ 0.0470 52.591 38177
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Table 4.2: Setup times of DADMM and DADMM-eig.

Fraction of measurements DADMM-eig (s) DADMM (s) Ratio
0.2 0.0143 0.0091 1.57
0.35 0.0695 0.0228 3
0.5 0.1310 0.0420 3.12

min
w
‖w‖1 y =

[
A I

]
w (4.12)

or, more robustly,

min
w

1
2

∥∥∥∥y− [A I
]
w
∥∥∥∥2

2
+ λ ‖w‖1 . (4.13)

The image lena of size 512× 512 containing salt-and-pepper noise was divided in

1024 patches of size 16×16. This problem with y representing each patch was solved

with DADMM and DADMM-eig. The dictionary A was the complete DCT transform

of size 256 × 256. DADMM ran with η = 1/λ and η = 0.1/λ, since the optimum

penalty parameter changed with the fraction of corrupted pixels f . The algorithms

stopped when the relative duality gap was below εdg. The stopping criterion tolerance

was set to εdg = 10−4 and the regularization parameter to λ = 0.01.

The results are shown in figure 4.10, with a trace of the reconstruction error

throughout iterations and time, for different levels of pixel corruption f =number of

corrupted pixels/total number of pixels. This example shows that the improvement

obtained by DADMM-eig is not significant in some situations. The proposed method

is in advantage only by a small amount. More interestingly, note that the best λ

value depends on the number of corrupted pixels in this example: η = 1/λ clearly

works best for f = 0.3, but not for f = 0.1. On the other hand, the adaptive η has

the best results for all levels of image corruption.

The corrupted and reconstructed images for different levels of image corruption

is shown in figure 4.11. Even with 30% of corrupted pixels, the image lena is mostly
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Figure 4.10: Average reconstruction error of a patch of image lena for DADMM-eig
and DADMM.
Top row: Reconstruction error vs. iteration. Middle row: Reconstruction error vs.
time. Bottom row: zoomed area of middle row. Each column represents different
fractions of corrupted pixels f .
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recovered.

4.4 Better Sparse Recovery From `1−regularization

Section 3.2 showed that DADMM presents runtimes comparable or even surpassing

L0 algorithms, although lagging behind in terms of practical recovery properties.

However, some methods based on L1 algorithms show better recovery properties [10,

61] than regular L1 minimization. For instance, Iterative Reweighted `1-minimization

(IRL1) [10] uses a regularization vector instead of a scalar. The L1 minimization

is repeated for different values of the regularization vector. In each iteration, the

regularization value for each element is set as the inverse of the solution found in the

previous iteration plus a positive parameter ε, λ(k+1)
i =

(
x

(k)
i + ε

)−1
. The ε parameter

provides stability and ensures that a zero-valued element in x(k) does not prohibit a

non-zero estimate at the next step. Thus, the sparsity measure at iteration k + 1 is:

∑
i

∣∣∣λ(k+1)
i x

(k+1)
i

∣∣∣ =
∑
i

∣∣∣∣∣∣ x
(k+1)
i

x
(k)
i + ε

∣∣∣∣∣∣ . (4.14)

When the iterations converge, the sparsity measure approximates the `0−norm.

Threshold-Iterative Support Detection (threshold-ISD) [61] presents recovery per-

formance similar to IRL1, although taking a different approach. Like IRL1, threshold-

ISD runs `1−norm based minimization during several iterations until convergence.

Unlike IRL1, threshold-ISD changes the support of the solution accounting for the

sparsity measure. After an iteration finds a solution with support T , a subset I ⊂ T

is selected by thresholding and the next minimization problem is the truncated Basis-

Pursuit:

min
x
‖xIC‖1 S.T. Ax = y, (4.15)
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Corrupted image (f = 10 %)
Reconstructed image (f = 10 %)

 PSNR = 31.64 dB

Corrupted image (f = 20 %)
Reconstructed image (f = 20 %)

 PSNR = 29.21 dB

Corrupted image (f = 30 %)
Reconstructed image (f = 30 %)

 PSNR = 25.66 dB

Figure 4.11: Final recovered lena image for different levels of corrupted pixels.
The PSNR value is defined as 20 log10

(
max(I)/

√∑N

i=1(Ii−Ji)2/N

)
, where I and J are the

vectorized original and reconstructed images respectively and N is the number of
pixels.
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where IC is the complement support of I. The algorithm rapidly converges to a

situation where the zero elements contribute to the sparsity measure, but elements

that were confirmed to be part of the solution with high probability are excluded from

it. In particular, since the intermediate iterations do not need to reach high precision

and may end early, [61] shows that threshold-ISD can take the same time to solve all

iterations as a standard L1 minimization.

DADMM-eig supports the variations proposed in IRL1 and threshold-ISD and

can be used to speed-up these algorithms as well. It would be interesting to evaluate

how IRL1 or threshold-ISD compare to greedy L0 algorithms in terms of practical

recovery properties.

4.5 Other Forms of `1−norm Based Optimization

The exploration of sparse coding often leads to formulations that are not strictly as

the one presented in (1.5). It thus begs the question: in what other formulations

DADMM-eig can be applied? DADMM-eig relies on the fact that the terms in the

Hessian in (2.37) are fixed, with the exception of the penalty parameter, and that a

change in the penalty parameter would require the recomputation of the inverse of

the Hessian. Instead, the eigendecomposition done in DADMM-eig is done only once

and reused in every iteration.

In the noiseless formulation (1.4), the approach taken in DADMM-eig does not

bring any advantage. The dual of the noiseless case is:

max
α

yTα

S.T. ν = ATα (4.16)

‖ν‖∞ ≤ 1.



4.5. OTHER FORMS OF `1−NORM BASED OPTIMIZATION 75

In this case, the second derivative of the dual objective function is 0, which leads

to an Hessian of ηAAT for the α update. It is clear that the penalty parameter can

be changed freely without the need for DADMM-eig.

The robust sparse model

min
x
‖y−Ax‖1 + λ ‖x‖1 (4.17)

handles non-gaussian noise much better than the standard `1−norm minimization. It

can be reformulated as:

min
x,r
‖r‖1 + λ ‖x‖1 S.T. r = y−Ax

min
x̂
‖x̂‖1 S.T. ŷ = Âx̂, (4.18)

where

x̂ =

 λx

r

 , ŷ = λy√
1 + λ2

, Â =

[
A λI

]
√

1 + λ2
. (4.19)

Therefore, this problem can be solved with the dual formulation (4.16), with no

improvement from DADMM-eig.

However, problems that change the sparsity measure or include additional con-

straints to the solution can benefit from DADMM-eig. For example, when non-

negativity constraint is added to the solution, (1.5) is changed to:

min
x

1
2 ‖y−Ax‖2

2 + λ ‖x‖1

S.T. x ≥ 0. (4.20)

The dual of this problem is:
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max
α

−1
2 ‖α‖

2
2 + αTy

S.T. ν = ATα (4.21)

ν ≤ 1λ.

As a consequence, this will only change the projection and proximal operators. The

Hessian is kept unchanged and DADMM-eig can improve convergence and speed-up.

In general terms, any function Φ(x) that measures sparsity only affects the projection

and proximal operators of DAMM-eig, since the Hessian of the Lagrange w.r.t. α is

only defined by the objective function and the equality constraint. Therefore, any

primal problem defined as:

min
x

1
2 ‖y−Ax‖2 + Φ(x) (4.22)

has a dual formulation

max
α

−1
2 ‖α‖

2
2 + αTy

S.T. ν = ATα (4.23)

φ(ν).

for some correspondence between the sparsity measure Φ(x) and the constraint φ(ν).

Some examples are shown in table 4.3. Group sparsity [5] motivates sparsity in groups

of elements of the solution. For disjoint groups G1, ..., GN , the final solution tends

to aggregate non-zero elements in the same group. The group structure is defined

beforehand and its dependent on the dictionary. The use of a regularization vector

instead of a scalar is also relevant, for example for IRL1 [10], threshold-ISD [61] or
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Table 4.3: Relation between primal function for sparsity measure and dual constraint.

Sparsity Measure Φ(x) φ(ν)
`1−norm λ

∑
i |xi| ‖ν‖∞ ≤ λ

Group sparsity λ
∑
i∈1..N ‖xGi

‖2 ‖νGi
‖2 ≤ λ, i = 1, ..., N

Element-wise regularization ∑
i|λixi| |νi| ≤ λi

generally if some elements of the solution are more important to be inactive than

others.

4.6 Conclusions

In this section, an adaptation to DADMM is proposed that transforms the matrix to

be inverted into a diagonal matrix. As a result, the penalty parameter can be changed

at no extra cost. In addition, the computational complexity of one of the matrix-

vector multiplications is simplified, since the vector becomes sparse. A thorough

analysis of the best sequence for the penalty parameter was done and it was shown

that the proportionality to the norm of the residual at each iteration is an important

factor. The improvement of adapting the penalty parameter was reduced under large

regularization parameter and/or low signal-noise-ratio of the observations. Real data

experiments under these circunstances still showed improvement in the runtime, in

particular when measuring the runtime until the duality gap was below a certain

tolerance. The setup time is larger in DADMM-eig than in DADMM, but since it is

performed only once, it had a small expression when recovering many patches of an

entire image.

The use of the eigendecomposition is prohibitive for very large dictionaries, in the

order of tens to the hundreds of thousands of measurements. We mention measure-

ments because the eigendecomposition in DADMM-eig is done on a square matrix

with each side with dimensions equal to the number of measurements. The num-

ber of atoms can be extended with no effect on the eigendecomposition. Therefore,
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DADMM-eig cannot be used, for example, in the sparse coding of an entire image or

in the recovery of a Computerized Tomography (CT) or Magnetic Resonance Imaging

(MRI) exam. DADMM-eig is better suited for medium-sized problems, such as dic-

tionaries obtained from dictionary learning algorithms, which are themselves limited;

or when a high-dimensional signal is mapped to a low-dimensional feature space. In

particular, wafer probe testing, introduced in the next chapter, contains data with

thousands of measurements, well within DADMM-eig range. Virtual Probe is a sparse

coding based algorithm that aims to reduce wafer test cost.



Chapter 5

Accelerating Virtual Probe with

DADMM

5.1 Integrated Circuits Test Cost Reduction

Large-scale parametric variations in nanoscale transistors have made analog/RF cir-

cuits increasingly difficult to design and test. The performance of an analog/RF

circuit can substantially vary from lot to lot, from wafer to wafer, and from die

to die. For this reason, analog/RF circuit testing has contributed to a large, or

even dominant, portion of the overall test cost for today’s complex systems on chip

(SOCs) [15, 2]. To reduce the test cost and, consequently, the manufacturing cost

of analog/RF circuits, a large number of algorithms and methodologies have been

extensively studied over the past decade [58, 52, 59, 51, 53, 69]. Among them, spatial

variation modeling [39, 73, 71, 14, 72, 29, 35, 36, 30, 31] has emerged as a promis-

ing technique for wafer-level test cost reduction in recent years. The key idea is to

accurately capture the spatial variation pattern of an entire wafer by using advanced

statistical algorithms, such as Virtual Probe (VP) [39, 73, 71, 14, 72, 29] and Gaussian

process (GP) [35, 36, 30, 31], over only a small subset of dies. In particular, Virtual

79
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Probe uses sparse reconstruction as the statistical method.

In more detail, a wafer comprises a large number of dies, each one with the same

set of test items. A test item is a metric, such as power consumption, bandwidth,

operating points, slew-rate, or any other electrical measurement, that must be within

certain bounds for the die to pass the test item. A die must pass all test items to

be considered within specification. Given the large number of test items and dies

in a complete wafer, wafer probing for testing purposes is a time-consuming process.

This, in turn, creates a bottleneck in production, which can be mitigated by effectively

reducing the number of dies that need to be measured. Given that some test items

present a predictable spatial pattern, the complete pattern can be inferred from a

subset of dies.

5.2 Virtual Probe

Virtual Probe was proposed in [39] and further improved in [72]. It infers the unmea-

sured dies by sparse reconstruction, assuming that the pattern is sparse under the

frequency domain. Figure 5.1 depicts the concept behind VP: for a given test item,

a selected subset of dies is measured from the wafer; these measurements are then

used to estimate the coefficients in the frequency domain by sparse reconstruction;

finally, the spectral coefficients are used to estimate all measurements in the wafer.

The quality of the reconstruction is defined by the sparsity of the spectral coefficients

and the number of measurements used for reconstruction.

Formally, the test item i at the location j of the wafer is denoted as yij. The

complete collection of measurements of the same test item in a wafer is represented

as a vector yi. The set of spatial locations of measured dies for test item i is denoted

as Mi. Let us denote x = D(y) as the fast 2-D Discrete Cosine Transform (DCT)

transform, y = D−1(x) as the fast 2-D inverse DCT transform, while yM = D−1
M (x)
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Figure 5.1: Overview of Virtual Probe.
For a given test item, only a subset of dies is effectively measured from the avail-
able wafer measurements. Those measurements are used for sparse reconstruction
of 2D-DCT coefficients corresponding to the complete wafer by sparse recovery. The
unmeasured dies are then predicted by reconstruction of all wafer measurements from
the 2D-DCT coefficients. The quality of the reconstruction is mostly dependent on
the sparsity of the coefficients when the transform is applied to the full wafer mea-
surements and the number of measurements used for sparse recovery.
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is equivalent to D−1(x) with only the result of the indices in set M . In what follows,

assume m dies are measured out of a total of n dies.

Virtual Probe works under the premise that the measurements obtained from a

test item i can be expressed as a linear combination of a small set of DCT coefficients,

i.e.:

yi ≈ D−1(xi), (5.1)

where xi is sparse. For test items that fulfill this premise, compressive sensing theory

dictates that the solution of

x̂i = arg min
x

1
2
∥∥∥yiMi

−D−1
Mi

(x)
∥∥∥2

2
+ λ ‖x‖1 (5.2)

will be close to xi. From here, the values of the test item i at all locations can be

recovered by ŷi = D−1(x̂i).

Regarding the use of the 2D-DCT matrix as dictionary, other options cannot be

used for different reasons. On one hand, since the process parameters shift through-

out the wafers in the same lot, there is the possibility of overfitting when very specific

dictionaries, such as template based dictionaries, are used. On the other hand, dic-

tionaries with local atoms, such as wavelet transforms, could not be used either, since

the local atoms that match the location of the measured dies, and therefore are part

of solution, would not contain sufficient information in the location of the unmea-

sured dies. Therefore, the use of a global and general dictionary, such as the 2D-DCT

matrix, is a convenient choice.

Any prediction is associated with a level of accuracy, in this case defined by the

sparseness of the coefficients xi and the number of measured dies, according to the

compressive sensing theory. Since the coefficients are defined by the wafer spatial

pattern, the only control “knob” that VP has to improve accuracy is the number of

measured dies. As depicted in figure 5.2, the prediction error, defined by Yield Loss
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Figure 5.2: Number of measured dies limited from below by Yield Loss and Escape
Rate.

(YL) and Escape Rate (ER), reduces as the number of measured dies is increased. YL

is the percentage of dies that are predicted to fail, but actually pass the specification,

while ER is the percentage of dies that are predicted to pass, but in reality fail the

specification. For a pre-defined target of YL and ER, there is a minimum number of

measurements required for each test item.

Accuracy is also affected by defective dies, i.e., dies that are damaged and produce

erratic or no measurements. Obviously, if these dies are not measured, they cannot

be predicted correctly, since they are random in nature. However, defective dies can

be detected: for example, prior to VP, fast tests can be run in all dies to simply test

if a die is faulty. As will later be seen, some test items do not have any predictable

spatial structure and therefore need to be measured in all dies anyway. Therefore,

these tests can also be used to detect defective dies.

A general convex solver requires the use of the 2D-DCT matrix instead of the 2D-

DCT transform. In that case, the 2D-DCT transform is replaced by the corresponding

orthogonal matrix DT and its inverse by D. An interior-point solver may take a few

minutes to recover the spatial variation pattern for a single test item of a single

wafer. As a result, it substantially slows down the testing process and poses a major

limitation of the VP-based method for test cost reduction. The fact that Virtual

Probe uses a partial DCT gives it unique properties that can be exploited by a solver
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such as DADMM in order to improve its performance. Namely, the overcompleteness

of the partial DCT favors the dual formulation of equation (5.2), the orthogonality

of its rows simplifies the closed-form expression of the dual variable, and the use of a

fast DCT transform to efficiently calculate matrix-vector multiplications within the

iteration loop of DADMM further reduces the computational cost. The next section

presents a detailed explanation of these properties and how they can be exploited.

A comparison is done between a standard Interior Point Method (IPM) [33] and

DADMM, after the suggested alterations are implemented. The results section shows

that adopting DADMM to solve equation (5.2) can significantly reduce computational

time, and therefore, test time, without loss of accuracy compared with IPM.

5.3 DADMM Applied to Virtual Probe

As discussed in section 2.6, DADMM solves the dual problem of equation (5.2), where

the number of variables is proportional to the number of measurements, instead of

the number of coefficients. In the problem set by VP, the number of measurements

is a fraction of the total number of dies. Since the dimension of the Hessian is the

square of the number of variables, the Hessian is much smaller than compared to

solving the primal version.

Still concerning the Hessian, let us first state the following equivalences between

the 2D-DCT transforms and their explicit matrices:

D(y) ≡ DTy

D−1 (x) ≡ Dx. (5.3)

D−1
M (x) = DMx
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Matrices D and DT are square matrices containing the DCT basis, while DM is a

subselection of rows of D. To generate DM , the rows corresponding to the unmeasured

dies are removed from D, which destroys the orthogonality of its columns, but not

the orthogonality of its rows. Second-order methods that solve the primal problem

have the term
(
DM

)T
DM ∈ Rn×n in their Hessian, which results in a non-diagonal

dense matrix. On the other hand, as seen in DADMM, second-order methods that

solve the dual problem have the term DM
(
DM

)T
∈ Rm×m in their Hessian, which

is indeed equal to the identity matrix, regardless of the set M . This property makes

the α update in equation (2.37) computed by DADMM much simpler:

α(k+1) =
(
I + ηDM

(
DM

)T)−1 (
yM −DM

(
x(k) − ην(k)

))
= (I + ηI)−1

(
yM −DM

(
x(k) − ην(k)

))
= 1

1 + η

(
yM −DM

(
x(k) − ην(k)

))
(5.4)

Furthermore, the matrix DM is only involved in the operations
(
DM

)T
yM and

DMx, therefore the explicit matrix is not really necessary. Since DM represents the

partial DCT transform, we have the equivalencies:

DM (yM) ≡
(
DM

)T
yM

D−1
M (x) ≡ DMx. (5.5)

The transforms have time complexity O(n · log n), while the matrix-vector multipli-

cations are done in O(mn). Above a certain m/n ratio, the transforms are faster

compared to the matrix-vector multiplications. The next section describes how the

equivalencies in equation (5.5) are implemented.
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5.3.1 Applying Partial Transforms

The transformsDM(yM) andD−1
M (x) are partial in the sense thatD−1

M (x) only returns

the elements indexed byM and DM(yM) only uses the DCT basis indexed byM . The

matrix DM is created by down-sampling the full 2-D IDCT matrix where only the

rows corresponding to the spatial locations in M are chosen. To compute the matrix-

vector multiplication yM = DMx ≡ D−1
M (x), we can first compute y = D−1(x) by

the fast 2-D IDCT transform and then select the corresponding rows of y to form the

vector yM .

Likewise, the matrix
(
DM

)T
is created by down-sampling the full 2-D DCT matrix

where only the columns corresponding to the spatial locations in M are selected. To

compute the matrix-vector multiplication x =
(
DM

)T
yM ≡ DM (yM), we need to

first create a vector v

vM = yM

vM̃ = 0, (5.6)

where vM̃ represents the elements {vi : i /∈M}. Namely, for the indices belonging to

the setM , the corresponding elements of v are equal to the vector yM . The remaining

indices of v are filled with zeros. Next, we apply the fast 2-D DCT transform x =

D(v).

The complete algorithm is summarized in algorithm 5.1.

5.4 Test Flow

The various test items required for wafer probing impose some restrictions in the

prediction method used in Virtual Probe. For instance, some test items simply do

not have spatial correlation and cannot be predicted. Different test items may require
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Algorithm 5.1 DADMM for Virtual Probe

Initialize k = 0, ν(0),x(0) and η
Repeat

α(k+1) = 1
1 + η

(
yM −D−1

M

(
x(k) − ην(k)

))
ν(k+1) = P∞λ

(
x(k)

η
+D−1

M

(
α(k+1)

))
,

x(k+1) = shrinkλη
(
x(k) + ηD−1

M

(
α(k+1)

))
k ← k + 1

Until convergence

a different number of measurements to prompt accurate wafer map reconstruction.

Even for predictable items, the process parameters drift during production and a

test item may reduce its spatial correlation between wafers in the same lot. As a

consequence, the quality of reconstruction has to be checked for each test item and

each wafer.

To apply VP for test cost reduction, the same test flow that was proposed in

[70] is adopted here. It consists of two major steps: (i) pre-test analysis, and (ii)

test application. During pre-test analysis, all test items of all dies on a first wafer

are physically measured. Based on the measurement data, the goal of this step is to

determine whether a test item is spatially correlated, and therefore predictable, at

the wafer level. The test item is considered to be “predictable” if a strong spatial

correlation is observed. If that is the case, the number of dies that should be measured

on a wafer to accurately predict the spatial wafer map associated with the test item

by using VP is decided. As such, the test item will only be physically measured

at a number of spatial locations and its values at other unmeasured locations are

estimated by VP with sufficiently small escape rate and yield loss.

During test application, firstly all test items at a subset of dies are measured,

where the number of these dies is determined by pre-test analysis. Next, for the
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predictable test items, VP is applied to estimate their values for other unmeasured

dies on the same wafer. Escape rate and yield loss are closely monitored during the

prediction process. If the escape rate or the yield loss exceeds a pre-defined target for

a specific test item, the test item is temporarily labelled as “unpredictable” for the

current wafer. Finally, the unpredictable test items are physically measured for the

remaining dies on the wafer. Here, a test item is considered to be unpredictable, if it

is classified as an unpredictable item during pre-test analysis or its escape rate or yield

loss is not sufficiently small for the current wafer. In either case, the unpredictable

test item must be measured for all dies on the current wafer. More details can be

found in [70].

5.5 Experiment Setup

To validate the efficiency of the proposed solver for test cost reduction, a set of wafer

probe measurement data of an industrial RF transceiver is used. The data set is

collected from 1,190,816 dies distributed over 176 wafers and 9 lots where each wafer

contains 6,766 dies. For each die, 51 test items are considered in the experiment. For

testing and comparison purposes, two different solvers are implemented for VP and

applied to the same test flow: (i) the conventional interior-point solver for large-scale

L1-regularized least-squares (IPM) [33] and (ii) the DADMM solver (Algorithm 5.1).

All numerical experiments are performed on a Linux server with 3.4 GHz CPU and

16 GB memory.
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(a) (b)

Figure 5.3: Spatial variations (normalized) for spatially uncorrelated and correlated
test items.
(a) test item #1 that is spatially uncorrelated, and (b) test item #48 that is spatially
correlated.

5.6 Results

5.6.1 Spatial Variation Modeling

Figure 5.3 shows the spatial variations for two different test items. Studying figure 5.3

reveals an important observation that some test items may not be spatially correlated

(e.g., test item #1), while others carry strong spatial correlations (e.g., test item #48).

In turn, it demonstrates the importance of the pre-test analysis described in section

5.4 where the objective is to identify the spatially correlated test items for test cost

reduction.

Figure 5.4 compares the modeling error for IPM and DADMM. In this experiment,

the modeling error for a test item i is defined as:

errori = ‖ŷ
i − yi‖2
‖yi‖2

, (5.7)

where yi and ŷi denote the actual and predicted values of the i-th test item respec-

tively. Figure 5.5 further shows the spatial variations predicted by IPM and DADMM
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(a) (b)

Figure 5.4: Modeling error is compared between IPM and DADMM
(a) all test items where 2000 dies are physically measured on a wafer, and (b) test
item #48 where the number of physically measured dies varies from 100 to 4000.

for test item #48. Note that the results in figure 5.4 and figure 5.5 are almost iden-

tical for both solvers, implying that the proposed DADMM solver is as accurate as

the conventional IPM.

Table 5.1 compares the computational time for IPM and DADMM. Based on the

results in table 5.1, two important observations can be made. First, DADMM achieves

up to 38× runtime speed-up over IPM. Hence, DADMM is the preferred method for

this test application where the spatial variations must be accurately estimated in

real time during the testing process. Second, and more interestingly, the computa-

tional time of DADMM decreases with the number of measured dies (i.e., N). As

N becomes larger, the underdetermined linear equation in (5.1) is better constrained

and DADMM requires less number of iterations to converge. Since the applied fast

transforms do not depend on the number of measurements, the computational time

is reduced in proportion, as shown in table 5.1.
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(a) (b)

Figure 5.5: Spatial variations (normalized) are predicted by IPM and DADMM
(a) IPM and (b) DADMM for test item #48 where 2000 dies are physically measured
on a wafer.

Table 5.1: Computational time for IPM and DADMM to model the spatial variation
of a single test item for a certain wafer.

Number of measured dies IPM DADMM
Runtime (s) Runtime (s) # of iterations Speed-up

100 48.3 12.2 7027 3.96
250 62.7 10.3 5664 6.07
500 84.7 8.9 5083 9.52
1000 119.9 8.1 4504 14.88
2000 171.2 7.3 3922 23.56
4000 255.2 6.7 3580 37.86
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Table 5.2: Pre-test analysis results for IPM/DADMM

Pre-defined Target for Escape Rate 5× 10−3

Pre-defined Target for Yield Loss 5× 10−3

Number of Measured Dies (N) per Wafer 2000
Number of Predictable Test Items 38

5.6.2 Test Application

Table 5.2 summarizes the setup for the pre-test analysis and the corresponding results.

Since both IPM and DADMM give the same results in this example, we do not

explicitly distinguish these two solvers in table 5.2.

Two important clarifications should be made here. First, a relatively large escape

rate is allowed, because the “escaped” dies from wafer probe testing can be further

captured during the final test after packaging. Second, most of the test items (i.e.,

38 items) are considered to be predictable during our pre-test analysis. During test

application, the escape rate and the yield loss are further monitored for these 38 test

items that are predictable. If the escape rate or the yield loss of a test item exceeds

the pre-defined target in table 5.2 for a specific wafer, the test item will be temporarily

set as unpredictable for that wafer.

The test flow is applied to all wafers. Figure 5.6 shows the total number of mea-

sured dies for each test item across all wafers. Here, two different cases are studied: (i)

without test cost reduction (Full) and (ii) with test cost reduction (IPM/DADMM).

Note that IPM/DADMM achieves significant cost reduction for most test items in

this example. Table 5.3 summarizes the overall test cost, the escape rate and the yield

loss. In this example, since the measurement time of each test item is not disclosed

by the industrial collaborator, we simply use the total number of measurements to

assess the test cost. Based on table 5.3, IPM/DADMM achieves 1.875× reduction in

test cost for this example.
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Figure 5.6: Test cost reduction summary
The total number of measured dies across all wafers is shown for each test item
without test cost reduction (Full) and with test cost reduction (IPM/DADMM).

Table 5.3: Test cost reduction by IPM/DADMM

Full IPM/DADMM
Overall Test Cost 6.0× 107 3.2× 107

Escape Rate - 1.2× 10−3

Yield Loss - 2.0× 10−3

5.7 Conclusions

Virtual Probe is a method for wafer probe test cost reduction based on sparse recon-

struction. The full wafer map is estimated from the measurement of a small subset of

dies when the test item has a predictable spatial pattern. Given that the dictionary is

a partial IDCT transform, DADMM presents several properties that are an advantage

to VP. Namely, it solves the dual problem instead of the primal, which has a smaller

number of variables; the Hessian of the Lagrange w.r.t α is a diagonal matrix, instead

of a dense matrix; and there is no need to use the explicit DCT or IDCT matrices,

only its fast transforms are used instead.

The results show that speed-ups up to 38× can be achieved with DADMM com-

pared with an interior-point solver, without loss of accuracy. The test cost reduction

is the same for both methods, which is a 1.875× reduction for the given example of

an industrial RF transceiver.
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Chapter 6

Summary Conclusions

This dissertation focused on studying ways to reduce runtime of convex solvers for

the sparse coding problem. To that end, it made the following contributions:

• The first contribution is a thorough benchmark of several solvers under different

conditions, for several values of the coherence of the dictionary, sparsity of the

true signal and the regularization parameter. The benchmark confirms that

DADMM has generally the best performance and therefore is a good base to

create faster solvers for overcomplete dictionaries. A benchmark of the same

algorithm is done with greedy solvers for `0−norm based problems to compare

speed and recovery properties. Although this latter benchmark is not entirely

fair in terms of recovery properties, it is shown that, contrary to common belief,

the fastest L1 algorithm is comparable or even surpasses the greedy algorithms

in terms of runtime.

• A new version of DADMM is proposed, named DADMM-eig, in which the

penalty parameter can be changed at each iteration with no extra cost. A study

is made to evaluate what is the best sequence of penalty parameter values and

its relation to variables existent in the algorithm. The strategy is to exaustively

search for the best penalty parameter in a discovery phase, in which the true so-

95
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lution is known in advance. A relation between the optimal penalty parameter

and reconstruction error is proposed, which improves performance compared to

DADMM with fixed penalty parameter. Furthermore, simplifications derived

from DADMM-eig reduce the complexity of its matrix-vector multiplications,

since it takes advantage of the sparsity of the intermediate solutions. Several ex-

amples are presented that, for the same convergence level, DADMM-eig finishes

in less than half the time compared with standard DADMM.

• We also explore unique properties of DADMM to accelerate Virtual Probe (VP),

a method used to reduce wafer test cost by reducing the number of effective mea-

surements required. The properties of DADMM become an advantage when the

dictionary is a partial fast-transform, as is the case of the DCT transform used

in VP. Namely, the overcompleteness of the partial DCT favors the dual formu-

lation of the VP optimization problem, the orthogonality of its rows simplifies

the closed-form expression of the dual variable, and the use of a fast DCT trans-

form to efficiently calculate matrix-vector multiplications within the iteration

loop of DADMM further reduces the computational cost. Results show that

DADMM tailored to VP can reach speed-ups up to 38× compared with a stan-

dard interior-point solver. The use of adaptive penalty parameter could further

improve the speed-up values.

6.1 Future Work

This work also leaves some open questions that could be addressed to further accel-

erate L1 solvers.
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6.1.1 Universal Penalty Parameter Update

This dissertation suggests an approach to finding optimal penalty parameter se-

quences for DADMM during a discovery phase. From there, for the test cases used,

a correlation was found between the best penalty parameter and the residual for a

given iteration. The created update rule works well for the test cases presented in this

dissertation, but their scope is still limited. To validate the rule further, it should be

tested against other datasets and conditions. With a larger range of cases, a better

and broader rule can potentially be found.

6.1.2 Highly Overcomplete Dictionaries

Very large dictionaries are particularly demanding for second-order solvers of the

primal formulation, since they have superlinear complexity with n. Dual formulation

solvers mitigate the increasing size of the Hessian, but still involve matrix-vector

multiplications with complexity O(mn), for m observations and n atoms. DADMM-

eig has two matrix-vector multiplications: Ax(k), with complexity O(ms(k)), where

s(k) is the sparsity of x(k), and ATα(k), which still has complexity O(mn), since α(k)

is not sparse. However, many elements of this operation lead independently to zero

elements in x(k+1) through equation (4.6). Therefore, its computation is unnecessary,

if it is known in advance that the intermediate solution will be zero. In the pursuit of

fast algorithms for highly overcomplete dictionaries, it would be interesting to derive

conditions to guarantee that resulting solutions for a given iteration would be zero

even before computing the corresponding element of ATα.

The acceleration of L1 solvers is extremely important to open a vast range of

sparse coding applications into the practical domain. In particular, overcomplete

dictionaries are a fundamental part of most applications, for which DADMM is a

state-of-the-art solver. Formulating an update rule that reaches close to optimal

descent in all situations makes DADMM a parameter-free algorithm. Accelerating it
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even further and making it work more efficiently for a broader range of conditions

can eventually set it as a model solver for L1 problems.
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