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Abstract

An increased penetration of renewable energy into the electric pexvgrid is desirable
from an environmental standpoint as well as an economical one. Wiver, renewable
sources such as wind and solar energy are often intermittent, amdlditionally, are non-
dispatchable. Also, the locations with the highest amount of availableind or solar may
be located in areas that are far from areas with high levels of demarahd these areas may
be under the control of separate, individual entities. In this disstation, a method that
coordinates these areas, accounts for this intermittency, redes the impact of renewable
energy forecast errors, and increases the overall social bdna the system is developed.

The approach for the purpose of integrating intermittent energgources into the electric
power grid is considered from both the planning and operations s&g In the planning
stage, two-stage stochastic optimization is employed to nd the adimal size and location
for a storage device in a transmission system with the goal of redug generation costs,
increasing the penetration of wind energy, alleviating line congestisnand decreasing the
impact of errors in wind forecasts. The size of this problem grows ammatically with
respect to the number of variables and constraints consideredhds, a scenario reduction
approach is developed which makes this stochastic problem compidaally feasible. This
scenario reduction technique is derived from observations aboutet relationship between
the variance of locational marginal prices corresponding to the wer balance equations
and the optimal storage size.

Additionally, a probabilistic, or chance, constrained model predicter control (MPC)

\Y



problem is formulated to take into account wind forecast errors irhie optimal storage sizing
problem. A probability distribution of wind forecast errors is formedand incorporated
into the original storage sizing problem. An analytical form of this aostraint is derived to

directly solve the optimization problem without having to use Monte-@rlo simulations or
other techniques that sample the probability distribution of forecst errors.

In the operations stage, a MPC AC Optimal Power Flow problem is deagposed with
respect to physical control areas. Each area performs an indgglent optimization and
variable values on the border buses between areas are excharegeshch Newton-Raphson
iteration. Two modi cations to the Approximate Newton Directions (AND)method are
presented and used to solve the distributed MPC optimization probite, both with the
intention of improving the original AND method by improving upon the ®@nvergence rate.
Methods are developed to account for numerical di culties encouared by these formula-
tions, speci cally with regards to Jacobian singularities introduced gk to the intertemporal
constraints.

Simulation results show convergence of the decomposed optimizatiroblem to the
centralized result, demonstrating the bene ts of coordinating adrol areas in the IEEE 57-
bus test system. The bene t of energy storage in MPC formulatianis also demonstrated in
the simulations, reducing the impact of the uctuations in the powersupply introduced by
intermittent sources by coordinating resources across contrateas. An overall reduction
of generation costs and increase in renewable penetration in thestgm is observed, with
promising results to e ectively and e ciently integrate renewable resources into the electric

power grid on a large scale.
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Chapter 1

Introduction

The main goal of this thesis is to provide a means to overcome the diulties introduced
by an increased penetration of renewable energy sources into #lectric power grid. The
approaches presented in this thesis address this problem from bdbe planning as well as
the operation perspectives. This section gives the backgrounddamotivation for solving
this problem, a brief overview of the proposed solution approachne an outline of the

thesis.

1.1 Background and Motivation

Currently, major e orts are being made to increase the penetrain of renewable energy
in the electric power grid in the United States, addressing both thehallenge of climate
change as well as energy security [1]. In fact, the United States fi2etment of Energy's
report 20% Wind Energy by 2030has proposed a goal of 20% wind penetration by the
year 2030 [2]. California alone has its own goal of 33% renewable pestain by 2030
[3]. However, multiple complications are introduced with the increasaasage of renewable

energy:



1. The locations with higher levels of wind do not necessarily coincide ithe locations
which have higher levels of demand. The existing transmission infrastture was not

designed for this increase in required capacity.

2. These renewable energy sources are intermittent and non-disghable; i.e., their
output cannot be controlled in the same way that conventional gemation such as

coal, gas, or nuclear is capable of.

A potential solution to alleviate the impact of both of these problemss to increase the
amount of available energy storage in the system. Energy storagyestems provide a balance
to the intermittency introduced by these variable sources, and oahelp utilize transmission
capacity more e ectively. This dissertation focuses rstly on a strage planning problem:
nding the optimal capacity and power rating of storage devices in power system; initially
for reducing the overall cost of generation in the system, and theaccounting for wind
forecast errors in addition with optimal storage siting. The secongart of the dissertation
focuses on the optimal operations of the storage device, includidgstributed methods
to optimize the usage of all resources across control areas withaitilizing a centralized
controller. The locations of wind generators and energy storagas well as conventional
generation, may be located in areas controlled by separate entitidgat are unwilling to

exchange full system information.

To address this problem, the optimization problem formed for the é¢ine system is
decomposed and the optimization is performed in a distributed manneThe dissertation
will provide a modi ed method based on the Approximate Newton Dirdtons method [4]
for achieving this goal. The distributed optimization is performed ovemultiple time steps
in a method based on Model Predictive Control, taking the future stte of the system
into account by minimizing control decisions over a time horizon. Metids are developed
and discussed in the dissertation which solve certain numerical issuatroduced by multi-

timestep problem formulations such as these [5].
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1.2 Contributions

The contributions of this dissertation are as follows:

Development of a method to determine the optimal storage cap acity and
location in a transmission grid: The optimal capacity of a storage device is de-
termined in a two-stage stochastic problem. With a signi cant numbeof considered
scenarios (historical data composed of 24-hour periods of winddaload), and with
the consideration of multiple timesteps, a large optimization problemesults. To
reduce the size of this problem, a scenario reduction technique thareserves the
diversity of scenarios must be performed. In a single scenario, itsveound that the
optimal storage capacity is positively correlated with the variance isystem price,
de ned as the Lagrange multiplier corresponding to the power balae equation, of
that scenario. Using this fact, the size of the two-stage stochasoptimization prob-
lem can be reduced dramatically by intelligently clustering similar scenias together.
It is shown that the solution found after the proposed method ofcgnario reduction
results in a similar optimal solution to optimizing all original scenarios simtane-
ously, saving computational time and space. To expand the formtian to account
for optimal siting of storage, grid constraints and binary variablesre added to the
problem. When congestions exist in the system, a similar correlatioretwveen lo-
cational marginal price (LMP) at each bus and optimal storage sizat each bus is

found, and a scenario reduction can be performed on the siting ptem.

Inclusion of wind forecast errors via chance constraints: In an extension of
the two-stage stochastic optimal storage sizing problem, a chaaconstrained MPC
problem is formulated to take into account errors in wind forecastgirst, the distri-
bution of wind forecast errors are t using a Gaussian probability disibution. The
use of this particular distribution allows for a very useful result: aranalytical form

of the chance constraint can be derived. This allows for the chancenstrained opti-
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mization problem to be solved directly, instead of utilizing methods sticas Monte-
Carlo simulation [6] to account for the probability constraint. Secod, the optimal
storage sizing problem is formulated as a MPC problem where the disttion of the
error increases in variance as we move farther away from the timeforecast. By in-
cluding these forecast errors and performing the reformulatiorf the constraint, the
storage can be sized for the purposes of reducing the cost ofegation, increasing

the penetration of wind, and mitigating the impact of errors in wind foecasts.

Extension and modi cation of the Approximate Newton Direct ions method
to a large-scale system with storage and multi-timestep opt imization: The
Approximate Newton Directions (AND) method [4] is extended in two &ys with the
goal of improving upon the convergence rate of the original mettlo The rst is a
relaxation-like approach derived from the Jacobi method which uséhe information
from previous iterates to improve the convergence rate of the gislem; the second
method improves upon the convergence rate by including a few addial terms in
the Newton update. The IEEE 57-bus system [7] is decomposed imbysical con-
trol areas which only exchange information on the buses which arenmected across
areas. It is shown via simulations that the solution of the nonlinear,anconvex AC
Optimal Power Flow problem in the decomposed system is the same &g tsolution

of the centralized optimization problem.

Development of methods to overcome singular Jacobian matri ces in op-
timization problems with intertemporal constraints: With the inclusion of
intertemporal constraints, especially with the steady-state stage device model and
Newton-Raphson based implementation used in this dissertation, egular Jacobian
matrix occurs frequently during the calculations of the variable upate. It is shown
that this is due to the gradients of the binding constraints being linady dependent.

Various methods are presented to nd a solution to the optimizatioproblem when a



singular Jacobian is encountered: methods which modify the stoegiodel to avoid
the singularity, and methods which use the original model and solvéé resulting

linearly dependent system of equations.

By taking into account a large number of possible states of the powsystem and
optimally placing and sizing storage, and by coordinating resourcesrass control areas,
the integration of renewable energy sources on a large-scale posystem is expected to

be achieved in a new, e ective, and e cient manner.

1.3 Thesis Outline

The chapters that comprise this thesis are outlined as follows:

Chapter 2: Methods gives an overview of the methods utilized and built upon in
this thesis, namely, two-stage Stochastic programming, Model &tictive Control, the
Optimality Condition Decomposition, the Approximate Newton Directilns method,

and the Unlimited Point method.

Chapter 3: Optimal Storage Sizing and Scenario Reduction formulates the
two-stage stochastic problem for storage sizing. A scenario retion technique based
on correlations between optimal storage size and system price riede ned to be
the Lagrange multiplier corresponding to the power balance equatipis shown and
the problem is reduced. Simulation results show the e ectiveness thie considered

reduction approach.

Chapter 4: Optimal Storage Placement formulates the mixed-integer two-stage
stochastic problem for the optimal storage siting goal. A similar scano reduction
technique is performed as in Chapter 3, utilizing a relationship betwedhe optimal
storage size at a bus and the variance in locational marginal price titat same bus

to perform scenario reduction. Results are shown for optimal stge placement with

5



and without congestion.

Chapter 5: Chance Constraints for Wind Forecast Errors models the proba-
bility distribution of wind forecast errors and considers the problemf optimal storage
sizing to account for these errors assuming the storage is opéngtin a model predic-
tive control framework. The probabilistic constraint is reformulaed into an analytical

expression and simulation results are shown for the storage sizinglpem.

Chapter 6: Optimization Problem Decomposition describes the two exten-
sions to the Approximate Newton Directions method developed in thithesis and
compares their convergence rates to the traditional AND methodSimulation results

for the distributed optimization are given for the IEEE 57-bus testsystem.

Chapter 7: Jacobian Singularities  discusses the issue of singular Jacobian ma-
trices in the given formulations due to linear dependencies betwedmetgradients of
binding intertemporal constraints. Various solutions to this problen are presented

and compared.

Chapter 8: Conclusion and Future Work concludes the thesis and discusses

potential directions for future work in this area.



Chapter 2

Methods

The methods developed in this thesis utilize and are based upon exigtinontrol, opti-
mization, and decomposition methods. Some chapters in this thesisluide formulations
based upon the same concept; for example, Chapters 5 and 6 botitize Model Predictive
Control. To avoid redundancy and to clearly distinguish the contribtions of this thesis
from the pre-existing work, the relevant aspects of these exisgirmethods are discussed

here, separate from the methods developed in this thesis.

2.1 Two-stage Stochastic programming

In Chapters 3 and 5, two-stage stochastic optimization is used tand the optimal energy
capacity and power converter rating for an energy storage sgsh. Stochastic optimization
is a techniqgue which minimizes the total cost over a chosen number sxfenarios while
accounting for uncertainties in the problem. In two-stage stoclséic optimization [8], there
are two groups of decision variables: rst stage variables, commaao all scenarios, and

second stage variables, speci ¢ to each scenario and dependenthee rst-stage variables.



The standard formulation for a two-stage stochastic problem is gw as follows:

minixmize f(X)+ E[Q(X; )] (2.1)

subjectto  Ax =b; x O (2.2)

where variables represent rst-stage variablesg [ ] denotes expectation an®(x; ) repre-
sents the optimal solution of the second stage problem, a functioh second-stage variables
y. To represent uncertainty here, we take the scenario-basedpapach of considering the
random probability space as a set of discrete events. From this,ghdeterministic equiv-
alent of the stochastic problem is formed, and the two stages arehsed simultaneously.

Thus, the expectation equates to the following:

X
E[QX )= mQX «); (2.3)

k=1

where the vector is composed of a nite number of realizations,; :::; k, called scenarios,
with respective probabilitiespy;:::pc. After generating or constructing a set of scenarios,
the stochastic optimization problem is then solved to nd the optimalsolution for all

variables while taking into account the probabilities for each of the soarios.

With regards to the storage sizing problem considered in this thesithe rst-stage
variables are the storage parameterS; Pss, and Eq, and the second-stage variables are
the generation values, charging/discharging rate of the storagand the energy level of
the storage. The optimization problem to be solved for the seconthge variables would
correspond to a minimization of generation costs with constrainthat include dependence
on the rst-stage storage variables, and the rst-stage objéiwe function would correspond

to the minimization of the capital cost of storage as well as the exgttion of the second

8



stage solution. Including the initial state of charge of the storagas a rst-stage variable
means that every considered scenario starts and ends the dayhwihe same state of charge.
This is based on the assumption that the days are consecutive (i.ehetend of the rst
scenario is linked to the beginning of the second scenario), and thedch scenario cannot
start with an arbitrary Ego without having stored energy from the previous day to reach
that level. This two-stage concept as related to the storage sizimgoblem is illustrated
in Figure 2.1. Each scenario corresponds to a 24-hour period of wiadd load, obtained

from historical datasets.

First Stage Variables
Ess Eo Fs>s

Second Stage Variables

A 4

Scenarios -1 E R B Ru

Sl S SS =t SN-l SN

Figure 2.1: Two-stage stochastic optimization concept for the gtage sizing problem

In Chapter 3, scenarios reduction is performed and two-stageoshastic optimization
is employed on a reduced set of scenarios, each weighted by a pbdlg of occurrence.
The method to nd these probabilities is also explained in this chapterln Chapter 5, the
two-stage stochastic problem is combined with Model Predictive Ctrol, discussed in the

following section.

2.2 Model Predictive Control

The look-ahead optimization procedure used in Chapters 5, 6, ands/called Model Pre-
dictive Control (MPC). MPC, also called receding horizon control, stwn in Figure 2.2,

minimizes the cost of control decisions on a system over a predictiborizon N. This

9



is done by forming a model of the system to be controlled and optimigjrover a chosen
number of time steps in the future using the predicted output of ta system. After this
optimization from discrete timest to t + N is complete, only the actions for timet are
applied. Measurements from the actual system are then takerhd model is updated, and

the optimization is recalculated for the next time step [9].

Optimizer ] Controls

System
[ Model ]J

Measurements

Figure 2.2: Visual representation of Model Predictive Control.

The formulation for a discrete-time, nonlinear MPC problem is as follosv[10]:

mxl(rtlmlt)ze i J(x(t); u(t)) (2.4)
subject to g(x(t);u(t)) =0 t = 1::N: (2.5)
h(x(t);u(t)) O t=1:N; (2.6)
X(t+1)= f(x(t);u(t)); t=0:xN 1, (2.7)

with state variables x and input variablesu. Optimal values are calculated for the entire
horizon but only the rst step is applied. The simulation moves to the Bxt step and
the process is repeated using updated measurements of the eyststate. In this thesis,
examples of equality constraints (2.5) dependent only on the cuntetimestep are the power

balance equations. An example of the inequality constraints (2.6) pendent ont would

10



be the generator output limits, limits on the state of charge of theterage device, and the
chance constraints, to name a few. Intertemporal constrain{®.7) could refer to generator

ramp limits and the energy balance equation for the storage, for @xple.

Model Predictive Control is used in Chapter 5 to determine the optia size of the
storage by taking into account wind forecast errors which a ecthie energy in the storage.
Hence, a probability distribution for the energy in the storage arawd deterministic values
for each time step in the horizon which re ects the error in the predted energy level.
These errors in the energy level prediction worsen depending oretpoint in time within
an optimization horizon. In Chapters 6 and 7, MPC is used to determénthe optimal

actions for charging and discharging from energy storage.

2.3 Optimality Condition Decomposition and the Ap-

proximate Newton Directions method

In Chapter 6, the nonlinear AC optimal power ow MPC problem is decmposed into
subproblems. The distributed optimization methods developed in thithesis are based
upon Optimality Condition Decomposition (OCD) and the Approximate Newton Direc-
tions method (AND).

Optimality Condition Decomposition [11], a modi ed version of Lagrangia Relaxation
Decomposition, is used to decompose the considered optimizatiorolglem. Using this
decomposition method, separability is achieved by xing certain colgd variables as con-

stants during each iteration step. The general optimization probia can be formulated as
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follows:

minimize f (X100 %Xm)
X1,0XM
subject to Oy(Xq) =0; q2f1;:::;Mg
he(Xq) 0, q2f1:::;Mg (2.8)

whereM is the total number of subproblems and, are the decision variables in subproblem

ablesxq in subproblemq. Constraints gq.coup @Nd hq.coup are called \coupling constraints”

corresponding to constraints that contain variables from multiple iproblems.

Optimality Condition Decomposition decomposes this optimization prdem by assign-
ing variables and constraints to speci ¢ subproblems. Every coupljrconstraint is assigned
to one speci c subproblem which takes this constraint into accourds a hard constraint
in its constraint set. This coupling constraint is taken into account a a soft constraint
in the objective function of the other subproblems. If a subprobie contains a constraint
with a variable belonging to another subproblem, that so-called \fa&ign" variable is set
to a constant value given by its corresponding subproblem. This vadus updated at the
next iteration when the subproblems exchange these coupled védnlies. An optimization

problem is formed for each subproblemg2f 1:::Mg as follows:
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X
+ ngn;coup(xl;:::;xq 1;Xq;xq+1;:::;XM)
n=1;n6q
had
+ nDNncoup(X1; 125 Xq 15 Xqs Xge1 5 225 XM )
n=1;n6q
(2.9)
subject to Oq(Xq) = 0;

he(Xq) O
Og:coup(X1; 1155 Xg 15 Xm ) = 0

Ng.coup(X1; 125 Xgs 25 Xm ) O

Variables denoted with an overhead bar are foreign variables, set tonstant values given
by their corresponding subproblem, and variables without the barra the optimization
variables of that subproblem. , and , are the Lagrange multipliers for the equality
and inequality constraints (respectively) determined by the subpblem n for which this
constraint is a hard constraint. The Approximate Newton Directios method [4], which
can be applied to the decomposed problem, is used to solve the mder optimality
conditions of the problem by considering the update for the subpotems separately. After
each subproblem has updated, the foreign variables are exchahdetween subproblems.

This Newton-Raphson update is given as follows:

x(PH) = 5 (P 4 x® = x(P APy 1 go, (2.10)

wherep is the iteration counter. In the original problem (2.8), the right har side vectord®
includes the rst order optimality conditions for the optimization problem described above

in (2.8) ordered according to the subproblems and evaluated &, and the update vector
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is given by x®. The parameter is used to control the step size to avoid divergence due
to overshooting. The overall Jacobiarjt(o‘?, which is the matrix of partial derivatives of the
KKT conditions with respect to all of the decision variables in the prolem, is evaluated

at x(P and is given by

1
J{;pl) ‘Ji;pz) J{;p,\)/l
Jé;pl) : :
: Jép)l;q
NECAPIIN BN L : (2.11)
‘]éE)l q :
: : ‘JIS/IP) -

(p) (p) (p)
‘]M;l ‘JM;M 1 ‘JM;M

The block eIementJI(;jp) corresponds to the Jacobian matrix of the rst order optimality
conditions associated with the constraints in areawith respect to the variables associated

with areaj .

In the Approximate Newton Directions method, the decomposition to M subproblems

(P).

i, 1 8 J, equal to zero. This is

is achieved by setting the o -diagonal block matrices,
equivalent to performing the Newton-Raphson step for each ofétdecomposed subproblems
described in (2.9) separately. These o -diagonal matrices are gaally sparse because the
only non-zero elements arise from coupling constraints, i.e. coratits which couple the

variables of ared with the variables of areg . The resulting Newton-Raphson update can
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then be solved in a distributed way, i.e.

(p+1) = (P (P = y(pP) My 1 -
Xqg 7= Xg + Xg" = X4 Jgw) — A (2.12)

dP = [dP;:dPT (2.13)
x® =[x XY (2.14)
x® = [ xPrn x0T (2.15)

In the considered problem, the optimization problem is decomposedcarding to geo-
graphical areas, i.e. the variables iw&p) correspond to the variables associated with buses
in areag. As the considered problem spans multiple time steps, this variablecter includes
copies of all the variables within that area for all time steps in the ophization horizon,
i.e. Pg (0);:::;Ps, (N 1). The assignment of the coupling constraint in this application
is thus straightforward - because the coupling constraints cogpond to the power balance

constraints at each border bus, the subproblem that is assigneket coupling constraint is

the one that corresponds to the area that contains that bus.

The advantage of this method is that instead of solving each subgrem to optimality
before exchanging information with the other subproblems, dataan be exchanged after
each Newton-Raphson iteration. Additionally, unlike other Lagranign-based decompo-
sition methods such as Lagrangian Relaxation and Augmented Lagigan, there is no
need for a centralized entity or tuning of parameters to update # Lagrange multipliers;
subproblems simply exchange data directly with their neighbors and¢ updates for the

multipliers come directly from the other subproblems.

In Chapter 6, the optimization problem is rst decomposed with OCDand then modi-

cations of the AND method are derived and compared with conveaqnce results using the
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original AND method.

2.4 Unlimited Point Method

There are various ways to handle inequality constraints in an optimizi@n problem. In this
thesis, we use the Unlimited Point method [12] to account for inequajittonstraints. In the

Unlimited Point method, the inequality constraints in the general opimization problem

mxin f (x) (2.16)
sttt g(x)=0 (2.17)
h(x) O (2.18)

are transformed into equality constraints according to

ha(x) + s2 =0 (2.19)

for inequality n and wheres, is a slack variable. Squaring the slack variable ensures that
the original inequality constraint is ful lled. The rst order optimality conditions are then

formulated as

16



@f, 1 @ »y @h

@X @X @X =0 (220)
gx) = 0 (2.21)

h(x)+ s> = 0 (2.22)

diag( ) s = 0 (2.23)

Hence, similar to the slack variables, the Lagrange Multipliers are alseplaced with
squared variables to ensure that these Lagrange Multipliers takalues which are greater
than zero without having to explicitly include such non-negativity costraints. In Chap-
ter 6, distributed optimization techniques are developed to solve ¢hdistributed AC OPF
problem. The Unlimited Point method is used to account for inequality @nstraints in
this chapter; however, the derivations of the distributed methosl stay the same even if
another technique is used to incorporate inequality constraints iata Newton-Raphson

update (such as Interior Point).
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Chapter 3

Optimal Storage Sizing and Scenario

Reduction

With the increasing penetration of renewable energy sources intbe electric power grid,
a heightened amount of attention is being given to the topic of energtorage, a popular
solution to account for the variability of these sources. Energy atage systems (ESS)
can also be bene cial for load-levelling and peak-shaving, as well &slucing the ramping
of generators. However, the optimal energy and power ratingerfthese devices is not
immediately obvious. In this chapter, the energy capacity and poweating of the ESS is
optimized using two-stage stochastic optimization.

Depending on the application, certain storage technologies may beora appropri-
ate for certain purposes. The performance of each of thesehealogies dier by their
charge/discharge rate and maximum energy capacity. Storagectaologies include, but
are not limited to: pumped hydro, compressed air, ywheels, doublayer or super/ultra
capacitors, and batteries (lead-acid, lithium-ion, sodium/sulfur) [3]. In this thesis, the
focus is on intra-hour generation dispatch to balance out uctuabns in the net load, i.e.,
demand minus wind generation, of the system. In the consideredoptem formulation, the

storage device is characterized by a maximum energy capacity, nmaym power rating and
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a roundtrip e ciency.

A range of literature can be found on the topic of optimal storageizng for various
applications in power systems. In [14], tabu search is used to nd thaptimal size of an
energy storage system integrated with a thermal power plant. Rdom storage capacity
ratings are generated and then evaluated in a cost-benet framerk. The benet of
storage is assumed to come solely from a peak-shifting applicatiomdathe charging and
discharging of the storage is determined by whether or not the frasted load was higher
or lower than the average demand. Dynamic programming is used in [16 determine
an optimal operating strategy for the storage and the optimal s&zof the storage is found
as a function of the reduction in the consumer's electricity bill. Similarlyto [14], a peak-
shifting application is chosen and the storage dis/charging decisioase rule-based. The
optimal size of the storage is then based on the optimal operatingategy of the storage.
Arti cial neural network (ANN) control strategies are used to gtimally control and size a
zinc-bromine battery in [16] for wind power applications. This paper®wed that by using
ANN controllers, a lower cost storage is required. Rule-based déois on charging and
discharging the battery solely for the purpose of accounting fohé wind forecast error is
assumed. In this thesis, the dis/charging variables of the storagee continuous decision
variables in the optimization, and the system can bene t from the pak-shifting application
of the storage in addition to load-levelling and the balancing of uctuaons introduced by
renewable energy and demand. In Chapter 5, this formulation is ettded further to utilize

storage to account for errors in wind forecasting.

In [17] and [18], stochastic optimization is used to optimize the size af anergy storage
system, with a focus on hourly dispatch using linear generation castln [17], scenarios are
generated using calculated probabilities based on wind and load cdateons, where wind
forecasts are assumed to be known perfectly. In order to reduthe amount of considered

scenarios, fuzzy clustering is used in [18] to group scenarios tdgetwith similar net load
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shapes and levels. In this thesis, the scenarios are comprised efdlctual historical data of
wind and load, and scenarios are clustered based upon optimal stge sizes for individual
scenarios and the variance in system price for that scenario. Byiliging this relationship,

the problem size is reduced dramatically. There are many other pageon optimal storage
sizing under uncertainty and storage sizing using chance-constrad programming that
are discussed in Chapter 5 and are not covered here.

The objective in this section is to optimally size storage while minimizing geration
costs and maximizing the use of renewable energy uctuations on antra-hourly scale.
With this application, the bene t of storage not only comes from pelashifting, but also
from reducing the ramping of generation. Wind is assumed to be mdistke to maximize
the use of renewable energy in the system. We show that there isedationship between
optimal storage size and variance in system price for this applicatipallowing scenarios
which are similar with respect to storage needs to be clustered tdiger and represented
by a single scenario. Hence, the clustering operates on the similasti@ optimal storage
size rather than on similarities on the inputs of the scenarios. A corapson between
this clustering technique and clustering based on similarities in net load compared in
the simulation section. This reduced set of scenarios, each weightgith an appropriate
probability, is then taken into account in the two-stage stochastioptimization problem,
signi cantly reducing the overall problem size. Thus, two-stage ethastic optimization

becomes feasible even for a large number of considered scenarijs [1
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3.1 Formulation of the Optimal Storage Sizing Prob-

lem

3.1.1 Storage Model

The model for the ESS used in this thesis is the following:

t

E(t+ t)=  E()+ ¢ tPin(t) —Pou(t); (3.1)
0 E{t+ t) Eg d (3.2)
0 Pin (t) Pss; (3.3)
0  Poul) P (3.4)

where E(t) is the energy level in the storage at time instant. The model incorporates

separate variables for charging and discharging powd?;, and Py, as well as separate

constants for the charging and discharging e ciencies,. and 4. Variables Ess and Pgs

correspond to the energy capacity and the power rating of themtage device. The constant
t is the time between control decisions. Since the focus in this thesisois intra-hourly

economic dispatch, t will be set to 10 minutes in the simulations.

3.1.2 Cost function and Constraints

In this section, the optimization problem formulation for both an indivdual scenario and

the overall two-stage stochastic problem is given.

Individual Scenario

Each scenario corresponds to a 24-hour period of net load, i.e., leathus wind generation.
It is assumed that the generators have quadratic cost curves ded by cost parameters

a;, by, and ¢, upper and lower limitsP2" and P2®, and ramping limitations Rg;. The
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economic dispatch optimization problem to be solved for one scenaristorage size and

charging and discharging limits are given is as follows:

Xt We

min aP&(t) + bPgi(t) + ¢ (3.5)
t=1 i=1

st PIN Pgi(t) PI; (3.6)
JPei(t+ t) Pgi(t)] Rai; (3.7)
Xe

Pai(t) Po(t)+ Pw(t)

i=1

+ Pou(t)  Pin(t)=0; (3.8)
0 Pou(t) Pss; (3.9)
0 Pn(t) Ps; (3.10)
0 E(t) Es (3.11)
E(NT) = Eo; (3.12)
E(t+ )= E()+ o tPu(t) —dtPout(t); (3.13)

with t = 1;:::; Nt for all constraints andi = 1;:::; Ng, whereN+ is the number of steps in
the optimization horizon andNg is the number of generators in the system. The generation
output for generatori at time step t is given by Pg;(t), total wind generation by Py (t)
and total load by P_(t). The initial energy level in the storage device is set t&,. As
described in Section 2.1Ps; Ess and Eq all become variables in the two-stage stochastic

optimization problem.

Two-Stage Problem

The overall problem formulation for the two-stage stochastic ptdem is given by:
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1
Xs Xr Ko B

min ws T aP& (s;t) + bPgi(s;t) + ¢
s=1 t=1 i=1
+ dEg + P (3.14)
st.  PaM  Pgi(s;t) PI¥; (3.15)
jPei(s;t+ t) Pgi(s;t)j Rai; (3.16)
Xe

Pci(s;t) PL(s;t)+ Pw(s;t)
i=1

+ Pout(s;t)  Pin(s;t) =0; (3.17)
0 Pou(sit) Pss; (3.18)
0 Pip(sit) Pss; (3.19)
0 E(sit) Ess (3.20)
Eo = E(s;N7); (3.21)
E(sits 0= G+ ¢ Pa(s) — PoulsiV: (3.22)

Hence, constraints of this optimization problem are equivalent to ttse given in (5.15)-
(5.24), but now with distinct variables Pg;, Poyt, Pin, and E as well as value$®, and Py

for each scenaris = 1:::Ng. VariablesEsgs, Pss, and Eq are not dependent ort or s. These
variables are common to all scenarios; their optimal values are cdited while taking into

account all of the considered scenarios simultaneously. The cargtvalueswy correspond
to the probability of occurrence of scenarie. The constantsd and e correspond to the
cost parameters of the storage device with respect to the capgicand charging speed,

respectively, andT, is the expected lifetime of the storage in number of days.

It is advantageous to determine what factors directly impact the mtimal solution for
the storage sizing problem, so individual scenarios which result in a gian optimal storage

size may be grouped together and a new representative scenacdiothat cluster is chosen
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and weighted accordingly. It is obvious that the more scenarios thare considered in the
problem, the more accurate the frequency of certain cases of diand load in the system
will be represented. Thus, it is desirable to utilize as many scenarios possible. However,
the number of variables and constraints increases tremendouslitwincreasing number of

scenarios rendering stochastic optimization computationally very tensive.

3.2 Relationship between Optimal Storage Size and
Variance in Locational Marginal Price

The price of electricity is determined by the marginal cost of genetian, i.e. the cost
to generate one additional unit of power in the system. As the Lagnge Multiplier of
the power balance equation (5.13) corresponds to the sensitivity the objective function,
in this case the overall generation cost, with respect to a change tims equation, i.e. a
change in load, the incremental cost is equal to the value of this Liamnge Multiplier. In
the following, we refer to this as the system price and denote it by,.

Due to the fact that load and infeeds from renewable generation ryasigni cantly
throughout the course of the day, the system price also variesesvthe day. The variance
of the system price, measured over the time period of one day, isrdal as:

1 Xt
var( p) = N t:1( o(t)  mean( ) (3.23)

For illustration purposes, we show the correlation between the ggm price variance
and the optimal storage size for a small system with three convémmal generators and two
wind generators. First, the economic dispatch problem without stage is solved for a range
of di erent scenarios. This corresponds to optimizing for (5) and tluding constraints (6)
and (7) and the power balance equation (8) but without the chargmgydischarging from

the storage for each of these scenarios. The resulting variancesystem price for each
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of the scenarios is stored. Next, the optimization problem with stage as a variable,
i.e. (3.14)-(3.22) is solved for each scenario separately. Hencelyame single scenario
is taken into account in the optimization problem each time and the ojpnal storage size
and charging/discharging rate are determined as if this is the only oarring scenario. The

resulting variances in system price and the optimal storage sizeealotted in Figure 3.1.
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Figure 3.1: Relationship between marginal price and optimal storagéze for system with
three conventional generators and two wind generators.

It is clear from the gure that the optimal capacity of the storageis positively correlated
with the variance in system price for that scenario. That is, the biggr the variance in price
over that scenario, the more bene cial it is to use storage. This nabe attributed to a
great extent to the quadratic cost functions of the generators Changes in the level of
generation and therefore ramping are implicitly penalized because tbfs quadratic cost.
Storage helps to alleviate the ramping of these generators, thusviring the overall cost
of generation. In the presence of an increased penetration ofamittent sources such as
wind, the required ramping increases thereby increasing the valuestorage. However, no
direct correlation was found between the optimal storage capagiand variance in wind or
load. The variance in system price was found to be the strongest indtor with respect to
optimal storage size for the considered problem formulation with @aratic cost functions.

This dependency has important implications on how to cluster scenas. To show how

26



this is di erent from clustering scenarios based on similarities in net lok we show the
optimal storage sizes for ve scenarios and their respective netalb curves in Figures 3.2

and 3.3 for a system of 8 conventional generators and two wind geators.
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Figure 3.2: Optimal storage sizes for the 10 generator system ane di erent scenarios.

5‘0 160 1é0
Time (10-minute increments)
Figure 3.3: Net load of ve scenarios in the 10 generator system.

The two scenarios with the closest optimal capacity/variance in sy@m price are sce-
narios 2 and 3. It is interesting to note that the net load for scenass 2 and 3 have a very
large di erence in magnitude. Scenario generation by methods whielssume that scenar-
ios with similar net load values produce similar optimal storage capacitienay therefore

not be an appropriate way to group scenarios in the considered ptem formulation. Con-
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sequently, we propose to use the correlation between system prand optimal storage size

as a means to cluster scenarios.

3.3 Hierarchical Clustering and Scenario Reduction

In [17], wind and load correlation probabilities are used for scenariorggation. Scenarios
with similar net load shapes and levels are grouped together in [18], ahkzy clustering
is used for scenario generation. In [20], uncertainties in wind and elggty prices are
taken into account and a sample average approximation method iseasto reduce the

dimensionality of the scenarios.

As the number of scenarios considered in the optimization increastge more accurately
the distribution of possible realizations of net load are representedHowever, this also
increases the problem size to unmanageable levels, especially on anitite dispatch
scale. Scenario reduction techniques have been employed for thergy storage sizing
problem, e.g. in [17] and [18]. However, as described earlier, thesehiteques focus on

load/wind correlations and net load analysis to determine similarity beteen scenarios.

Here, scenario reduction is performed by utilizing the discoveredlagonship between
the optimal storage capacity and variance in system price. We usehgerarchical centroid-
linkage clustering method [21] to form clusters of similar scenarios.n this clustering
technique, each scenario is rst considered to be a separate clrstand clusters are sub-
sequently combined into larger clusters until the desired number afusters is obtained.
Hierarchical clustering is chosen over other conventional clusieg methods because other
methods may group outlier clusters with other clusters instead ofekping them distinct,
which is desirable in our application. At each iteration of the procesgentroids, which
correspond to the mean of all data points in their respective clusteare calculated. The

centroid ¢ for clusteri is therefore de ned as:
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: 3.24
N Xk ( )

G =<
Ik2i

where ; includes the set of pointsx; = [var( ); Ess] included in clusteri and N; is the
number of points in clusteri. Next, the Euclidean distances between all possible cluster
pairs (i;j ) wherei 6 |, are determined and compared. The pair that minimizekc, ¢ K,

is combined into a new clustem where the data pointsx, = X; [ X;. This process is
repeated until the desired number of clusters is achieved. Nextrepresentative scenario
is chosen for each cluster. This scenarfg, for each clusteri, is chosen to be the one that

is closest to the mean of that cluster; i.e.,

X = argmin  kxy Gk, (3.25)

Xk2 i

For the considered application, each scenario corresponds to adpe realization of load
and wind generation for one day. Each of these scenarios resultoime data point in the
correlation between storage size and variance in marginal cost. &lelustering technique

is then used to cluster this two dimensional data into a pre-de nedumber of clusters.

As an example, 150 scenarios were run on the 8-generator, 2-wpidnt system and
these scenarios were grouped into 10 clusters. In Figure 3.4, tlesult of the clustering is
shown. The number of scenarios in each cluster determines the lpability of the resulting
representative scenario of that cluster, as shown in Figure 3.5. &ldata were normalized
by dividing by the maximum element in each direction so that the axes we equal before

performing the clustering.

The scattering is related to the fact that di erent sets of genereors reach their limits for
di erent levels of net load, and therefore a di erent generator isetting the system price.
l.e., in one case with a large amount of wind, a coal plant that was udiyaproducing

at capacity for most of the other scenarios was not at capacity. daever, even with the
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scattering multiple linear trends can be observed.
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Figure 3.4: Correlation and clustering for the 10 generator systerh50 scenarios and 10
clusters.
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Figure 3.5: Representative clusters weighted by probabilities for ¢hl0 generator system.

An overview over the proposed approach to determine the optimsizing of the storage
device is given in Figure 3.6. First, the economic dispatch problem in (3.1 (5.24) is

solved without any storage device in the system for every single sago separately in
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order to determine the variance in marginal generation cost beforthe deployment of
storage. Then, the problem in (3.14) - (3.22) is solved separatelyr feach scenario with
storage as a variable, determining the optimdtss, Pss, and E for that scenario. Next, the
scenarios are clustered into groups and representative scensuaoe chosen for each cluster.
This reduced set of scenarios is used in the stochastic problem fatation (3.14) - (3.22)

to determine the overall optimal storage size.

Simulate all scenarios Simulate all scenarios
separately without storage separately with storage
in the system. variables included. Store
Store the resulting system The optimal storage sizes
price for each scenario. for each scenario.

Form a 2D vector X that is

composed of the previous

two values and cluster the
values in X into groups.

Y
Choose representative scenarios for
each cluster by choosing the scenario
closest to the centroid. Weight these
scenarios by the number of scenarios in
their represented cluster divided by the
total number of scenarios.

A 4

Perform two-stage stochastic optimizatio

using the new weighted representative
scenarios.

Figure 3.6: Flowchart of the overall algorithm.
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Table 3.1: Generator parameters.

Generator | a ($/MW/MWh) | b ($/MWh) | c ($/h) | Capacity
Gas 0.76 15 370 250 MW
Coal 0.0079 18 772 330 MW
Nuclear 0.00059 5 240 350 MW
Gas 0.76 13 370 250 MW
Coal 0.0133 18 440 340 MW
Nuclear 0.00059 5.2 240 350 MW
Coal 0.014 18 772 330 MW
Coal 0.0078 17.7 440 330 MW

3.4 Simulation Results

Here, we rst give an overview over the simulation setup and then disiss the simulation

results.

3.4.1 Simulation Setup

Simulations were performed on a power system with eight conventaingenerators and
two wind power plants. The 10-minute demand data for 150 days wadaken from ISO
New England [22] and the data for the wind outputs was taken fromhe Eastern Wind
Integration Transmission Study (EWITS) [23]. Results are given fovarious levels of wind
energy penetration. The chosen cost function data and capacgiéor the generators are
given in Table 3.1. The storage technology used in these simulationssha roundtrip

e ciency of 95% and capital costs of the energy capacity and poweonverter size as
$1,666=kW 10 min and $506kW, respectively. The storage is assumed to be operating
without degradation for the assumed time period, and generation costs are minimized

over a period of 20 years; i.eT,. =20 365.
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Table 3.2: Simulation results for varying cluster sizes.

Clusters | Ess(MWh) | Pss(MW) | Eo(MWh) | Time
10 1.196 1.482 0.182 133s
30 1.380 1.73 0.039 159s
50 1.376 1.837 0.056 239s
70 1.360 1.837 0.065 353s
100 1.354 1.802 0.069 646s
150 1.345 1.791 0.073 1342s

3.4.2 Simulation Results

Taking into account the full set of 150 scenarios each correspamgito a day's worth of data
already results in over 237600 variables for the considered formulation. Hence, clustering
of scenarios is indispensable and we use the proposed clusteringprigpie to reduce the
number of scenarios to 70, 50, 30 and 10 clusters and compare tésults to the \full"
case of 150 scenarios. The optimal solution for the storage sizehathe above parameters
and a 20% penetration of wind energy for each number of clustersgisven in Table 3.2.
The computations were performed using the IBM ILOG CPLEX Optimier [31] through
MATLAB 2012a on an Intel i7 processor with 32 GB of RAM. The optimiation problem
is a convex programming problem with a quadratic objective and linearonstraints; thus,
the CPLEXQs$dlver from the CPLEX package is used to solve the optimization.

The main purpose of showing the computation time is not to give an indation of how
fast the solution can be computed in absolute values but to provideveay to demonstrate
the e ectiveness in reducing the problem size by the means of sceaaeduction. As seen
from the results, as the number of clusters decreases, the déaa from the original two-
stage solution given by the 150 scenarios case increases. Howe&yen with a reduction to
30 clusters, the solution is very close to that optimal solution and itrdy takes a fraction

of the time to compute the solution.
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The value of using stochastic optimization can be analyzed in compants with other
methods. In Table 3.3, the stochastic solutions for the battery engy capacity using
various numbers of clusters are compared rst with the method aflustering based upon

net load, and secondly with using a simple weighted average of renesitive scenarios.

In the third column of the table, results are tabulated for the cas&hen the represen-
tative scenarios are formed by clustering based on vectors of nead for each scenaria,
i.e., Xs = P_(s;t)  Pw(s;t). The \weighted average" of clusters as shown in the fourth
column of the table refers to the average of optimdts sizes from the representative sce-
narios weighted by their probability as calculated from scenario redtion. In the case of
150 scenarios, the \weighted average" does not include repraséine scenarios, but rather
refers to the average of the optimal solution of the original 150 estarios, each with equal

probability.

It can be seen that performing stochastic optimization in both case comparing with
the weighted average approach, results in a storage size which isns@antly closer to
the solution of the overall stochastic optimization. With the averamg approach, outlier
scenarios (in this case, with a larger battery size) are given a higheeight and in uence
the optimal solution such that the overall capacity is increased. Byglustering based on
var( ), more information is gained by increasing the number of clusterseducing the
distance from the original solution as more clusters are added. Tkelutions obtained by
clustering based on net load are relatively arbitrary and do not seeto cluster together

the scenarios which result in similar optimal storage sizes.

The optimal amount of storage in the system can be analyzed forneus levels of
wind penetration. In Figure 3.7, the optimal amount of storage caxity for 100 scenarios
is shown for varying levels of wind penetration. Here, wind energy petration level is
de ned as the percentage of demand in terms of energy that is fjgd by wind energy on

average over all considered scenarios. Table 3.4 lists the resultstoichastic optimization
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Table 3.3: Optimal Ess (MWh) size using various cluster sizes and techniques.

Clusters | Clustering based on| Clustering based on Weighted Average
var( p) net load
10 1.196 1.326 1.837
30 1.380 1.351 1.645
50 1.376 1.260 1.597
70 1.360 1.149 1.654
100 1.354 1.010 1.634
150 1.345 1.345 2.225

with increasing number of clusters for 0%, 10%, and 20% of wind eggrpenetration. As
seen from the gure and table, the optimal amount of storage ineases with the level of
penetration. This can be attributed to the fact that a higher pengation of wind results in

more variation in the net load, making it more bene cial to deploy a largr storage device.

Table 3.4: Optimal Egs size inMW 10 mins for di erent levels of wind penetration.

Clusters | 0% Wind | 10% Wind | 20% Wind
10 3.285 4.675 7.818
30 3.049 4.650 7.942
50 3.103 4.656 7.612
70 3.068 4.635 7.287
100 3.054 4.636 7.546
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Figure 3.7: Optimal storage capacity for various levels of wind pemation.
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Chapter 4

Optimal Storage Placement

With a heightened availability of renewable energy in the power grid coes a corresponding
need for an increase in transmission capacity. If this increase is mobvided, line conges-
tions and an increase in generation cost become imminent. The optin@acement and
usage of storage devices is one way to avoid congestions and theesse in cost. While
not as prevalent in the current literature as the optimal storageising problem, the prob-
lem of optimal storage siting has been addressed from various parstives [24]-[27]. In
[24], the optimal location and capacity for a battery energy storagsystem in a residential
distribution system with a high penetration of photovoltaic generdbn is determined. The
optimal placement of the device was considered on a case-by-daasis for three di erent
placements for a particular given day of the year. Consideration tiie optimal placement
problem on a case-by-case basis, or when considering scenariparagely and not simulta-
neously in the optimization problem, is a large simpli cation of the proble and can result
in suboptimal placement of the storage as well as operation of thsage.

The work in [25] uses genetic algorithms and probabilistic optimal poweow to de-
termine the optimal locations of storage within a deregulated powesystem with wind
generation. A DC OPF framework is used, and the optimal capacityfdhe storage is

determined after the optimization for the location is complete, i.e., th state of charge is a
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function of generation and load and not separate dis/charging demn variables. The aim
of energy storage in this paper is to store the wind energy which wdwtherwise be cur-
tailed and utilize it during the peak hours. However, having this modeior the operation
energy storage neglects the additional bene ts gained from utiliznenergy storage to bal-
ance uctuations in the power supply and reduce the amount of gemator ramping, which
can reduce the overall generation cost in the system, and can alssult in suboptimal

dis/charging decisions on the storage.

Results in [26] concluded that the optimal location of storage is notrengly a ected
by the amount of wind penetration or location of wind in the system, bt rather that line
congestions had a large in uence on the optimal location. This congwn was con rmed
by the results presented in this chapter as well. However, in this waqrthe demand and
generation pro les are assumed to be cyclic, the timescale is halftity, and the overall
storage capacity in the system is xed. Active and reactive powerows are considered,
but the simplifying assumption is made that reactive power is a xed peentage of the
active power. Without simultaneously considering a range of possildays (or providing a
method to choose which days could represent a diverse range ates of the power system),
the resulting storage placement may be well suited to a particular excario but not a wide

range of scenarios.

Both transmission expansion and placement for storage are coresied in [27] in the
form of a mixed-integer programming problem on a 6-bus test syste A xed capacity of
the storage is assumed, and operations are considered on therhpotimescale. A single
day is used to represent each of the four seasons of a year, ahd planning horizon is
considered over an eight year period. In order to make the probleless computationally
intense, the assumption is made that the expansions will take placaly in the areas of
the grid a ected by congestion; however, this neglects the berts gained from utilizing

storage to balance uctuations in other areas of the grid. This pag aims to answer the
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guestion of transmission expansion and placement of storage simamkously, but does not
nd the optimal size of the storage in the optimization, which can a €t the outcome of

the considered problem.

In this thesis, a similar optimization problem to the two in the previous wo sections is
formulated as a two-stage stochastic optimization problem minimizingeneration costs of
all generators in the system as well as the capital cost of a stoeagevice in the WSCC 9-bus
test system. A 10-minute dispatch scale is assumed, so that the@stge can also provide
a balance to intra-hourly uctuations introduced by wind. The size 6the storage a ects
the placement and the operation of the storage, so these two ebjives are considered
simultaneously. The resulting two-stage stochastic optimization pblem then minimizes
the cost of storage and the cost of generation in a DC OPF framerkowith line limits
over a number of scenarios. The rst stage decisions correspaidthe optimal number of
storage devices, as well as their optimal locations and maximum cajiges. The maximum
number of storage devices can be xed if it is known how many storaglevices are to be
placed. A scenario reduction technique is used to cluster similar daysyether which are

then used as the scenarios in the two-stage stochastic optimizatiproblem.

4.1 Formulation of the Optimal Storage Placement

Problem

The two-stage stochastic optimization problem is formulated as a mex-integer DC optimal

power ow problem. The cost function and constraints are descrédal below.
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4.1.1 Cost Function

The cost function is given by

Xs Xt Xe
min ws Te aiP& (sit) + hPg (s;t) + ¢
s=1 t=1 i=1
Xe
+ (dEgs, + ePsg, + C. binE;) (4.1)

i=1

First stage binary variablesbinE; denote if there is a storage device at bus(1) or not
(0) with associated one-time installation/construction costsC.. Variables E¢;, and P,
describe the energy capacity and power converter rating of a sage device at bus, with
associated capital costsl and e, respectively. These variables are forced to zero in the
constraints if the correspondingoinE; at that bus is zero.

Generation costsPg, (s;t), corresponding to the active power generation at bus are
minimized over all scenarios. Here, we again use entire days as thenscios and the
resolution for the time stepst is 10 minutes. Constant valuesy, h, and ¢ are the cost
parameters for the active power generator at bus Valuesws describe the probability of
occurrence of scenaris. The expected lifetime that the storage will be fully functioning
is T_, given in number of scenarios (days). Integefds, N1, Ng, and Ng are the number

of scenarios, time instances in one scenario, and number of busespectively.

4.1.2 Constraints

The optimization problem to be solved includes the objective functiom (4.1) subject to:

Ps,  Pg(sit) Pg; 4.2)
iPg(s;t+ t) Pg(s;t)] Rg;; (4.3)
Ne

PGi(S;t) PLi(S;t) + Pfi(S;t)

i=1
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+ I:)outi (s;1) I:)ini (s;t)=0; (4.4)

P Pi(sit) Py, (4.5)
0 Pou(S;t)  Pess; (4.6)
0 Pin(sit) Pss; 4.7)
0 Ei(s;t) Esgs; (4.8)
0 Es 10000 binE;; (4.9)
0 P 10000 binE;; (4.10)
e

binE;  binE™; (4.11)
i=1
Eo = Ei(s;Nr7); (4.12)
Ei(s;it+ t)= Ei(s;)+ ¢ tPin,(s;1) _dtpouti(S;t): (4.13)

fori = 1:::Ng, s=1::Ng, t = 1:::Nt, and where the variables are de ned as in section

4.1.1 and the remaining variables de ned as follows:

forecasted active power output of wind generator at bus
active power load at bus
Pin, power injected into storage at bus
Pout, power drawn from storage at bus
P; active power owing on lineij
i set of buses connected to bus
E; energy level in storage at bus
 charging e ciency of storage at busi
¢, discharging e ciency of storage at bus

maximum active power output of generator at bus
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P maximum power ow on lineij

bineE™* maximum number of storage devices in the system

Optional constraints include xing an individual binE; to O or 1 if it is known a priori that
a storage device is either desired or undesirable at a particular bushe value 1Q 000 was
chosen in constraints (4.9) and (4.10) to be about 50 times the maxim value ofE that

was observed in simulations.

4.2 Storage Size/LMP Relationship

When the grid of the power system is taken into account, there noriger exists only a
single power balance equation in the constraint set. The power musé balanced at each
bus, and when congestion is present in the system, the Lagrangeltipliers corresponding
to these power balance equations are not equal [28]. We call eachyiaage multiplier
corresponding to the power balance equation at each bus the locaal marginal price
(LMP), or shadow price, at that bus [30]. In a similar analysis to what a&s performed
in Chapter 3 with an observation of the relationship between the mgmal price and the
optimal storage size, here, an observation is made between thdim@al storage size at
each bus and the locational marginal price at that bus (without stage). The results here
assumed a storage device with. 4 = 85%, d = $600=kW h, and e = $400=kW; i.e., a large
lithium ion battery [13]. The one-time installation cost for the storagevas assumed to be
C. = $2000. The line parameters and generator cost parameters fitve 9-bus system are
found in the Appendix. The computations shown in this chapter werperformed using the
IBM ILOG CPLEX Optimizer [31] through MATLAB 2013b on an Intel Xe on processor
with 128 GB of RAM.

Simulations were run on the WSCC 9-Bus test system [29]. The modi €@-bus test

system, seen in Figure 4.1, contains three conventional generatcone wind power plant,
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six lines, and three loads.

o =1 1@

Figure 4.1: WSCC 9-Bus test system

4.2.1 Optimal siting without congestion

Without any congestion in the system, the location of the storage ithe system has little
impact. Storage can still provide to be useful for balancing uctudons in the power
supply and for peak-shifting, and the correlation between the ojphal storage size and LMP
exists, as shown in Figure 4.2 for the optimal placement of one stgexndevice. However,
multiple locations could result in a very similar objective function valuenot really making
it advantageous to place the storage at one bus versus anothBar example, the simulation
results in Figure 4.2 indicate that, for most scenarios, bus 9 is the tipal location for the
battery. But because in this case the problem does not have a unejsolution, it is a fairly
arbitrary result without any congestion and by using a DC power owapproximation, only

the size matters as opposed to the location.

43



Bus 1 Bus 2 Bus 3

10 10 10
~—~
§ 5% 5 51,
S o 0 0 ——
= 0 5 10 15 0 5 10 15 0 5 10 15
(0]
N Bus 4 Bus 5 Bus 6
g 10 10 10
(@))
© 5 5 5
Qo 0 0 o he
h o 5 10 15 0 5 10 15 0 5 10 15
g Bus 7 Bus 8 Bus 9
= *
E 10 10 10 - *
O 51 * 5 5L % £

0 0 Ok

0 5 10 15 0 5 10 15 0 5 10 15

Var( ) ($/MWh)?

Figure 4.2: Optimization of 20 individual scenarios showing correlatioof optimal storage
size at each bus with variance in LMP with no congestion

4.2.2 LMP/Storage size relationship with congestion

Optimal siting of the storage is much more valuable when congestiorigs in the system.
To demonstrate the e ect of di erent LMPs on the optimal storage size at each bus, thermal
limits on the lines are put into place. In the rst example, a single line limit isplaced on
line 2, the line connecting buses 4 and 6, as seen in Figure 4.3. The limite$ ® 9 MW
so that congestion exists during the peak hours of almost everyesario. An unlimited

number of storage devices is considered in the system; ilBnE™®* = Ng.
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Figure 4.3: 9-Bus test system with line congestion
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Figure 4.4: Optimization of 20 individual scenarios showing correlatioof optimal storage
size at each bus with variance in LMP with congestion

The results for 20 scenarios with line 2 congested are given in the glon Figure 4.4.

As observed from the gure, it is most advantageous to place théosage device at bus 6.
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Cheap generation from generator 1 can charge the storage dgrio -peak hours, and the

load can consume the stored energy during peak hours when the lbeween buses 4 and
6 is congested. One such scenario is shown in Figure 4.5. When a gjerdevice is placed
at bus 6, is used to supply the load at bus 6 during the peak hours dfe day, as well as

balance uctuations introduced by wind.

20 T T
15F .
——Load at bus 6 <
_ _Power into storage
= at bus 6 |
=
_ _Power out of
storage at bus 6
5F i
IR ~-_"-n\ ,I”N.N"\A
- v ’ \I L
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Figure 4.5: A single scenario showing the storage usage at bus 6

Using this relationship between optimal storage size and variance ircitional marginal
price, a similar scenario reduction technique as derived in the prevwhapter can be
performed to reduce the size of the scenario set. Hierarchicahiteid-linkage can be used
to cluster the data; however, in higher dimensions than before. Woinstead of clustering
in two-dimensions with the variance in system price and one optimal@tage size, we have
multiple locational marginal prices and optimal storage sizes. As witthe storage sizing

problem, the centroidcy for cluster d is de ned as:

Xk, (4.14)

where 4 includes the set of pointsxq = [var( 1); Ess,;:ivar( ng); ESSNB] in cluster d,
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for all busesi = 1:::Ng for which binE; is nonzero. VariableN4 is the number of points
in cluster d. Next, the Euclidean distances between all possible cluster paid; ¢) where
d 6 c, are determined and compared. The pair that minimizekcy ¢k, is combined into
a new clusterm where the data pointsx,, = Xq [ Xc. This process is repeated until the
desired number of clusters is achieved. Next, a representativeesario is chosen for each
cluster. This scenariacy, for each clusterd, is chosen to be the one that is closest to the

mean of that cluster; i.e.,

Xy = argmin Kkxx Cgk,: (4.15)

Xk2 g

As in the previous chapter, each scenario corresponds to a spediealization of load
and wind generation for one day. Each of these scenarios resultoime data point in the
correlation between storage size and variance in marginal cost oadl considered buses.
The clustering technique is then used to cluster the multi-dimensiohaata into a pre-

de ned number of clusters.

4.3 Simulation Results

In this section, various cases are considered for the storage gjitproblem. The number of

considered storage devices is varied, as well as the number of ested lines.

4.3.1 Solution of the Placement Problem

The optimization problem solved in this chapter is a convex mixed-integ quadratic prob-
lem. In the following simulations, it is con rmed by CPLEX's branch-andbound MIQP
solver that the output is the optimal integer solution. Due to the e cient implementation
of the dual QP simplex algorithm for MIQPs in CPLEX, other algorithmsfor solving MIQP

problems are not used or implemented in CPLEX for problems of this e [32] (however,
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the Outer Approximation algorithm is used for CPLEX's MIQCP (mixed-integer quadrat-
ically constrained problem) solver). The optimization can be perfored faster if a larger
tolerance is speci ed, but because time is not as much of an issue i thlanning problem,

1 10 ° was used for the tolerance to ensure that the solution is optimal.

4.3.2 Case 1: One Congestion

In the rst example, the limit on the line connecting buses 4 and 6 is séb 10 MW. From
the results in section 4.2.2, we can see that when congestion is pnésm this line, the
system can benet from placing storage at bus 6. Here, in the rstonsidered case, the
two-stage optimization is performed over 20 scenarios to determairthe optimal number
and sizes of storage devices. Next, we reduce the set of 20 stesdo a set of 10 scenarios

and subsequently a set of 5 scenarios and perform two-stageiojzation.

Table 4.1: Optimal solution from 20 scenarios.

Location | Ess, (MWh) | Pss, (MW)

Bus 1 21.896 3.756
Bus 4 3.392 0.569
Bus 6 27.874 5.702

Table 4.2: Optimal solution from 20 scenarios clustered into 10.

Location | Ess; (MWh) | Pss, (MW)

Bus 1 17.704 3.048
Bus 4 5.9528 0.891
Bus 6 28.576 5.813

In both the original case with 20 scenarios and the reduced set ofds seen in Tables
4.1, 4.4, and 4.3, the results of the optimization indicate that it is optiral to place three

storage devices in the system, at buses 1, 4, and 6. The optimabrstge size at bus 6
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Table 4.3: Optimal solution from 20 scenarios clustered into 5.

Location | Ess; (MWh) | Pss, (MW)

Bus 1 5.782 1.061
Bus 4 17.538 2.808
Bus 6 27.874 5.702

remained about the same in the original set and the reduced setsitlthe storage sizes at
buses 1 and 4 changed. However, in the considered case, haviogasgfe at bus 1 or storage
at bus 4 is almost equivalent. These buses are connected with a sinighe that is not
connected to any other buses, line losses are not included in DC Opséihpower ow, and
this line is not congested in this example. The combined storage cajaat bus 1 and 4 is
25.288 for the original 20 scenarios, 22.994 for the reduced sel@fscenarios, and 23.320
for the reduced set of 5. It can be observed that the combinedosage capacity in the bus
1/bus 4 region of the grid is very similar, indicating that this amount ofstorage capacity is
the optimal amount for this section of the grid. The similarity in theseoptimal solutions
also indicates that the scenario reduction is e ective in achieving a silar solution to the

original set of scenarios.

4.3.3 Case 2: Multiple congestions

To demonstrate the e ect of two lines which often reach their limit duing peak hours,
limits on line 2 (from bus 2 to bus 7) and line 4 (from bus 4 to 5) are set 80 MW and
0.3 MW, respectively. This is illustrated in Figure 4.6.

First, the two-stage optimization is performed on 20 scenarios witim unlimited number
of storage devices; i.eRinE™ = Ng. As seen from the table, the optimal solution in this
situation involves multiple storage devices. However, in a real worldtenario, there may
not be an unlimited number of storage devices to site in the system.hiis, we take into

consideration the situation where only one storage device is placedtle system.
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Figure 4.6: 9-Bus test system with two line congestions

Table 4.4: Optimal solution from 20 scenarios with two congested lines

Location | Ess, (MWh) | Pss, (MW)
Bus 1 10.672 1.777
Bus 3 1.366 0.4198
Bus 4 14.947 2.637
Bus 5 42.487 7.181
Bus 6 1.436 0.390
Bus 8 0.720 0.197
Bus 9 3.083 0.711

Table 4.5: Optimal solution from 20 scenarios with two congested linesid one battery.

Location

Ee (MWh)

Pss, (MW)

Bus 7

49.957

8.587

As can be seen from Table 4.5, the optimal location for one storagemite in the system

with two congestions is at bus 7. During the times when the lines areragested, cheaper

generation from buses 1 and 2 can be supplied from a storage detz has been charged
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in the o -peak hours at bus 7. The results in these two tables are iatesting because the
optimal solution with unlimited storage devices does not place storagt bus 7, but when

running the optimization to site one storage device, bus 7 is the onbat is chosen. This

could be due to two factors. In the rst case with unlimited storagestorage is not only

placed for the purpose of alleviating line congestions, but also forgkeshifting and load

levelling. The storage placed at buses 1, 4, and 6 could serve thisgmse, for example. The
storage devices placed at buses 5 and 8, the areas more a ectgadbngestion, can charge
during times of no congestion serve the load at these buses durimgeés of congestion. In
the one storage case, a storage device placed at bus 7 can sersiendar purpose to these
two loads.

The results of the storage siting problem indicate that the optimal lcation of the stor-
age is highly dependent on line congestions. By the use of optimally ptacstorage, energy
can be stored in the storage during o -peak hours and utilized durgtimes when line con-
gestions may occur, reducing the costs incurred by the congesso Without congestion
in the system, the speci c location of the storage is less useful thaptimally sizing the
storage. In future work, by either performing AC OPF instead or § including a model for
the line losses, the optimal solution will take into account that depeting on the location

of the device, power losses can be minimized in the case with no cotiges.
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Chapter 5

Chance Constraints for Wind

Forecast Errors

Chapter 3 focused on nding the optimal capacity of a storage dee under the assumption
that the wind forecast was known with certainty. However, this willassumption will rarely
be the case, and errors in wind forecasts can have a signi cant ingban the bene t gained
from energy storage. In this chapter, we focus on the intra-hogeneration dispatch to
balance not only the intermittency of the wind generation, but alsohe uncertainty in
the wind forecast. Sizing a storage device for various purposesilehaking into account
uncertainty in the optimization problem has been proposed in the litature. In [34],
persistence scenarios are employed, with the conclusion that suchechnique can prove
to be useful for power capacity sizing but not as much for energygacity sizing. The
assumption is made that the power and energy capacities are optimiz independently.
Here, the power and energy capacity of the storage device, adlas the cost of generation,
are optimized simultaneously. In [35], the optimal sizing problem was msidered from
an electricity market perspective, serving as a hedge against windaertainties. In the
combined wind/storage power plant framework, it is assumed thathe wind power plant

operator will want to minimize the deviations from his contract and wkn excess power is
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produced, the storage will be charged, and when more power is deg, the storage will
discharge. In this thesis, rather than penalize deviations from a wdnpower producer's
contract, we are concerned with the system point of view where wash to maximize the
use of wind and minimize the generation costs, with the goal of incisag the overall social

benet of the system.

Both stochastic wind and demand are assumed in [36], and Monte-Gasampling of
the distributions, which are assumed to be Gaussian with zero meandaequal variance
at each timestep, is used to determine the optimal storage size. r@én reliability indices
are also taken into account in the optimization. The load pro le useddr the week-long
optimization period consists of a single day of historical data that isspeated and scaled.
In this thesis, we use purely historical data for both the wind and th load pro les, and no
assumptions are made about the patterns of these pro les. Whildé distribution of the
forecast errors at each time step in the horizon are assumed tothe same, the aggregation
of these errors is taken into account by adjusting the distributiorof the energy level at

each time step.

Chance, or probabilistic, constrained programming has been utilized many areas of
power system optimization. Particularly, to take into account wind ucertainty in the
energy storage sizing problem, chance constraints are used in [3itvever, Monte-Carlo
sampling is used to generate scenarios; i.e., there is no analyticahiafation for the con-
sideration of uncertainty. The stochastic unit commitment problemis addressed using
chance constraints in [38] by breaking up the original stochastic golem using a multi-
variate probability constraint into a sequence of easier to solve staastic problems each of
which can be reduced to a deterministic problem. The approach eveally converges to
the solution of the stochastic problem. In [39], a Monte-Carlo appagh is taken to solve
a di erent problem, namely the chance constrained AC OPF problemOn a 10-minute

dispatch scale as considered in this thesis, performing many Mor@erlo simulations may
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result in a time consuming optimization problem. Deriving an analyticaldrm of the chance
constraint only requires a single optimization problem to be solved. Aiytical forms of
the chance constrained security constrained OPF are derived in [4&nd [41] where the
probabilistic constraints are formulated with respect to line ow limits The assumptions
made in these papers, as in this thesis, is that the wind forecast errcan be modeled
as a Gaussian distribution. The bene ts of this are discussed in modetail later in this

chapter as well as in [40].

Here, chance constraints are formed for the minimum and maximuntage of charge
of the storage device. The power and energy capacity of the sige device are optimized
simultaneously. The advantage of the method presented in this this is that no approx-
imate techniques such as Monte-Carlo simulations are used; rathem analytical form
of the probabilistic constraints is derived and the optimization is solvk directly. Also,
the control actions are considered on a 10-minute scale ratheratih on an hourly time
scale, allowing for storage to balance out intra-hourly uctuationsand uncertainties due
to wind. Furthermore, we assume that the storage is operateding a model predictive
control scheme, i.e. with a receding horizon, as opposed to a singldtirstep optimization
problem for the time frame of a scenario as is usually done in the prewfliterature. By
considering aggregated probability distribution functions for the itne steps in the opti-
mization horizon, we also account for the fact that prediction erms at the beginning of
the optimization horizon in uence the operation of the storage at leer steps, which is very

important when sizing the storage.

5.1 Modeling and Operation

The same storage model as described in Chapter 3 in equations (§3)) is used here.
The variable t, the time between control decisions and the time between when wind

forecasts are given, is set to 10 minutes in our simulations for the qmose on focusing on
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intra-hourly economic dispatch.

5.1.1 Predictive Optimization

It is assumed that the storage, once placed in the system, is opteh using a model
predictive control approach. That is, the generation and storagoutputs are determined
by optimizing over H time steps to minimize the overall supply cost, then the output
corresponding to the rst step in the horizon is applied, and the opmization is carried
out again over a shifted time horizon ofH time steps [9]. This concept is described
in more detail in Chapter 2. Hence, here we formulate the determitis multi-timestep
optimization problem which will be incorporated into the storage sizingroblem in the
next section.

The generators are modeled using quadratic cost functions dechdy cost parameters
a;, b, and ¢, minimum and maximum generation limits Pg}‘” and PZ®, and ramping
limitations Rg;j. The resulting cost function for the problem is given by

X 1Xe
min aPg (h)+ bPgi(h)+ ¢ ; (5.1)

P .
¢ h=0 i=1

subject to the following constraints®:

st.  PAM  Pgi(h) PJ; (5.2)
jPei(h+1) Pgi(h)] Rai; (5.3)
Xe

Pei(h)  PL(h)+ Pw(h)

i=1

+ Poyt(h)  Pin(h)=0; (5.4)

1As we only consider operation here, the storage size and maximum ahging rate is xed in this
formulation.
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0 I:)out (h) Pss; (5 ' 5)

0 Pn(h) P (5.6)
0 E(h+1l) Eg (5.7)
E(H) = Eo; (5.8)
E(h+1)= E(N)+ o tPn(h) —dtPout(h); (5.9)

forh=0::H 1, andi =1;::;Ng, whereNg is the number of generators in the system
and it is assumed that the time between to time steps in the optimizatiohorizon is t.
The generation output for generatori at time step h within the horizon is denoted by
Pgi(h), the total wind generation by Py, (h), and the total load by P_(h). The initial
energy level in the storage devicé (0), is set to Eo. Both load and wind generation are

predicted values.

5.1.2 Forecast Error Modeling

In order to incorporate uncertainty into the problem formulation,a model of the typical
forecast error is needed. As we will focus on wind generation as then-dispatchable
resource, we use three months of wind forecast and actual windta from the Bonneville
Power Administration [42] to analyze forecast errors in wind predigins. A histogram of
the percent deviation between the actual and forecasted wind iB@vn in Figure 5.1. A
normal distribution with mean |, and variance 5 is tted to this data, as proposed in
[36], [41]. The high kurtosis of the data set may indicate that a distriion other than
Normal may be more accurate; however, the use of the Normal tiisution allows for the
convenient reformulation of the chance constraint to an analyti¢dorm.

This reformulation avoids the approximations made by other apprades such as Monte-
Carlo simulations, which would be required if the forecast error wete be modeled with

a di erent distribution. In order for Monte-Carlo simulations to adequately represent the
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Figure 5.1: Histogram depicting three months of wind forecast ems

distribution they are sampling from, many trials must be run. There ®ist techniques to
reduce the number of required trials, such as Latin Hypercube Satimg, but regardless,
signi cantly more simulations must be run in Monte-Carlo compared tathe analytical
formulation, which requires a single simulation. In actual operationdvlonte-Carlo simula-
tions might require too much time and too many computations to be de on a real-time,
10-minute dispatch scale, especially on a large system. In additiors discussed in [40],
a Normal t of the tails of the distribution is more tting compared to other distribu-
tions such as the Weibull distribution when looking at the actual phyisal modeling of

turbulence.

The available wind Py, can now be described as the sum of the forecasted wind and

the forecast error:

Pw (t) = Ps (t) + Perr (t) P (1): (5.10)

Hence, the output of the wind is not a deterministic value any more la random variable.

In Section IV, we will describe how to integrate this random variable o the problem
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formulation using chance constraints.

As in Chapter 3, two-stage stochastic optimization is used to optimézfor the energy and
power capacities of the storage device. The rst-stage variablase the storage parameters
Ess; Pss, and Eq, and the second-stage variables are the generation values athelaosii,
Pg, (s; k), charging/discharging rate of the storageP, (s; k) and Poy(S; k), and the energy
level of the storageE (s; k)?, wheres indicates the scenario and the time step within the

optimization horizon.

In this two-stage formulation, all second stage variables are nowdexed by time,
now denoted withk, and by scenario. The rst stage variable€s, Pss, and Eq are not
dependent onk or s. These variables are common to all scenarios; their optimal valuesa
calculated while taking into account all of the considered scenarioBmsiltaneously. The
overall objective of the two-stage problem, similar to that in the aginal sizing problem in

Chapter 3, is as follows:

s X Mo
min WsTe aiP& (s;k) + hPg, (s;K) + ¢
s=1 k=1 i=1

+dEg + ePs (5.11)

where T, corresponds to the considered number of days over which therstge is assumed
to be fully operational, ws is the probability of occurrence of scenaris, where the sum over
Ws is equal to one anck and d are the cost parameters of the storage {kW 10 minutes)
and $=kW, respectively). The same constraints as in (5.15)-(5.24) apply bdior a time

horizonH = K and for each considered scenarg

2We deliberately introduce another time variable k here. The purpose is to distinguish between the
time stepsh in the MPC optimization horizon and the time steps k within the scenarios in the two stage
stochastic optimization problem. For the actual time, we uset.
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Note that this formulation corresponds to a multi-step optimizationwithout a receding
horizon and the consideration of prediction errors. In the next séon, we adjust this
formulation to take into account that the device is operated undel receding horizon

scheme and in Section 5.2, we transform some of the constraintptobabilistic constraints.

5.1.3 Receding Horizon

In MPC, the optimization takes place over a limited horizorH, but only the rst step is
implemented. This improves operation as opposed to fully implementirthe sequence of
control decisions over the entire horizon because it acts as a meda introduce feedback
and improved predictions into the decision making process. Here, inder to take into
account in the storage planning problem that the horizon is being shefl and decisions
are updated, we consider all optimization horizons simultaneously.h& resulting objective

function for the MPC problem is as follows:

Xs XK 1Xe
min WeT, aP& (s;k;h) + bPg (s;k;h) + ¢
s=1 k=1 h=0 i=1

+dEg + ePs (5.12)

where Pg, (s; k; h) indicates the generation output at time steph within the horizon H
where this horizon starts at time stegk within the horizon of scenarios. This is visualized
in Figure 5.2.

This objective is subject to the following set of constraints:
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Figure 5.2: lllustration of scenario optimization over prediction horians.

x Ps,(s;k;h)  Pu(s;k;h) + Pw(s;k;h)
i=1
+ Pout(s;k;h)  Pin(s;k;h)=0; 8h=0::H{1; (5.13)
jPg,(s;k;h+1)  Pg,(s;k;h)j Re;; 8h =0::H{1; (5.14)
pgn Pg, (s; k; h) P&™; 8h=0::H{1; (5.15)
0 Pout (S; Kk; h) Pss: 8h =0::H{1; (5.16)
0 Pin (s; k; h) Pss; 8h =0::H{1; (5.17)
0 E(s;k;h+1) Ess; 8h =0::H{1; (5.18)
E(s;k;1) = E(s;k;H); (5.19)
E(s;K; 1) = Eo; (5.20)
E(s;k;h+1) = E(s;k Lh)+ . tPih(s;k;h) (5.21)
—dtPout(s; k;h); forh=0

E(s;k;h+1) = E(s;k;h 1)+ ¢ tPin(s;k;h) (5.22)

—tPout(s; k;h); forh> 0
d
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foralls=1::Nsandk =1::K. (5.23)

5.2 Inclusion of Uncertainty

We now introduce chance constraints into the problem formulationot take into account
uncertainties in the wind power output forecast. We then refornmate these constraints
to obtain an analytical expression for these constraints which came taken into account
directly in the optimization problem. We further discuss how the intettemporal depen-
dencies of the storage level and the quality of predictions over thigne horizon can be

incorporated into the formulation.

5.2.1 Probabilistic Storage Equations

In Section 5.1, the wind forecast error was de ned as a random vable with a Gaussian
probability distribution. The consequence is that we should transfon some of the deter-
ministic constraints in the original problem formulation into probabilisic constraints; i.e.,
that they only need to be fullled to a certain pre-de ned probability. Otherwise, it is
possible that the problem might become infeasible or an unrealisticallyrége storage size

would result.

Hence, the discrete storage equations are therefore reformathas follows:

E(k+1)= E(K)+ t Py —dtpout; (5.24)
0 Pnk)  Ps (5.25)

0 Pu(k) P (5.26)

PrO  E(k+1) (5.27)
PrE(k+1) Ee) (5.28)
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Constraints (5.27) and (5.28) now state that with a probability of atleast , the energy
level of the storage at any point in time has to be above zero (or aasen minimum energy

level), and less than the maximum capacity of the storage.

5.2.2 Analytical Reformulation

Because of the assumption that the random variable is Normally distruted, the chance
constraint can be reformulated analytically [43], as done in [40] and [4fbr probabilistic
line ow constraints. To incorporate forecast errors, we rewritéhe energy balance equation

(5.24) to account for these errors:

Ek+1)= ER+ t Pn(k) —Pou(k)+ tPer (k)P (K); (5.29)
d

under the assumption that the charging/discharging conversion $ses related to this error
are small enough to be neglected. Now having the energy balanceaalinction of the

error, we rst look at the upper bound on the storage level (5.28nd de ne

f(Perr)= E(kK)+ t cPin(K) —tPout(k)+ tPer (K)Pr (K)  Ess: (5.30)
d

The chance constraint is then given by

Pr(f(Per) 0) (5.31)

which states that the constraint should be ful lled with probability . BecausePg. is

Normally distributed with mean , and variance g the function f (Pg,, ) is also Normally

distributed with the following mean and variance:

0= E(K)+ t Pn(k) —Pou(K)+ t Pr(K) Ess; (5.32)
d
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0=, t Pr(k): (5.33)

The left hand side of (5.31) actually equates to the cumulative distrition function
(CDF) of the Gaussian distribution given by parameters (5.32) andy(33) evaluated at

zero, i.e.,

Pr(f(Per) 0)= 5 ; (5.34)

where () indicates the cumulative distribution function of the standard nomal N (0; 1).
Taking the inverse CDF of both sides and rewriting it such that all costant terms are

moved to the right of the inequality sign, yields

E(k) + t cPin (k) _dtpout(k) Ess p tF)f (k) l( ) t pr (k) (5-35)

A similar derivation can be done for the chance constraint for the l@av storage bound

(5.27), resulting in the following analytical formulation:

E (k) t Pin (k) + _tPout(k) p tPr(K) )+ t oPs (K): (5.36)
d

Constraints on storage (5.24)-(5.26) are still included in the set @onstraints, along
with the original power balance constraint which must be satis ed fothe given forecasted
value of wind, i.e.,Py (k) = Ps (k).

In the current formulation, the storage is responsible for accoting for the entirety
of wind forecast errors. In reality, generators would also be able &djust their output
to account for these errors, and the current formulation couldesult in an unreasonably

large storage size. Thus, in an adjustment to constraints (5.35nd (5.36), a reserve
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for generation up-ramping Pg, (k) and down-ramping Pgi(k) capacity is added to the
constraints to allow generators to adjust their output in resporesto forecast errors:
t Re
E(k) + t cPin (k) _dPout(k) Ess t P(;i (k)
i=1

o Pr(k) ()t pPr(k); (5.37)

and

t Xe
E (k) t cPin(K) + —Pout(K) t PG“i (k)
d

i=1

o tPr(k) (O )+ t pPr(k); (5.38)

where the following additional constraints are added to the problem

Pc,(s;k;h+1)  Pg(s;k;h) P& (sik;h) Ro,; (5.39)

Pg (s;kih+1)  Pg(s;k;h)  Pg (s;k;h) R (5.40)

Pg, (s;k;h+1) Pé"i (s;k;h+1)  Pg(s;k;h) Pg, (s: ki h) Reg,; (5.41)
Pg (s;k;h+1)+  Pg (s;k;h+1)  Pg (s;k; h) Pgi (s;k;h) Rg,; (5.42)
P Pe (s;k;h) P& (s;k;h) P&, (5.43)

pgin Ps (s;k;h)+ P& (s;k; h) PI™; (5.44)

for h = 0::H 1 and with P&;Pgi 0. Constraints (5.41) and (5.42) represent the
case where, during two time steps, a generator could potentiallymgp from its extreme
high/low setting to its extreme low/high setting in the next time instance. Because these
variables represent reserve ramping capacities for errors andt mehat action is actually
implemented in the system, it needs to be ensured that these poteh ramping actions

can still be feasible. The ramping capacities are also penalized in thgeative function:
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Xs X Ke P _ p_
min WsT aiPéi (s;k)+ bPg (s;k)+ ¢+ b Pgi (s;k)+ b PG“i (s; k)

s=1 k=1 i=1

+dEg + ePss (5.45)

5.2.3 Aggregation over Time Steps

In the aforementioned chance constrained optimization problemaeh step in a scenario
is optimized simultaneously, with identical and independent distributios for the wind
forecast error at each step. However, as wind forecasts maylyobhe updated every hour
or multiple hours yet the predictions may be given on a greater levef granularity, the
forecast errors towards the end of the prediction may be less acate than those towards
the beginning. Therefore, the distribution of the forecast errochanges depending on the
time elapsed from the initial forecast, increasing in variance as we weofarther into the
horizon.

Furthermore, as the probability constraint is formulated on the eargy storage, it needs
to be taken into account that the deviations in the energy level fio the deterministic
energy level for perfect predictions accumulate over the time hpon, e.g., if a decision
to charge or discharge storage is made at the current time stepelto an error in wind
forecasting, this decision will a ect the state of charge of the stage at the next time step
and must be taken into account as an accumulation of error. Due thhe Normal nature
of the error distribution and assumption of independent distributios at each time step,
these parameters can be summed at each step in the horizon, es@nting the propagation
of forecast errors. The terms ,P; and ,P; in equations (5.37) and (5.38) are replaced
by the following terms for each time stegh in the horizon to represent this aggregation of

error:
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X

nPs (h) = (1) Ps (i); (5.46)
v ¥
ﬁ NG
wPr (h) = ( o(i)Ps ()2, (5.47)

i=0

forhn=0::H 1.

5.2.4 Discounted Weight on Constraint Violations

Satisfying the chance constraint with probability becomes increasingly di cult as the
distribution of the forecast error widens. Thus, will also adapt to account for the current
position in the horizon, decreasing the level of required chance stmaint ful llment. For a

ful liment probability ~ °at the rst time step in the horizon,  will be updated as follows:

0

sqri(h+ 1)’ (5.48)

h:

forh=0::H 1. With this update, the chosen will capture the same range of values
in the distribution as the original ° captured of the original °and © adapting to the

changing distribution parameters.

5.3 Simulation Results

In this section, we rst give an overview over the simulation setup ahthen discuss the

results.
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5.3.1 Simulation Setup

We use the IEEE-57 bus test system for the simulations using MATRPMER's generation
cost parameters and replacing the rst of the eight generatorsith a wind generator.
The 10-minute demand data is taken from ISO New England [22] and @éhdata for the
wind outputs from the Eastern Wind Integration Transmission Stug (EWITS) [23]. It
is assumed that the wind predictions in this data are updated everyolr and given in
10-minute intervals. The prediction horizon in our simulations is set tmne hour at 10
minute intervals, resulting in H = 6. The length of a scenario is one day, resulting in
K =144. It is assumed that the chosen storage technology is a largehliim-ion battery
with e ciency . 4 = 85% and cost parametersd = $600=kW h and e = $400=kW [13].
In addition, a sensitivity analysis is performed and the optimal storge sizes are given
for a variety of costs and e ciencies. The storage is assumed to lmperating without
degradation for the assumed time period of 10 years, i.@, = 10 365. The computations
were performed using the IBM ILOG CPLEX Optimizer [31] through MA'LAB 2013b.
Due to the reformulation of the chance constraint, the optimizatio problem is now a
convex problem with a quadratic objective and linear constraints. €\in Chapter 3, the

CPLEXQs$blver was used to solve the optimization.

5.3.2 Optimal Storage Sizing Results

In Table 5.1 the optimal storage parameterk s and Pss for 20% wind energy penetration by
supplied energy are given, respectively. The number of simultanebyconsidered scenarios
is set toNs = 10 which already results in over 166,000 variables and 584,000 coastts.
However, the diversity of more scenarios could be captured by ugia scenario reduction
technique such as the one described in Chapter 3. The values fotio@l storage capacity
are calculated using a constraint satisfaction probability ° of one, two, and three standard

deviations away from the mean. As expected, as the constraints the storage are enforced
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more stringently, the more advantageous it is to have a larger sege capacity.

Table 5.1: Optimal storage sizes for varying®

0 Ess(MWh) | Pss(MW)
0.68| 428.47 46.88
0.95| 1566.76 345.15
0.99| 2214.75 417.67

An example scenario is shown in Figure 5.3. In Figure 5.4, the optimalwer charged/dis-

charged from storage and the state of charge of the storagevide for this scenario is given.

The amount of total storage energy capacity, as compared toted demand energy for a

this scenario is 4.96%, and the amount of power capacity of the shge compared to the

peak load is 1.91%. Realistically, this amount of storage in the systenowd not be con-

tained in one single lithium ion battery, rather, the total capacity reguirements would be

dispersed over multiple storage devices in the system.
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Figure 5.3: A single scenario.
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Figure 5.4: Storage state of charge and power charged/dischadg

5.3.3 Varying Storage E ciency and Cost

Here, the cost parameters for the energy and power subsyste@are varied to study var-
ious battery technologies [13] that could be used for long-duraticstorage with frequent
discharging. The results are tabulated in Table 5.2 for®= 0:95 and the same 10 scenarios

used previously, starting with the battery used in the previous simations (lithium-ion).

Table 5.2: E ects of varying the battery technology on the optimalsize

Battery 4 ¢ |dB=kwh) |e ($/kW) | Esxc(MWh) | Pss(MW)
Technology

Lithium lon 85% | 600 400 1566.76 345.15
Zinc 70% | 400 400 3179.27 328.27
/Bromine

Vanadium 65% | 600 400 2956.29 262.60
Redox

Sodium /Sul- | 75% | 350 350 3290.85 431.73
fur

Lead-acid 80% | 330 400 3398.78 466.79

The results for varying the price of the energy capacity of the stage make sense; the
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more expensive it is to increase the energy capacity, the lower thapacity. The power
capacity, on the other hand, seems to not only be a ected by therige per kW, but also
the charging/discharging e ciencies. For example, the Vanadium R#ox battery, with a
65% roundtrip e ciency, has an optimal power capacity of 2620 MW, much less than
the optimal capaciy of the Sodium/Sulfur battery at 43173 MW and an e ciency of 75%.
The energy capacity of the Sodium/Sulfur battery is only 33%6 MWh di erent than the
capacity of the Vanadium Redox battery, however, a much smallerafction of the overall
capacity. Depending on the specic application, there may be othdoe other bene ts
to using certain storage technologies; for example, the cost obstge is modeled in our
problem formulation as a linear function of the capacity, but there my be installation
costs associated with each device that vary from technology toctenology. The maximum
capacity of each storage device also depends on the technology ahen it is optimal to

have a large capacity, multiple storage devices may be needed todethe desired amount.

5.3.4 Static

In order to analyze the e ect of the adjustment of within the optimization horizon,
we here provide results for simulations where the is the same for all time steps in the
horizon. Table 5.3 shows the results for the case with 20% wind enggenetration, model
predictive control with H = 6, and with error distributions that change within the horizon,
except without the corresponding update of . By requiring the chance constraints to be
fullled at  percent of the time for the entire horizon, the optimal storage sizmust be
larger to account for the increasing variance in the forecast errdistribution. Because the
optimal values past the rst step of each horizon are taken into @aount but not actually
implemented in MPC, they should carry less weight as we move furthamo the future,

which motivates our approach of decreasing the value forfor later steps in the horizon.
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Table 5.3: Optimal Storage Values without adapting

Ess(MWh) | Pss(MW)
0.68| 993.91 231.79
0.95| 3469.08 526.17
0.99| 4897.46 624.93

5.3.5 Validation of the Chance Constraint

To verify that the derivation of the chance constraint is correcta framework for validation
of each chance constraint is constructed. First, because theadlte constraint is in terms of
the optimal energy level at each timek, the distribution for the energy level is constructed
based on the wind forecast error distribution, load, and optimal Vaes of the generation
and other storage variables. The parameters of this distributiorof every time stepk and

scenarios are given rst for the chance constraint on the upper limit of the sate of charge:

U(siK) = E (51K) —Po(si+ tpP(sK+T Po(sik t PL(K)
d .

U(s;k) = p tP(s;K);

and the lower limit on the state of charge:

£(s;k)

E (s;k) + —tPout(S; k) t pPi(s;k) T Py, (s:k) t Pg. (K)
d :

d(s; k) o tPr(S;K);

where the asterisk (*) denotes the optimal value, i.e. the solutiorf the two-stage stochastic
MPC problem. Then, at each step, the percentage of the energigtlibution that is outside

the chance constraint limits is calculated. These values were found satisfy the chance
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constraint at least percent of the time for all time steps and scenarios, verifying the
validity of the analytical reformulation of the chance constraint. Tis concept is seen in

Figure 5.5.

Validation of Scenario s

Pr(O « E(t) « Ess) ! At the chance
constraint limit,

————— (1-Y% of energy
level distribution
Energy level :
is above E
5 — > t
T

Figure 5.5: lllustration of the chance constraint validation procedwe.

When the energy reaches its upper or lower limit, the chance coraimt inequality is
binding. The percentage of time when the chance constraint is bindjrand the percentage

of time when it is ful lled with at least probability of 0:99 are listed for varying levels of

%in Table 5.4.
Table 5.4: Chance Constraint Ful Iment

0 Percentage of time chance Percentage of time chance
constraint is at its limit | constraint is fullled with
(binding) probability  99%

0.68| 13.67% 22.93%

0.95| 13.62% 44.87%

0.99| 13.85% 100.00%

As the table indicates, the chance constraints are binding about ¢hsame percentage

of the time for each value of . The constraints become binding when the storage is close
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to its limit or close to zero, which is around the same duration of time inlkathree cases

(see Figure 5.6). The third column in the table shows the percentagé time the entire

energy distribution is contained within [Q Ess] with at least a probability of 99%. Due

to the increase in storage capacity required to ful Il the case with ©= 0:99, the energy

distributions at times when the storage is not at its peak are contagd within [0; E]

more often than the case with the lower storage capacity correspding to

0= 0:68.

These percentages were calculated over all 10 scenarios. An gxianscenario is shown in

Figure 5.6 for °=0:68;0:95, and 099.

As required by the chance constraint, 68%, 95%, and 99% of thesegy level distribution
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Figure 5.6: Simulation results for the energy levels for varying level$ o.
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must lie between 0 andEss. As the requirement becomes stricter, the gap between the
optimal energy capacity and the actual state of charge becomksger. This goes in line
with the fact that accounting for a larger range of potential foreast errors results in an
increased optimal storage capacity. It is important to note that de to the in nite length
of the tails of the Normal distribution, in order for 100% of the posble forecast errors to
be taken into account, the storage capacity would have to be in ndly large. In reality,
the output of the wind farm would be limited above by its maximum capaty and below
by an output of zero, so these tails would be truncated before inity in either direction.
However, to account for the cases of wind error that could not beompensated by the
storage and generator ramping, the wind would either have to be rtailed or the power
system reserves would be utilized. In the optimizations here, it is assed that we want to
utilize as much wind as possible, so curtailing is not an option, althouglhnis is an aspect

that could be implemented in the future work.
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Chapter 6

Coordination Across Control Areas

As electric power systems span entire continents, the controlsgonsibility for these large
systems is shared among multiple entities. Each of these entities ispensible for a speci c
geographic area called control area. The coupling of the contraleas via tie lines allows
for exchanging power across their boundaries but also leads to theed to coordinate the
actions in the areas. Traditionally, this is being done by agreeing on &tline ow, e.g.
based on market mechanisms, and then optimize the schedule of gation within the
areas to balance supply and demand. This leads to a potentially suliimpal usage of the
available resources because the optimization is limited to the localizeckas.

As long as resources are distributed throughout the system in adg homogenous way
in terms of their capabilities and costs, the suboptimality may be acptable. However,
once the resources in one area have considerably di erent chagaistics compared to the
resources in the neighboring area, substantial improvements inrtes of providing reliable
and cost e ective electric power supply may be achieved. In this tees, we particularly
consider the situation in which one area has signi cant amounts of kable renewable
generation resources and the other area has signi cant amourtdé storage.

In that case, it is bene cial for both areas to improve the coordintgon such that the

storage is being used to balance the variability of the renewable resces. Generally, this
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means that the control areas should be optimized jointly in a single miealized optimization
problem requiring that the areas share their system information dier with the other
entities or a centralized entity overseeing all areas. Another optids to use decomposition
techniques to decompose the centralized problem into subprobleeach associated with
a particular control area. The result is an iterative process whereach area solves the
problem assigned to it and then provides some information about tis®lution at the buses
located at the boundary of the area to the other areas. Based time information received
the areas update their solution and keep exchanging until convemgce has been achieved.
The nal solution should be equal to the solution obtained if the prolem would be solved

by a centralized entity across all areas.

MPC has previously been applied to power systems for energy stgeacontrol. In [45]-
[48], centralized MPC is used on relatively small scale systems to optilgacontrol a battery
to reduce the e ect of uctuations in the power supply due to reneable generation. In [49],
a multi-time period DC OPF problem with storage is solved in a distributedvay using the
alternating direction method of multipliers (ADMM), where devices tlat exchange energy
are required to exchange information in a peer-to-peer frameworThe nonconvex MPC
AC OPF problem is solved in a distributed manner in [50] using the AND méabd on
the IEEE-14 bus test system. The work shown in [50] is extended ihis chapter to the
IEEE-57 bus test system, and two modi cations on the AND methodaiming to improve
the rate of convergence are used to solve the distributed optimtian. Distributed MPC
is implemented for another purpose in [51] for Automatic GeneratioGontrol, and in [52]

for the mitigation of cascading failures in a power system.

In this thesis, distributed MPC is used to coordinate renewable geration in one area
with storage in another area. Two extensions are derived for theiginal AND method
which for a variety of cases signi cantly improve the rate of convgence of the optimization.

Simulation results are given for the IEEE-57 bus test system (pamgeters for the system
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are found in the Appendix). Generally, solving the AC OPF problem foeach step in an
entire prediction horizon results in a very large nonlinear optimizatioproblem; however,
the straightforward decomposition of the problems using AND makethe optimization
of the individual subproblems easily parallelizable. When this method ispplied to the
multi-area OPF problem as in [53] and [50], the variables exchanged Wwetn the areas
corresponds to the voltage magnitudes and angles at buses carieé across areas, as
well as the Lagrange multipliers at these connected buses and line$he Lagrangian
multipliers are directly given from the neighboring subproblems, unlikether Lagrangian-
based decomposition methods which require a separate updatetfer Lagrange multipliers.
There is no need for areas to share information with other areasatis not related to their
physically connected buses, and the problem converges to thetcalized solution provided

the convergence criteria is met [4].

6.1 Problem Formulation

The problem that we address in this chapter is a Model Predictive Ctnol problem to
minimize the overall cost of supplying the load and balancing uctuatios in the power
supply introduced by wind by optimally utilizing the available energy stoage. Hence, it is
a multi-step optimal power ow problem which is subject to inter-tenporal constraints on
energy storage devices and the AC power ow constraints. Theenall problem formulation

is therefore given by

X X
min aP& + hPg + G (6.1)
k=1 i=1
sttt Po (K)+ Pw (k) PL (K) 6.2)
X
Pin; (K) + Pout, (K) P (k) =0; (6.3)

i2
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Pin i

X
Q) QK QK =0;
i2
Ek+1)= E()+ o P (K) — Pou (K):
d

E; Ei(k+1) Ei;
O Pini (k) ﬁEi;
0 I:)outi (k) 5Ei;

0 PGi (k) ﬁGi ;

optimization horizon

number of buses in the system

active power output of generator at bus
cost parameters of generator at bus
active power output of wind generator at bus
active power load at bus

power injected into storage at bus

power drawn from storage at bus

active power owing on lineij

set of buses connected to bus

reactive power output of generator at bus
reactive power load at bug

reactive power owing on lineij

energy level in storage at bus

time between two consecutive time steps
charging e ciency of storage at busi

discharging e ciency of storage at bus
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maximum active power output of generator at bus
E; lower energy limit of storage at bus
E; energy capacity of storage at bus

g, Mmaximum dis/charging rate of storage at bus

Whenever there is no generator connected to busit is assumed that equations (6.2)
{ (6.4) are reduced to not include the generation output variable. fie same holds for the
wind generator output, the loads and the storage variables. Egliées and inequalities
(6.5) { (6.9) are only included if there is a generator or a storage coected to busi.
Equations (6.2) { (6.4) represent the power ow equations in the stem where the ows
P; and Q; are given as follows:
Pj = jViliVii (Gj cos jj + Bjj sin j);
(6.10)
Qj = ViiVii(Gj sin j  Bj cos j);
where V; and V, are the voltage magnitudes at bus and busj respectively, j is the
voltage angle dierence between buseisand j, G; is the real part of the admittance
matrix elementy; , and B is the imaginary part ofy; .
As Model Predictive Control is used here, once the problem (6.1) £(9) is solved for
time stept, the solution for the rst step k =0 is applied. Then, the optimization horizon

is shifted by T and the problem is solved for the new time horizon.

6.2 Distributed MPC

The resulting optimization problem (6.1) { (6.9) corresponds to the entralized problem
including multiple control areas. Decomposing the problem allows eacontrol area to
solve the optimization problem associated with its own part of the stam while optimally
coordinating with its neighboring areas. Hence, the main motivationof decomposing

the problem in this work is to enable the optimal coordination acrossreas. However,
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decomposition of the considered problem generally allows for paralleliizcomputations
and therefore for solving large scale optimization problems which @twise could not be
solved or not solved within a reasonable amount of time. As the pretimn horizon N

increases, the considered MPC problem may lead to such a large spatblem and despite

the potentially existing centralized coordinator could require a distbuted solution process.

In this thesis, we consider two modi cations of the Approximate Netn Directions
(AND) method, both with the intention to reduce the gap between he distributed variable
update and the centralized update, thus improving the convergea rate in some cases. The
problem is rst decomposed using Optimality Condition Decomposition@CD) and then
the resulting optimization problem is solved in a distributed manner usmp AND method
as well as solved using the two modications presented here. Thevadtage of using
this method over other Lagrangian-based decomposition methousthat there is no need
for a centralized controller, and the Lagrange multipliers are updat directly from the
other subproblems. After the problem is decomposed, the couplegariables are exchanged
between subproblems during each Newton-Raphson iteration; tieeis no need for each
subproblem be solved until optimality before exchanging values. Irhé optimal power
ow problem, these coupling variables correspond to the voltage maitudes and angles
at the border buses between control areas, and the decompmsitinto subproblems is
straightforward. The details of the OCD and AND method are discised in more depth in
Chapter 2.

6.2.1 Jacobi Update Method

The rst modi cation is derived from the Jacobi method for solving alinear system of
equations [57]. Instead of setting the o -diagonal block matrices ithe Jacobian matrix

to zero, the information from the previous iterationp 1 is used to update the variables
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e x® = dP X AP D xk Dy, (6.11)
m=1:m6q

where Jqq is the on-diagonal Jacobian corresponding to subproblegqand Jmq is the o -
diagonal Jacobian corresponding to the partial derivatives of theonstraints in subproblem
m with respect to the variables in subprobleng. The structure of the overall Jacobian can
be seen in section 2.3. Even with these additional terms in the updateas not necessary to
exchange the full update vectors xP among the areas. Arean can, without additional
information exchange, evaluate],(n'“;q Y at iteration p 1andthen compute the multiplication
(p 1 (P 1)

with the update vector xm . As J,(Tﬁ’;q Vs very sparse, the multiplication with  Xm

results in a sparse vector and only the non-sparse elements needé shared.
The issue with this update is that it basically builds upon the assumptiothat xp b
and x{ will be similar, which does not necessarily have to be the case and mhgrefore

only result in improved performance in certain cases.

6.2.2 Additional term in Right Hand Side Vector

The second approach is a bit more involved in its derivation. Hence, wise a two area

example to present the main idea. The centralized update is given by

2 3 2 3 2 3
WIRTE T B
= (6.12)
Wt ot e

By reordering the terms in the rows, the following formulae for the pdates result,

1 1
xtV =) dP 3R 3« (6.13)
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1 1
N ST (612)

By substituting (6.14) into (6.13) and vice versa, the updates canebwritten as a function
of the matrices and the right hand side vectors, i.e. (for simpli catin, we do not indicate

the iteration counter in these equations)

X1 = (Jun J12d550021) 1 ( i+ Jiadyyt d); (6.15)

Xo = (ng J21J111J12) ! ( d2+ Jz]_Jlll dl): (616)

This update corresponds to the exact update, i.e. the update th#s obtained if Newton
Raphson is applied to the rst order optimality conditions of the centalized problem. As
can be seen, even for two areas, a fairly complicated update resduiftthis is to be done in

a distributed way. Consequently, we propose to simplify this update

= 0T (dP a9 df)

= 3 (dP+ D) (6.17)
= 3 (AP dP)

=30 (P4 (6.18)

This update is signi cantly less computationally intense than (6.15) { 6.16). Area 1
can compute(ﬁ(z‘i) without additional knowledge from area 2 and then provide area 2 wit
the non-zero entries in this vector. The computation oﬂ‘z‘f involves the inverse oﬂ{ﬁ).
However, that inverse is needed for the update ofx(lp) anyway. Consequently, area 1 can
reuse the inverse for the computation (ﬂ({f Generally, there should only be very few terms
in the vectors éi(lp) and éi(zp) which are non zero, namely the ones which correspond to rst
order optimality constraints which include variables from both subpblems. Hence, only

a limited amount of additional information needs to be exchanged amg the subproblems
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(not the entire additional vector) to carry out (6.17) and (6.18). We now generalize the

update for the case with multiple areas. Hence, we propose the fallng update

b
1 1
I AP IgnIn d)
m=1;méq

(P)
Xq

X
( 1
IO dP + ey (6.19)
m=1;méq
With the communication of these few extra terms, the updates caed out locally for the
areas is closer to the centralized update. Hence, it can be expécthat the number of
iterations until convergence is reached is reduced compared teetbriginal method or the

method with the modi cation based on the Jacobi update.

6.3 Simulation Results

The IEEE-57 bus system is decomposed into two geographical regias shown in Figure
6.1. Two wind generators are placed at buses 17 and 43, and a sgerdevice with roundtrip
eciency of . 4 =0:95%, standby loss of @05:u: 10-minutes and maximum capacity
of 0:5p:u: 10-minutes is placed at bus 7. Simulations were run for a 24-hour et with
prediction horizons ofN = 1;3;6 and 9 whereT = 10min, hence, the horizon length
correspond to no horizon, 30-minute, 60-minute, and 90-minuteohizons. There is a 27%
level of wind energy penetration in the system by energy. The cdsinctions and maximum
output limits for the generators were obtained from the IEEE-57 bis speci cations in
MATPOWER [44] and tabulated in the Appendix. Here, the storage is jperated at the
10-minute scale to balance out the intra-hourly uctuations in the pwer supply caused by
variations in the wind and load. Storage could also be used with this nteid on an hourly
scale for longer term load shifting applications. Historical data forme wind and load was

used from ISO New England and for the particular simulation preseetl here the load and
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Figure 6.1: IEEE-57 bus system decomposed into two areas

wind curve as given in Fig. 6.2 are used.

The results were compared with the solution of the centralized prédm achieved by the
SNOPT solver in the commercial optimization package TOMLAB and foud to be within
1e 2 of the solution. The algorithm is considered to have converged ontlee maximum
absolute value over all elements in the vector of the rst order opnhality conditions d is
less than ® “. It is important to note that in these simulations, because this is a @of of
concept simulation, the predictions for the wind are assumed to begect; i.e., there is no
forecast error, and a longer horizon always results in a lowered ebiive function value.

This may not necessarily be the case if prediction errors are conset® With prediction
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Figure 6.2: 24-Hour input data with 10-minute intervals

errors the results depend on the level of the prediction error.

6.3.1 Existence of Local Minima

Due to the nonconvexity of the AC OPF problem, there is a chance #t the result of
the optimization may be a local optimum. There exist global optimizatio techniques
for speci ¢ formulations of AC OPF [55], [56], but there are currentlyno techniques for
nding the global optimum of the distributed Model Predict Control AC OPF problem
considered in this thesis. However, if local minima are encountergkey usually correspond
to physically infeasible situations [54]. In these simulations, we rst $ee a standard AC
power ow and use the resulting voltage magnitudes and angles asthtarting point for the
optimal power ow calculation. The subsequent time steps, afterhfting the horizon, use
the solution from the previous optimization as the initial point. The sane starting points
were used when comparing with the SNOPT solver and con rmed to aeh the same nal

solution.
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6.3.2 E ect of Optimization Horizon

Figure 6.3 shows the power charged/discharged from the storadevice over the 24-hour
period, and Figure 6.4 shows the state of charge of the storagesothe 24-hour period.
The longer the horizon, the better is the utilization of the energy sirage as longer term
variations in net load can be predicted and be accounted for. Theect is that less ramping
is need from the generators as can be seen in Fig. 6.5, where thaltgeneration output
from dispatchable generators is shown for the horizad = 9. It should be noted that as
AC power ow is used, the overproduction in generation is mostly duso AC power ow

losses.

The total amount of generator ramping summed over all individual gnerators was
measured for each horizotN = 1 (no MPC), 3;6; and 9 and the total generation costs
were calculated. As indicated by the results shown in Table 6.1, with ¢huse of MPC,
the overall required amount of generator ramping decreases. Witut the use of storage,
generators must adjust their output more frequently to accourfor the uctuations in the
power supply introduced by the wind. The reduction in overall genation cost for the
considered day and compared for the di erent horizon lengths is de low. However, that
measure heavily depends on the particular load and wind curves fdret considered day
as well as the composition of the generators, i.e. which generattmscome the marginal
generators and which reach their capacity limit. Also note that this des not say anything
about the di erence in cost if coordination is used and if it is not. The @amparison solely
is focused on the dierent lengths in horizon. As this thesis focusem the method of
how to coordinate the areas, a full economic analysis is beyond thepge of this thesis.
However, it can be expected that the greater the di erences in sbparameters and the
higher the uctuations in net load are, i.e. the higher the penetratio of variable renewable

generation, the higher the bene t of longer horizons.

88



\ ——N = 3 (30 minutes)
0.1f 1 ——N =6 (60 minutes) |
---N =9 (90 minutes)

0.05

20 40 60 80 100 120 140
Timestep (10-minute Increments)

Figure 6.3: Ontimal nower inout (positive) and outout (neaative) fom storage

0.5+ BANEN i |
. —N = 3 (30 minutes)
Y ——N =6 (60 minutes)

0.4k - --N =9 (90 minutes) | |

o
N
T

p.u. x10-minutes
o
w

0.1r

0 20 40 60 80 100 120 140

Timestep (10-minute Increments)

Figure 6.4: Optimal state of charge of storage device
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Figure 6.5: Optimal generation levels for N = 9
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6.3.3 Comparison of Convergence Rates
Requirement for Convergence

In order for the AND method to converge to the optimal solutionx of the problem

described in (6.1) { (6.9), the following must hold true at the optimal elution [4]:

(I ‘j\dec ‘j\tot) <1 (620)

where indicates the spectral radius. MatrixJiy; is the Jacobian matrix (2.11) evaluated
at the optimal solution and Jiec is the Jacobian matrix with o -diagonal elements set to
zero again at the optimal solution. If the condition on the spectratadius is not ful lled,
the optimization may be unable to converge to the optimal solution. nl these cases, a
preconditioned conjugate gradient method such as the generatizainimal residual method
(GMRES) [57] may be used to improve the convergence. In the sgst decomposition
used in this example, the spectral radius was calculated to be arauf:88, ful lling the
convergence criteria. This value was not found to change dramatlty depending on the

horizon length or point in the simulation for the considered case.

Comparison of Distributed Methods
In Table 6.2, the minimum, maximum, and median number of iterations ta@onvergence

for each method for horizondN = 1;3;6 and 9 is shown. Figure 6.6 shows the rate of

Table 6.1: Required Generator Ramping and Total Generation Cost
N 1 3 6 9

Total Generator
Ramping (p.u.) 2.29 1.88 1.73 1.53

Total Generation
Cost ($) 587,235| 587,003| 586,716/ 586,568
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convergence at simulation timesteg = 2 for each of the three distributed optimization
methods forN = 9. To ensure better convergence properties at the cost of a higr
number of iterations, the damping parameter on the Newton-Raphson step was initially
chosen to be @5. In the rare cases where the method still continued to diverge,higher
damping of Q1 was chosen for the iterations which leads to a few outliers in term$ o
iteration numbers. To reduce the number of iterations, an adaptesapproach for setting
the damping parameter could be used. For the sake of comparisdhe same damping
factors have been used throughout the iteration process for anticular time step.

As the results indicate, the Jacobi update method only leads to sigrant improvements
for N = 1, whereas the method with the additional term leads to signi cantreduction
for horizons of N = 1 and N = 9 and stays roughly the same for the other horizons.
The conclusion that can be drawn is that an analysis should be done fine particular

considered problem to determine whether or not it is useful to add ithe additional term.
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o 5 X - - - Additional Term
= £ 10 1
23

N
=
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S
20

e

10-5 b I I I I I I
0 100 200 300 400 500 600
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Figure 6.6: Convergence rates for N=9

91



Table 6.2: Number of Iterations to Convergence

Minimum Median Maximum
Method N | Iterations to | lterations to | Iterations to
Convergence | Convergence | Convergence
Original AND 1 | 356 511 704
Jacobi Update |1 | 360 364 642
Additional Term | 1 | 337 363 500
Original AND 3 | 353 380 947
Jacobi Update |3 | 354 411 773
Additional Term | 3 | 353 377 637
Original AND 6 | 369 373 837
Jacobi Update |6 | 351 374 822
Additional Term | 6 | 351 371 808
Original AND 9 | 561 614 909
Jacobi Update |9 | 515 608 909
Additional Term | 9 | 376 409 1053
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Chapter 7

Jacobian Singularities

With problem formulations that contain constraints that span overmultiple time steps,
i.e., intertemporal constraints, singularities in the Newton-Raphso Jacobian may occur.
This happens frequently with the aforementioned storage modeln@ may happen with
other intertemporal constraints commonly encountered in powesystem optimization such
as generator ramp limits, for example. This section identi es when #se singularities occur
and develops techniques used to nd a solution to the optimization pblem in the presence

of Jacobian singularities.

7.1 Causes of Singularities

Previously, singular Jacobian matrices in Newton-Raphson based dbaow calculations
were found to be related to situations near voltage collapse [58, 5Jhis dissertation ad-
dresses another instance of singular Jacobians in power systertirojzation; those related
to intertemporal constraints such as generator ramp limits and ggi cally, the storage
model given in (3.1) - (3.4). When all of these storage constraintsebome binding, the
Jacobian of the rst-order optimality conditions may become singula This case occurs

when the set of binding intertemporal constraints have linearly degmdent gradients at
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the optimal solution. The Karush Kuhn Tucker (KKT) rst-order ¢ onditions for optimal-
ity, after transforming the inequality constraints to equalities usig slack variablesz, are

de ned as the following:

@@)l(-(X;z; ;) = 0; (7.1)
g(x) = 0; (7.2)

h(x)+z = 0; (7.3)

z = 0; (7.4)

o} (7.5)

z o} (7.6)

An inequality constraint h;(x) is called \binding" if its corresponding slack variableg; is O at
the optimum. The Linear Independence Constraint Quali cation (LICQ) states that at the
optimal solution, the gradients of all the binding constraints (incluthg equality constraints)
must be linearly independent or there exists no unique solution foréhLagrange multipliers
[60, 61]. The KKT conditions may or may not be ful lled if LICQ does not lold, but
no unique solution for the Lagrange multipliers corresponding to thdependent binding
constraints exists. The Jacobian matrix formed from taking the pdal derivatives of the

KKT conditions has the following form:

2
r2L(x;z; ; rgx)" r hx)T 0
r g(x) 0 0 0

(7.7)
r h(x) 0 0

0 diagf zg diagf g
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The consequences of having dependent binding constraints; i.e.ying the LICQ unsatis-

ed, can be seen by analyzing the following rows of the Jacobian:

2 3
rogx) 0 0 0

r h(x) 0 0 (7.8)
0 0 diagfzg diagf g

When the gradients of the constraints are linearly dependent anthé¢ constraints are bind-
ing, the above rows are linearly dependent. This is due to the factahwhen a constraint
i is binding, zz =0 and ; 6 0. Thus, if r g(x) and r h(x) are dependent when binding,
this entire matrix block (7.8) will have dependent rows due t@ =0 and 6 0.

Also, a row of zeros could also be created by the possibility that and z could both
become 0. These are two ways that the matrix could become singular violating LICQ.
In the considered problem, this occurs when the optimal usage bitstorage device is such
that it is at its minimum or maximum capacity for two consecutive timeseps and there is

no charging or discharging from the device.

7.2 Approaches to Solving the Singularity Problem

7.2.1 Moore-Penrose Pseudoinverse

There are multiple ways that the singular Jacobian problem can be adessed. Because
it is known that the Jacobian is singular at the optimal solution and it is ot a result of
numerical issues, one way that the underdetermined system ofuatjons can be solved is
by using a Moore-Penrose pseudoinverse. The formula for NewtBaphson with Jacobian

matrix J and vector of KKT condtionsf at iteration i can be written in this form:
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J(x)  xi= f(x): (7.9)

For simplicity, the above system of equations will henceforth be mfed to asAx = b,
where the Jacobian matrixJ is the A matrix in this case. The pseudoinversd® is de ned

as [62]:

A*=U *VT; (7.10)

with  * = diag( , %, %0;::;0); where 1:: , are the singular values oATA, and U
andV are matrices with orthonormal columns. ThisA* is the same pseudoinverse as given
by the MATLAB command pinv .

The solution achieved by using this pseudoinverse is given by:

x* = A*b; (7.11)

where this solution,x*, solves the underdetermined linear least squares (minimum norm)
problem. The optimal solution to this problem, that is, the minimum nom solution, is
X . Since the system is underdetermined and multiple solutions exist, atsolution x ,
Ax = b It can be shown [63] thatx™ = x and thus using this pseudoinverse to solve

(7.9) will yield a solution to the KKT conditions; i.e., the solution ful lls (7.1)-(7.6).

7.2.2 Storage Standby Losses

Another approach is to avoid the Jacobian becoming singular altodedr. Introducing
storage losses provide a solution which will render the Jacobian miatnon-singular. This
loss could represent inertia losses from a ywheel or charge leagafyjom a lithium-ion
battery, for example. There are two possible methods by which tee losses could be

included:
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i. Subtractive Standby Losses

A constant standby loss term can be subtracted from the energy balance equation
to represent energy losses from elapsed time rather than just imding charging/dis-

charging losses. The new storage formulation can be written as

E(t+T)= EQ+ TPa() ~Poult) v: (7.12)
d

This loss will prevent all of the intertemporal constraints related ¢ this storage device

to be simultaneously binding. For example, if the following constraintare binding:

E(t) = E™; (7.13)
Pin(t) = O; (7.14)
Pout(t) = O; (7.15)

then because of the standby losses, at tinte+ T, the energy level would dip below
Emin - Thus, Pj, (t), the power into the storage, must be nonzero to avoid the en-
ergy level going below its minimum. When the energy levé(t) is at its maximum,
E(t + T) cannot also be at its maximum in the next time step unles®;, (t) 6 O.
Hence, because of the standby losses, all of these storage tcaimés are prevented

from being simultaneously binding.

ii. Multiplicative Standby Losses

The losses can also be modeled as a percentage loss:

E(t+T)= NE(M)+ TPn(t) —Poult): (7.16)
d
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However, it is important to note that if the minimum storage levelE,,, is 0, this
model can still result in simultaneously binding constraints. This is bexise when
E(t) = 0, and all other storage constraints are binding Rj, (t) = Poyu(t) = 0), the
term  E(t) will still be 0; i.e., the storage will not need to feed in power to accotin

for standby losses and all of the storage constraints can becobirding.

In both of the above methods for incorporating standby lossesane cases can occur
that still result in Jacobian singularities. For example, ifE(t) = Enin, Pin(t) = P,
Pout(t) =0, and E(t + T) = E™; |.e., the storage is initially empty and wants to charge
at its maximum rate for the current step. The value for the maximuncharging rate must
exactly result in the storage being aE . after the time interval T. In this case, standby
losses do not help, and it is possible for the constraints to all be bindin However, cases

such as this are rare and presumably will not be frequently encowned.

7.2.3 Constraint/Variable Removal as Intertemporal Const raints

Approach Binding

The third approach to avoid singular Jacobian matrices is to removehé rows that corre-
spond to linearly dependent constraints and solve the resulting lindgindependent system
of equations. A priori, it is not known which, if any, of the intertempaal equations will
be binding. By analyzing the structure of the Jacobian, however, evcan deduce that
once these constraints become binding, they will stay binding. Hagrconstraint gradients
that are linearly dependent means that we can remove constrainiom the constraint set

without a ecting the solution, a principle which is used in active set mdtods [64].

Analyzing the structure of (7.9), we see that the Newton-Raphsastep has the following

form:
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2 32 3 2
raL rgx)™ rhxT X r L
r g(x) 0 ) g(x)
r h(x) 0 h(x)+ z
diagfzg diagf g z diagf g z
For a particular slack variablez;, we see that:

z it i zZi= oz (7.17)

Assuming ; at the current step is nonzero, ifz; = 0, then in order for this equation to
hold, z must be zero. Thusz will not change during future iterations. This fact will be
used to identify the storage constraints which already become biing at their optimum
during the Newton-Raphson iterations. We then use this to removeonstraints to ensure
that the Jacobian matrix will not become singular as we continue the erations.

To see the implications of a binding constraint in the context of the srage constraints,
we can examine the KKT conditions relating to the storage constratis. In the case of the

storage being empty, for example, we can examine the transfomn@equality constraints,

E(t)+ E™ + 27 = 0; (7.18)
Pn(t)+ 2o = O; (7.19)
Pout(t) + z, = 0; (7.20)

and see that if any of the slack variables are zero, it implies that thatariable is at its

minimum. To ensure that these constraints are satis ed when thdagk variables become

99



zero, a check must also be done to determine if the variableg (t), and P, (t) are at their
minimum, and E(t+ T) and E(t) are both at their minimum or both at their maximum as
well. Numerically, these variables may not actually reach exactly zerso the comparison
for implementation purposes is done with a tolerancethat is close to zero. For the rare
case when both (t) and z(t) become zero at the same time, the Jacobian will become
singular because a row of zeros is created. To avoid this case, @@rtmeasures can be
taken such as running the optimization from a di erent starting poirt or using a smaller

damping value on the Newton-Raphson step.

Overall, the steps to indicate whether or not to remove the rows o@sponding to the
storage device constraints and actually remove correspondingm® and columns are as

follows:

1. Determine if (E(t) EminjOrjE(t) Emax]), JEX+T) EminjOrjE(t+T) Emax)),
jPin (t)j' andjpout(t)j <

2. Determine if the slack variablez(t) corresponding to the above variables are all less

than

3. If 1) and 2) are true, remove the following elements of the Jadah:

(@) The rows and columns in ther 2, L block that correspond to the partial deriva-

tives of E(t), Pin (t), and Py (t).

(b) The rows and columns corresponding to the gradients of the liing storage

constraints at time t.

(c) The rows and columns indiagf g z that include (t) and z(t) for the corre-

sponding inequality constraints.

4. Replace instances of variablds(t), Pi, (t), and Py (t) where they appear in the rest

of the Jacobian matrix with their optimal values.
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5. Adjust the KKT conditions in the right-hand side vector of the update to no longer
include constraints (3.1)-(3.4), partial derivatives of the Lagragian with respect to

the storage variables, or complementary slackness conditiosisagf (t)g z(t).

6. Repeat for each time instance considered in the optimization; i.egrfthe entire

problem time horizont =0;::;;N 1.

7. Perform the Newton-Raphson step with the reduced Jacobiama right-hand side

vector.

Depending on the application and purpose, some of these methodaynbe more ap-
propriate than others. For example, using a Moore-Penrose pskinverse may be more
computationally complex and require more computation time than oter methods. It also
requires that either the rank or condition number of the Jacobian ishecked each iteration
to determine if the Jacobian is close to singular. Integrating storagstandby losses may
not only x the singularity of the Jacobian, but may also provide a moe realistic model

of a storage device.

However, this does require a modi cation of the model, and if the staby losses are too
small, the matrix may still be close to singular and numerically unstableAlso, in some
rare cases, even with standby losses, all of the storage inequadit@an still be binding,
as discussed above. The technique of removing the binding consitsivariables has the
benet of reducing the size of the Jacobian matrix and hence poteally reducing the
number of computations per Newton step; however, this methodsa has the downside
of deciding the tolerance parameter. If the constraints are removed prematurely and
they actually are not binding at the optimal solution, the KKT conditions may not be
satis ed, and if they are removed too late, the Jacobian may alregbe close to singular,
resulting in numerical issues. In this case, using a pseudoinverseymasult in more robust

performance.
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7.3 Simulation Results

In this section, results are shown for AC OPF simulations on the IEEE4 bus system [65].
System details are to be found in the Appendix. Wind generators, rdeled as negative
loads, have been added at buses 5 and 14, and a storage devicebkas added at bus 5 as
seen in Figure 7.1. The objective is to minimize the quadratic cost ofggration from the
generators at buses 1, 2, and 3. Simulations were done over a peid 24 hours, with a
5-minute discretization and prediction horizondN =5 and N = 10. The receding horizon
concept is used, where the optimization is performed over the timeiizon N, variables
are updated, and the time window is shifted and the process is repea

The formulation of the KKT conditions is modi ed to incorporate the Unlimited Point
Algorithm [12], which is a technique to ensure the non-negativenests oand z by raising
these variables to an even power, as explained in Chapter 2. In oimslations, we have
squared and z where they appear in the KKT conditions, keeping the complementgar
slackness conditiordiagf g z =0 the same, because it is equivalent tdiagf 2g z? = 0.

The modi ed Jacobian is shown below:

2 3
reL(xz;; )rgx)"2r h(x)T diagf g O

r g(x) 0 0 0
(7.21)
r h(x) 0 0 Xiagf zg
0 0 diagf zg diagf ¢

This does not change the singularity problem, as the dependent bing constraints still
result in these rows being linearly dependent. Other methods to ammt for the positivity
of andz, such as using an interior point or barrier method, result in the sanmssues. Thus

the given methods to x the singularities were explained for the gers KKT conditions
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in (7.1)-(7.6), but it is important to note that these singularities still exist even when using
the Unlimited Point or Interior Point method. In the following simulations, we use the

method of removing the rows of the Jacobian which cause the singutia issue.

@ Generator

@ Synchronous
Condenser W
13 y

Wind plant 1

12 =14

Storage Device

Figure 7.1: Modi ed IEEE 14-bus System

Data for the wind and load curves were taken from the Bonneville P@vAdministration
[42]. One simulation output for the energy level of the storage deeiover a 24-hour period
with N =5 is seen in Figure 7.2. The storage device has a minimum required caipaof
0.2p.u. and a maximum capacity of 1.2p.u. The storage level for this tiwon length never
reaches its maximum; however, with longer horizons, the storageuislized more and does
reach its maximum value, as seen in Figure 7.3. The storage is utilizedlalance out the
intermittency of the wind generators in attempts to keep controllale generators at a more
constant level without having to ramp up and down.

For the cases of horizon®N =5 and N = 10, instances where the constraints (3.1)-

(3.4) were found to be simultaneously binding for at least one time irestce within the
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Figure 7.3: Storage Energy Level for N = 10

horizon and constraints have been removed are identi ed with a "1' iRigures 7.4 and 7.5.
This occurs whenever the storage level is at its maximum or minimum e for multiple
consecutive time steps. A binding constraint is indicated by using thelerance parameter
= 10 °. It is important to note that one cannot simply look at Figures 7.2 and7.3
to know when constraints have been removed because these egionly show the actual
energy level in the storage, not the optimal output of the prediadbn horizon considered in
the original optimization problem. At 161 out of 288 points in the simulaon, one set of

storage constraints in theN =5 horizon was found to be binding. ForN = 10, 129 time

104



points in the simulation had the case with dependent rows. Thus, it is @ery common

occurrence in the considered problem setup.
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Figure 7.4: Instances where storage constraints are binding andpéndent
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Chapter 8

Conclusion and Future Work

In this thesis, we have presented methods for power system plamyp and operation with
energy storage devices for the ultimate goal of increasing the pémation of renewable en-
ergy into the grid, while coordinating resources which are located iegarate control areas.
Renewable energy sources such as wind and solar introduce adddiodi culties which
increase the complexity of operating and planning for the grid. Intenittency, variability,
and a need for an increase in transmission capacity are a few of #héssues. By utilizing
strategically placed and sized energy storage, the e ect of thefactors can be mitigated.
For example, as shown in this thesis, energy storage can be usedetduce congestion and
balance the variability introduced by wind generation.

The problems and solutions considered in this thesis raise an additibriasue with
respect to required computational power as the problem sizes bete large and unman-
ageable very quickly. While additional research is need to scale theopided solutions to
power systems of realistic sizes, we have proposed a way to captarlarge number of pos-
sible system states in the planning problem, especially on a 10-minutisghtch scale. The
scenario reduction technique developed in this thesis has been shadareduce the amount
of considered scenarios while still achieving a similar solution to the angl problem,

demonstrating encouraging results with regards to the tractabilt of the problem.
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In addition to increasing the penetration of renewable energy intche power grid via
energy storage utilization, these devices can also be used to o se¢ impact of forecast-
ing errors on the system. Chance constrained model predictiventm! is incorporated
into the two-stage stochastic problem formulation to include wind f@cast errors as ran-
dom variables. An analytical form of these constraints is derived inrder to avoid using
sampling-based, approximate approaches such as Monte-Carlo imtions. The results
in this thesis show that the derived analytical form ful lls the chanceconstraint for the

speci ed probability.

As power systems can physically span across multiple control aredsich do not always
share full system information with one another, resources in thesreas may be subopti-
mally utilized. Traditionally, a contract for a certain tie-line ow between areas is agreed
upon, while supply and demand in each area is balanced. If there egist situation where
resources in these areas di er signi cantly, e.g., the situation coitiered in this thesis where
one area has a signi cant amount of renewable generation and is acignt to an area with
a signi cant amount of energy storage, both areas may bene t & more coordination.
The Approximate Newton Directions method is used in this thesis to alo for such coor-
dination. Furthermore, two extensions to this method are devel@ul. The basic and the
extended approaches require each area to share a limited amouhtrdormation, and can
allow for parallel computation of each area's optimization problem. Ithe rst extension,
based on the Jacobi method for linear equations, information fromrevious iterations is
utilized in each Newton-Raphson step with the goal of reaching theptimal solution in
fewer number of iterations. In the second extension, an additiohterm in the right-hand
side of the Newton-Raphson update is derived to provide additionaiformation for each
subproblem's update. Results are shown for the IEEE-57 bus sgst, where coordinating
the areas results in an overall bene t for the system in terms of evall reduced generation

costs.
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Intertemporal constraints such as the energy balance equatitor the storage and gener-
ator ramp limits introduce numerical issues into the considered prégm formulation. The
Linear Independence Constraint Quali cation (LICQ) states thatif binding constraints
are linearly dependent at the optimal solution, there may be multiple dutions for the
Lagrange multipliers (and thus for the linear system of equations inegeral). To have
these dependent binding constraints means that in some cases ttacobian matrix of the
rst-order optimality conditions becomes singular at the optimal stution. The problem of
a singular Jacobian at the optimal solution has previously been found power systems to
correspond to situation where the system is near voltage collapddere, it was shown to
occur when the storage device was at a maximum or minimum for congéve timesteps

and no charging or discharging was performed during those timegse

Multiple methods were introduced in this thesis that can solve this ptdem. One
solution is to prevent the storage model from being at a maximum orimmum for con-
secutive time steps by incorporating standby losses. Another sthn is to remove the
o ending constraints as they become binding; not a ecting the opinal solution of the
other variables, yet still preventing the matrix singularity. The knavledge of this problem
is important to consider as many more problems in power systems neotowards model
predictive control or multi-timestep formulations, which can actudly result in multiple

optimal solutions for these intertemporal constraints.

There are three major directions in which the work presented in thithesis could be
extended. The rst goal would be to develop techniques to allow tlse computations to be
performed even faster. This problem could be approached frometkiewpoint of modifying
the algorithm or from a computer systems perspective of nd a wagf parallelizing the
code itself. The distributed methods presented in this thesis are $&d upon the physical
decomposition of control areas, but the problem could potentiallyéparallelized within

each subproblem. Most importantly, decreasing the computatiohurden would allow for
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the simulation of even larger systems, showing the e ectivenessloé system decomposition

and storage placement methods on more realistically sized transnussgrids.

In addition, the systems used in this thesis (the 9-bus, 14-bus, &®7-bus) were simu-
lated on a single computer, but the methods presented here could caled to much larger
systems if provided with an increase in computational power. In Cpger 6, simulations
were shown for the 57-bus system and run on a single computer wath parallelizing the
computations. In reality, each control area would have its own dézhted computer system
that would perform its own Newton-Raphson update in parallel with lhe other areas. The
optimization problems described in Chapters 3, 4, and 5 are planninggblems where the
scaling of the problem does not introduce an issue of speed, buthat, space and memory.
Because of the two-stage structure of the problem, these cout@ decomposed using a
technique suited to these types of problems such as Benders aeposition, for example,

to avoid storing all scenarios in memory at once.

In a similar vein, the second potential direction for future work in ths area is to
more realistically model the power system and technologies that fue power systems
could potentially possess. This could include introducing a greater aunt uncertainty,
inclusion of future smart grid technologies, and expanding the set decision variables in
the problem. For example, uncertainty in demand, dynamic electrigitpricing, and demand
response could be incorporated into the problem, to name a few. Aamce constrained
formulation could be not only be used to account for errors in wind fecasts, but also
errors in demand forecasts. With regards to the storage sizing cgaplacement problem,
one assumption made in this thesis is that line losses were neglectedwever, the optimal
location for a storage device could also aim to minimize losses in the gysf which is a

factor that would be bene cial to include in the problem formulation.

The nal major area where this work could expand is the applicationfdhese methods to

other areas of energy systems. The distributed methods pretshin Chapter 6 are applied
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to transmission grids in this thesis, but some other ideas for appligahs could include
optimization of distribution systems, modeling networks of electric ehicles plugged into
the grid, or control and modeling of residential homes participatingh demand response.
The stochastic model predictive control method presented heig used for optimal control
of grid energy storage, but could also be applied to energy storagmntrol within buildings,

or optimizing electric vehicle battery charging.
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Appendix

1 9-bus Generator Cost Parameters

The generator cost parameters and capacities used in the 9-bestt system are shown in

Table 1 for the three generators in the system.

Table 1: Generator parameters.

Generator Location| a ($/MW/MWh) | b ($/MWh) | ¢ ($/h) | Capacity

Bus 1 0.0078 18 370 200 MW

Bus 2 0.14 18 772 200 MW

Bus 3 0.78 15 240 250 MW
2 7 9 3

Figure 1. 9-bus System
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2 9-bus Line Parameters

The system layout and line reactances for the 9-bus test systemeahown in Table 2. The

reactance values are given in per-unit (p.u.).

Table 2: Line con guration and reactances for the 9-bus test sisn

Line | From | To | Reactance (X)
1 1 4 | 0.0576

2 2 7 | 0.0625

3 3 9 | 0.0586

4 4 5 | 0.085

5 4 6 | 0.092

6 5 7 |0.161

7 6 9 |0.17

8 7 8 |0.72

9 8 9 |0.1008

3 14-bus Generator Cost Parameters

The generator cost parameters and capacities for the active pemgenerators used in the
14-bus test system are shown in Table 3 for the three generatarsthe system. The

parameters were obtained from MATPOWER [44].

Table 3: Generator parameters for the 14-bus system.
Generator Location| a ($/MW/MWh) | b ($/MWh) | c ($/h) | Capacity

Bus 1 0.76 20 0 332.4 MW
Bus 2 0.0079 20 0 140 MW
Bus 3 0.00059 40 0 100 MW
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Figure 2: IEEE 14-bus System

115



4 14-bus Line Parameters

The system layout and line reactances for the 14-bus test systeame shown in Table 4.

The reactance values are given in per-unit (p.u.).

Table 4: Line parameters for the 14-bus system.

Reactance (X)

Line | From | To | Resistance (R) Shunt Susceptance (B) Turns Ratio
1 1 2 ]0.01938 0.05917 0.0528 1.0

2 1 5 ] 0.05403 0.22304 0.0492 1.0

3 2 3 | 0.04699 0.19797 0.0438 1.0

4 2 4 | 0.05811 0.17632 0.034 1.0

5 2 5 | 0.05695 0.17388 0.0346 1.0

6 3 4 | 0.06701 0.17103 0.0128 1.0

7 4 5 | 0.01335 0.04211 0.0 1.0

8 4 7 0.0 0.20912 0.0 0.978
9 4 9 |00 0.55618 0.0 0.969
10 5 6 |00 0.25202 0.0 0.932
11 6 11 | 0.09498 0.1989 0.0 1.0
12 6 12 | 0.12291 0.25581 0.0 1.0
13 6 13 | 0.06615 0.13027 0.0 1.0
14 7 8 100 0.17615 0.0 1.0
15 7 9 100 0.11001 0.0 1.0
16 |9 10 | 0.03181 0.0845 0.0 1.0
17 9 14 | 0.12711 0.27038 0.0 1.0
18 10 11 | 0.08205 0.19207 0.0 1.0
19 12 13 | 0.22092 0.19988 0.0 0.970
20 13 14 | 0.17093 0.34802 0.0 0.978
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5 57-bus Generator Parameters

The cost parameters and generator capacities for the IEEE-5Tidbtest system were taken

from MATPOWER [44] and tabulated in Table 5:

Table 5: Generator parameters for the 57-bus system.

Generator Location| a ($/MW/MWh) | b ($/MWh) | c ($/h) | Capacity (MW)
Bus 1 0.0775795 20.0 0.0 575.88
Bus 2 0.01 40.0 0.0 100.00
Bus 3 0.25 20.0 0.0 140.00
Bus 6 0.01 40.0 0.0 100.00
Bus 8 0.0222222 20.0 0.0 550.00
Bus 9 0.01 40.0 0.0 100.00
Bus 12 0.0322581 20.0 0.0 410.00
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6 57-bus Line Parameters

The values for the resistance, reactance, shunt susceptanaed transformer turns ratio

for each branch in the IEEE 57-bus test system are given in p.u. in bk 6.

Table 6: Generator parameters for the 57-bus system.

Reactance (X)

Line | From | To | Resistance (R) Shunt Susceptance (B) Turns Ratio
1 1 2 |0.0083 0.0280 0.1290 1.0

2 2 3 |0.0298 0.0850 0.8180 1.0

3 3 4 |0.0112 0.0366 0.0380 1.0

4 4 5 |0.0625 0.1320 0.0258 1.0

5 5 6 | 0.0430 0.1480 0.0348 1.0

6 6 7 | 0.0200 0.1020 0.0276 1.0

7 7 8 1 0.0339 0.1730 0.0470 1.0

8 8 9 |0.0099 0.0505 0.0548 1.0

9 9 10 | 0.0368 0.1679 0.0440 1.0
10 9 11 | 0.0258 0.0848 0.0218 1.0
11 9 12 | 0.0648 0.2950 0.0772 1.0
12 |9 13 | 0.0481 0.1580 0.0406 1.0
13 13 14 | 0.0132 0.0434 0.0110 1.0
14 13 15| 0.0269 0.0869 0.0230 1.0
15 |1 15 | 0.0178 0.0910 0.0988 1.0
16 1 16 | 0.0454 0.2060 0.0546 1.0
17 1 17 | 0.0238 0.1080 0.0286 1.0
18 |3 15 | 0.0162 0.0530 0.0544 1.0
19 |4 18 | 0.0 0.5550 0.0 0.970
20 4 18 | 0.0 0.4300 0.0 0.978
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Line | From | To | Resistance (R)| Reactance (X)| Shunt Susceptance (B) Turns Ratio
21 5 6 | 0.0302 0.0641 0.0124 1.0

22 7 8 | 0.0139 0.0712 0.0194 1.0

23 10 12 | 0.0277 0.1262 0.0328 1.0

24 11 13 | 0.0223 0.0732 0.0188 1.0

25 12 13 | 0.0178 0.0580 0.0604 1.0

26 12 16 | 0.0180 0.0813 0.0216 1.0

27 12 17 | 0.0397 0.1790 0.0476 1.0

28 14 15| 0.0171 0.0547 0.0148 1.0

29 18 19 | 0.4610 0.6850 0.0 1.0

30 |19 20 | 0.2830 0.4340 0.0 1.0

31 21 201 0.0 0.7767 0.0 1.0430
32 21 22 1 0.0736 0.1170 0.0 1.0

33 22 23 | 0.0099 0.0152 0.0 1.0

34 |23 24 | 0.1660 0.2560 0.0084 1.0

35 24 251 0.0 1.1820 0.0 1.0

36 24 251 0.0 1.2300 0.0 1.0

37 24 26 | 0.0 0.0473 0.0 1.0430
38 |26 27 | 0.1650 0.2540 0.0 1.0

39 27 28 | 0.0618 0.0954 0.0 1.0

40 |28 29 | 0.0418 0.0587 0.0 1.0

120




Line | From | To | Resistance (R)| Reactance (X)| Shunt Susceptance (B) Turns Ratio
41 7 29 1 0.0 0.0648 0.0 0.9670
42 25 30 | 0.1350 0.2020 0.0 1.0

43 |30 31| 0.3260 0.4970 0.0 1.0

44 |31 32 | 0.5070 0.7550 0.0 1.0

45 32 33 | 0.0392 0.0360 0.0 1.0

46 34 321 0.0 0.9530 0.0 0.9750
47 | 34 35 | 0.0520 0.0780 0.0032 1.0

48 35 36 | 0.0430 0.0537 0.0016 1.0

49 36 37 | 0.0290 0.0366 0.0 1.0

50 |37 38 | 0.0651 0.1009 0.0020 1.0

51 |37 39 | 0.0239 0.0379 0.0 1.0

52 36 40 | 0.0300 0.0466 0.0 1.0

53 22 38 | 0.0192 0.0295 0.0 1.0

54 |11 41 (0.0 0.7490 0.0 0.9550
55 41 42 | 0.2070 0.3520 0.0 1.0

56 41 43 | 0.0 0.4120 0.0 1.0

57 |38 44 | 0.0289 0.0585 0.0020 1.0

58 |15 45| 0.0 0.1042 0.0 0.9550
59 14 46 | 0.0 0.0735 0.0 0.9000
60 |46 47 | 0.0230 0.0680 0.0032 1.0
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Line | From | To | Resistance (R)| Reactance (X)| Shunt Susceptance (B) Turns Ratio
61 47 48 | 0.0182 0.2033 0.0 1.0

62 48 49 | 0.0834 0.1290 0.0048 1.0

63 |49 50 | 0.0801 0.1280 0.0 1.0

64 |50 51| 0.1386 0.2200 0.0 1.0

65 10 511 0.0 0.0712 0.0 0.9300
66 13 49 | 0.0 0.1910 0.0 0.8950
67 29 52 | 0.1442 0.1870 0.0 1.0

68 52 53 | 0.0762 0.0984 0.0 1.0

69 53 54 | 0.1878 0.2320 0.0 1.0

70 54 551 0.1732 0.2265 0.0 1.0

71 |11 43 0.0 0.1530 0.0 0.9580
72 44 45 | 0.0624 0.1242 0.0040 1.0

73 40 56 | 0.0 1.1950 0.0 0.9580
74 | 56 41 | 0.5530 0.5490 0.0 1.0

75 56 42 | 0.2125 0.3540 0.0 1.0

76 39 57 1 0.0 1.3550 0.0 0.9800
77 |57 56 | 0.1740 0.2600 0.0 1.0

78 |38 49 | 0.1150 0.1770 0.0030 1.0

79 38 48 | 0.0312 0.0482 0.0 1.0

80 |9 551 0.0 0.1205 0.0 0.9400
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