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Abstract 

Rapidly improving the yield of today's complicated manufacturing process is a key challenge to 

ensure profitability for the IC industry. In this thesis, we propose accurate and efficient modeling 

techniques for spatial variation, which is becoming increasing important in the advanced technology nodes. 

Based on the spatial model, we develop algorithms for two applications that help identify the important 

yield-limiting factors and prioritize yield improvement efforts. Variation decomposition narrows down the 

sources of variation by decomposing the overall variation into multiple different components, each 

corresponding to a different subset of variation sources. Wafer spatial signature clustering automatically 

partitions a large number of wafers into groups exhibiting different spatial signatures, which helps process 

engineers find important factors that prevent the process from stably maintaining a high yield across 

different lots and wafers.  

An important problem in variation decomposition is to accurately model and extract the wafer-level 

and within-die spatially correlated variation. Towards this goal, we first develop a physical basis function 

dictionary based on our study of several common physical variation sources. We further propose the DCT 

dictionary to discover spatially correlated systematic patterns not modeled by the physical dictionary. 

Moreover, we propose to apply sparse regression to significantly reduce the over-fitting problem posed by 

a large basis function dictionary. We further extend the sparse regression algorithm to a robust sparse 

regression algorithm for outlier detection, which provides superior accuracy compared to the traditional 

IQR method. Finally, we propose several efficient methods to make the computational cost of sparse 

regression tractable for large-scale problems.  

We further develop an algorithm for the wafer spatial signature clustering problem based on three 

steps. First, we re-use the spatial variation modeling technique developed for variation decomposition to 

automatically capture the spatial signatures of wafers by a small number of features. Next, we select a 

complete-link hierarchical clustering algorithm to perform clustering on the features. Finally, we develop a 
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modified L-method to select the number of clusters from the hierarchical clustering result.  
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Chapter 1 Introduction 

Introduction 

In 1965, Gordon Moore observed that the number of transistors on integrated circuits doubles 

approximately every two years, which was soon recognized as Moore's Law [80].  This trend has continued 

for more than half a century and is still expected to continue for the next few years. A large number of 

benefits are enabled for integrated circuits (ICs) by transistor scaling: the cost per transistor becomes 

cheaper, the transistors become faster, and they also consume less power. As a result, integrated circuits 

(ICs) with more functionality, superior performance and less cost are being produced every year. It has 

been the key enabler of a large number of technological and social changes in the late 20th and early 21st 

centuries [81]. 

Table 1-1.Gate length scaling and 3σ variation predicted by ITRS 2011 [61] 

Year  2011 2012 2013 2014 2015 

Gate Length (nm) 24 22 20 18 17 

3σ variation (nm)  2.9 2.65 2.42 2.21 2.02 

 

As Moore's Law continues to hold, new process technology that achieves deeper scaling is 

continuously being developed, and more and more new products are being designed and manufactured 

using newer process. However, one of the key limiting factors to the profitability of these new 

process/products is the yield, which is defined as the proportion of manufactured circuits that are functional 

and meet their performance requirements [56]. The yield loss of circuits is mainly due to process variations, 

which can be defined as the deviations of the manufactured circuit compared to the design. Therefore, to 

ensure profitability, reducing the variability and improving the yield is an important task that is performed 
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throughout the entire lifecycle of any process and product. However, such task becomes increasingly 

difficult to achieve with scaling [1][61][56].  For example, Table 1-1 shows the predicted trend of gate 

length and the corresponding 3σ variation from 2011 to 2015 by ITRS 2011 [61], where yellow indicates 

manufacturable solutions are known and red means manufacturable solutions are unknown. It can be seen 

that in order to keep process variation under control, the 3σ needs to scale proportionally with the gate 

length scaling. This poses significant challenges to process engineers, such that no manufacturable 

solutions are known beyond 2014. To make things more challenging, process engineers are now faced with 

a much shorter time window for the yield improvement effort. The lifetime of modern electronic products, 

such as cell phones, may be only several months; moreover, missing important deadlines such as Christmas 

for consumer electronics will result in significant revenue loss. Based on these observations, rapidly 

improving the yield for today's complicated manufacturing process is a key enabler for profitability for the 

IC industry. In order to achieve this goal, process variation must be thoroughly characterized to determine 

the important yield-limiting factors, and the yield improvement efforts can then be prioritized to focus on 

these important factors. For example, it is reported by PDF Solutions that facilitated by such an accurate 

variation characterization methodology, compared to a traditional yield ramp approach, they are able to 

further improve the yield for an actual product by 5%-28% throughout its lifecycle, which enables cost 

savings of more than 100 million dollars [103].  

To achieve accurate variation characterization, an important observation is that a large number of 

variation sources cause spatial non-uniformity in process condition across the wafer and/or die surface. 

These variation sources are becoming increasingly critical in advanced technology nodes, especially with 

the transition to 450mm wafers. Each variation source often results in a unique spatial variation pattern. 

Therefore, if we are able to accurately understand the spatial patterns produced by the process, it will 

provide important insights into the yield-limiting factors. In this thesis, we develop accurate modeling 

techniques for spatial variation, and further develop two algorithms based on our model that automatically 

produce relevant results to help identify important yield-limiting factors. For wafers with similar spatial 

patterns, variation decomposition narrows down the sources of variation by decomposing the overall 

variation into multiple different components. each corresponding to a different subset of variation sources. 

Especially, the wafer-level and within-die spatial pattern is extracted and their impact in overall variation is 
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estimated. If the spatial pattern can be different for different wafers, wafer spatial signature clustering 

automatically partitions these wafers into groups exhibiting different spatial signatures, which helps process 

engineers find important factors that prevent the process from stably maintaining a high yield across 

different lots and wafers. In the rest of this chapter, we will briefly review the background on process 

variation, variation characterization and spatial variation modeling, and then outline the overall structure of 

the thesis. 

 

1.1 Process Variations 

Process variations are the deviations of the manufactured circuit compared to the design. Process 

variations can be categorized into catastrophic variations and parametric variations. Catastrophic 

variations are mainly due to defects such as metal opens and shorts, while parametric variations are due to 

variability in process parameters such as gate length and threshold voltage. In this thesis, we focus on 

parametric variations, which are becoming increasingly significant in new technology nodes [56]. For 

example, Ref. [2] shows the leakage and frequency variations of Intel microprocessors on a wafer, in which 

20 variation in chip leakage and 30% variation in chip frequency can be seen. As a result, both the high 

leakage and low frequency chips have to be discarded, and the remaining chips still have to go through an 

expensive and time-consuming frequency binning process. This poses a significant challenge to process 

engineers and circuit designers in order to ensure yield and profitability. 

Modern products typically require hundreds of process steps. First, active devices such as MOS 

transistors are fabricated on top of the substrate through a series of steps such as deposition, patterning and 

implantation, which is named the front end of line (FEOL) process. Next, multiple layers of interconnect 

are created to connect the active devices and power sources, which is named the back end of line (BEOL) 

process. Each of these process steps is subject to process variation, which ultimately impacts the final 

product yield. In this section, we will briefly review some of the main variation sources in today's 

manufacturing process. Note that for different processes/products, the relative importance of these variation 

sources can be significantly different. 
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                       (a)                                                  (b)                                                    (c) 

Figure 1-1. Three key stages of the lithography flow. 

Multiple main variation sources in the FEOL process can be found within the lithography process. 

Lithography uses light to transfer a geometric pattern from the mask to the resist, which is a material 

sensitive to light. In the lithography flow, resist is first applied to the wafer with a spin-coating process. 

This is shown in Figure 1-1 (a), where the yellow material denotes the thin film on which the pattern needs 

to be applied, and the black material denotes the resist. The resist coated wafer then goes through a soft 

baking process to remove excess resist solvent. Next, the resist is exposed to a pattern of intense light 

where the pattern is defined by the mask. A post-exposure bake (PEB) is then performed after exposure to 

reduce the standing wave effect. The state of the materials at this stage is shown in Figure 1-1 (b), where 

the exposed and unexposed regions have different solubility. The soluble resist is finally removed by the 

development process and the wafer is baked again to solidify the remaining resist. After the aforementioned 

lithography process, the thin film not protected by the resist will be removed by the etching process. 

Several possible main variation sources are in the resist spinning step, where various factors such as 

variability in spin speed, resist viscosity, and adhesive properties between the resist and substrate can lead 

to significant variation in resist thickness [47]. This will in turn lead to CD variation since resist thickness 

is strongly related to its sensitivity to exposure dose. A large number of possible variation sources exist in 

the exposure step, such as optical proximity, exposure dose variation, defocus, misalignment, mask error, 

lens aberration and line edge roughness (LER). Finally, significant CD variation can be caused by the 

nonuniformity of the thermal dose across wafer in the PEB step [31][32]. This is caused by the inability to 

maintain a perfectly uniform spatial PEB temperature distribution in the PEB equipment.  
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                                               (a)                                                      (b)                                                     

Figure 1-2. The etching process transfers the image from the resist to the layer under the resist. 

After the lithography process, the geometric pattern has been formed on the resist, and etching is 

then applied to transfer the image into the layer under the resist, as shown in Figure 1-2. There are two 

types of etching processes, wet etching and dry etching. For critical process steps, typically dry etching is 

applied because of its better controllability. The dry etching process bombards the wafer with an incident 

flux of ions, radicals, electrons and neutrals and the unwanted material is removed by both physical damage 

and chemical attack [82]. CD variation caused by the etching process can be due to a number of variation 

sources in the process conditions, such as temperature, pressure, gas flow and RF power [75]. Moreover, 

the etch rate can be layout dependent, resulting in the macro and micro loading effects which can be  

significant sources of variation in modern ICs. 

Besides lithography and etching, several other important sources of variation in the FEOL process 

can be found in the ion implantation and annealing process. In order to define the transistors, different 

regions such as the n- and p- wells, the transistor source and drain, and the lightly doped drain (LDD) are 

doped with different ion species and/or concentration. This is achieved by first applying the ion 

implantation process, where ionized impurity items are accelerated through an electrostatic field to strike 

the wafer. Next, these impurities are activated by the annealing process to properly distribute them [82].  

Variability in the ion implantation is related to the variation of multiple process conditions such as 

implantation dose, tilt angle, temperature, and uniformity of dopants across the wafer surface [82][75]. For 

the annealing process, the prevalent rapid thermal annealing (RTA) method is known to be sensitive to 

pattern non-uniformity across the wafer surface [44]-[46], which makes strongly layout-dependent 

[41][42]. Finally, in advanced technology nodes, since the device size is extremely small, the number of 

dopants in the channel area may be only hundreds, so that the actual number of dopants and their placement 
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can cause significant variation to the device threshold voltage, which is known as the random dopant 

fluctuation (RDF) problem [83].  

Besides the aforementioned variation sources, a number of other significant FEOL variation sources 

exist. For example, many layers of thin films such as the polysilicon gate are deposited using chemical 

vapor deposition (CVD), and it is difficult to maintain uniform deposition rate across the wafer surface [36] 

[37]. In the gate oxidation step, temperature non-uniformity across the wafer due to lamp configuration, as 

well as the gas flow, can cause significant across wafer gate oxide thickness variation [43].  

                                        

                                               (a)                                                      (b)                                                     

Figure 1-3. (a) Dishing and (b) erosion effects of the CMP process. 

In the BEOL process, an important source of metal thickness and inter-layer dielectric (ILD) 

thickness variations is the chemical mechanical polishing (CMP) process. After depositing the metal and 

ILD, CMP is applied to achieve a planar surface so that subsequent layers can be fabricated on top of them. 

However, complete planarity cannot be achieved by CMP and it is subject to a number of variation sources. 

These variation sources include process condition variation such as pad pressure, pad velocity and 

temperature [82]. Moreover, metal with large width is subject to the dishing effect, where more metal is 

removed in the center, as shown in Figure 1-3 (a); different pattern density leads to different removal rate 

of metal and ILD, which is named the erosion effect shown in Figure 1-3 (b). 

In addition to the aforementioned variation sources, significant process variation can be caused by 

non-ideal matching properties of equipments. Wafers manufactured by different equipments can have 

significant difference due to the mismatch in the process conditions of equipments; even within the same 

equipment, process condition mismatch between chambers can cause process variation [55]. The process 

condition of the same tool can also change over time, resulting in process shifts and drifts [75]. 

In summary, there exist a large number of variation sources can potentially impact the product yield. 
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While all these variation sources must be carefully addressed in the manufacturing process, when 

improving the yield of a particular process/product, due to the stringent requirement of time to market, the 

process engineers must prioritize their goals and focus their efforts on a smaller subset of the variation 

sources that has stronger yield impact. Obviously, the dominant variation sources change from process to 

process or even from product to product. Therefore, to capture these variation sources, process variation 

must be thoroughly characterized and the measurement data must be carefully analyzed. In the next sub-

section, we will review the variation characterization techniques to understand process variation. 

 

1.2 Variation Characterization 

In order to understand and ultimately reduce the variation to improve yield, process variation must 

be thoroughly characterized. Variation characterization is primarily achieved by measuring a set of 

electrical properties from test structures. These test structures may be placed within test chips, scribe lines, 

or the product chips. In this sub-section, we will first review some of the most important test structures to 

characterize parametric variation used in today's manufacturing process. Next, we will discuss several 

applications that analyze the measurement data obtained from these test structures to derive important 

information that guides the efforts to yield improvement. 

 

1.2.1 Test Structures for Variation Characterization 

A large variety of test structures have been proposed for variation characterization purposes. Some 

of these test structures focus on characterizing the variation of a particular parameter. For example, 

electrical linewidth metrology (ELM) measures the gate length by passing a precisely calibrated current 

through the gate and measuring the voltage across a subsection of the gate [6]. Interconnect resistance can 

be measured using the Van der Pauw method [95], and a charge based capacitive measurement test 

structure is proposed in [94] to measure interconnect capacitance. A method to measure the contact 

resistance of individual contacts is described in [21]. These test structures are related to a small subset of 

physical variation sources so that the sensitivity to a particular variation source can be more easily 

determined, but they do not directly provide information on how these variation sources would impact the 
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variation or yield of a finished product. 

Other test structures are based on transistors and their performance measurements are therefore more 

strongly correlated with the performance of the actual product. However, since a large number of process 

steps must be performed to fabricate a transistor, determining the sensitivity to a particular variation source 

can be challenging. One important category of the transistor-based test structures measures the properties of 

a single transistor [84]-[86] [88]. A benefit of this type of test structure is that it is possible to completely 

characterize a single transistor by gathering its full I-V data. Traditionally, the gate, source and drain of the 

transistor are required to be directly connected to probing pads. Since it consumes a lot of resources, this 

type of test structure was primarily used to create the SPICE models for circuit simulation [56], and it was 

difficult to deploy this test structure in large quantities to gather the statistics required for variation 

characterization. This problem is addressed by several recent works. For example, Ref. [84] measures the I-

V characteristics for a large number of transistors using a scan chain based approach. Ref. [86] presents a 

large addressable transistor array where the I-V characteristic of each transistor can be measured. To obtain 

the transistor threshold voltage variation from single-transistor measurements, Ref. [85] presents a large 

transistor array dedicated to measure threshold voltage variation of each individual transistor efficiently by 

measuring the gate-to-source voltage variation under the same drain current; Ref. [88] presents another 

technique which derives the threshold voltage variation from the leakage current measurements of each 

transistor in a large transistor array. The design dependent variation can be captured by measuring and 

comparing transistors with different design attributes such as width, length and layout. 

SRAM is a key building block in modern chips and hundreds of millions of SRAM cells may be 

placed on chip as cache memories. Moreover, because of the small device size used in SRAM, it is 

particularly sensitive to process variation. Therefore, the variability of SRAM cells is typically thoroughly 

characterized using SRAM arrays. For example, Ref. [87] characterizes the read current and write trip 

voltage of 1M SRAM cells, and Ref. [93] characterizes the read and write margins of SRAM cells by using 

several SRAM arrays in a test chip. In practice, other key components of the product chip can be also 

characterized as test structures to learn their performance and sensitivity to process variations. 
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enable

 

Figure 1-4. A 9-stage ring oscillator. 

Another important category of test structures commonly deployed is ring oscillators (ROs). A ring 

oscillator consists of an odd number of inverting stages. For example, Figure 1-4 shows an RO with 9 

stages where one of the stages is a NAND gate connected to a signal for enabling oscillation, and the other 

8 stages are inverters. Frequency and leakage measurements can be gathered from RO test structures, in 

which the frequency measurement can be easily measured with a low-cost frequency counter. Compared to 

the single transistor test structures, ring oscillators reflect circuits operations under high-speed conditions as 

in an actual product application, so that it is more strongly related to the performance of actual products 

[89]. Therefore, ROs are widely applied in variation characterization. For example, Ref. [90] describes a 

ring oscillator based test chip to characterize the process variation of a 0.25um process under different 

layout settings. Ref. [91] uses RO frequency and leakage to characterize the delay and leakage variation of 

a 90nm process. Ref. [92] uses RO frequency and leakage from an array of transistors to characterize the 

delay and leakage variation of a 45nm process. The problem of identifying sensitivity to process parameters 

is partly addressed in [89], which proposes to derive a number of parameters such as switching capacitance 

and threshold voltage variation by comparing ROs with different configurations. However, decomposing 

the variation and identifying the important variation sources remains a significant challenge. 

 

1.2.2 Statistical Analysis of Measurement Data 

After obtaining the measurement results from test structures, the next step is to apply statistical 

analysis techniques to interpret these measurement data. An important goal of statistical analysis is to 

derive important information that helps process engineers with the efforts to reduce the variation to 

improve yield. For any process and product, these yield improvement efforts are made throughout its entire 

lifecycle. From a product point of view, the lifecycle of its manufacturing process can be partitioned into 
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three stages: process development, product yield ramp and volume manufacturing. In the process 

development stage, the foundry internally develops, evaluates and optimizes the manufacturing process, 

and provides the process design kit (PDK) of the process to the customer. In the product yield ramp stage, 

the process and product are further fine-tuned to optimize the yield. Finally, in the volume production 

stage, the product is manufactured in large quantities and the goal is to stably maintain a high yield across 

different lots and wafers.  

In order to rapidly improve the yield, we need to inspect the measurements from product 

representative test structures (e.g. transistor saturation current, transistor leakage, RO frequency) or 

performance measurements from the product itself (e.g. maximum operating frequency, leakage), and 

identify the important variation sources that significantly contribute to the variation of these measurements. 

Once such important variation sources are identified, yield improvement efforts can be made more effective 

by focusing on these variation sources. However, this goal is extremely difficult to achieve, since modern 

manufacturing processes typically consist of hundreds of complex process steps. To narrow down the 

sources of variation, an important first step is to decompose the variation from a geometrical perspective 

into: lot-to-lot variation, wafer-to-wafer variation, wafer-level variation and within-die variation. Different 

geometrical levels can indicate different physical sources of variation. For example, lot-to-lot variation can 

be caused by tool-to-tool variations, changes in tool conditions over time, and differences in starting and 

processing material properties [7]. For single-wafer processing tools, wafer-to-wafer variation may be 

caused by temporal drift of process conditions as wafers are sequentially processed [7], or chamber 

condition mismatch of the same tool [55]. For multiple-wafer processing tools, wafer-to-wafer variation 

can be caused by different process conditions at different spatial locations within the same tool [37]. Wafer-

level variation can be caused by process condition non-uniformity across the wafer. For example, ion 

density in etching, temperature gradients in baking, or process condition variation from reticle to reticle can 

cause wafer-level variation [7] [56]. Within-die variation can be caused by stepper induced variations, 

etching variations, mask errors, or random device mismatches such as random dopant fluctuation and line 

edge roughness [7][56].  

For a number of wafers with similar spatial patterns, we would like to further decompose their 

wafer-level and within-die variations into spatially correlated variation and random variation. In process 
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development and product yield ramp stages, wafers typically have similar patterns, since they are 

manufactured using a limited set of equipments so that the mismatch between equipments is not a strong 

concern. Once such decomposition is performed, spatially correlated variation and random variation are 

related to different physical sources. Wafer-level and within-die spatially correlated variation can uncover 

systematic variation sources such as temperature gradients due to baking/etching equipment design, lens 

aberrations in lithography, etc. On the other hand, random variation can be caused by random device 

mismatches, random fluctuations of equipment condition over time, etc. Since different variation sources 

can result in completely different spatial patterns, once the spatially correlated component is extracted, it is 

possible to further search for the important systematic variation source by comparing the extracted spatial 

pattern with those produced by various process steps/equipments [57], such as the results from the 

aforementioned test structures dedicated to characterize few process steps. The key question is how to 

develop a statistical method to automatically achieve variation decomposition from both geometrical and 

spatial perspectives. 

In practice, for a large number of wafers with product chips, different spatial patterns can occur for 

different wafers, especially during volume production. By detecting such difference, it may reveal a large 

number of yield-limiting factors, such as process shift/drift, mismatch between equipments, mismatch 

between different chambers, etc. To monitor the process variations, for each wafer, a number of 

measurements are collected from test structures deployed on-chip and/or in the scribe line, such as DC 

characteristics of single transistors and ring oscillator frequency [7][64]. In order to detect yield-limiting 

factors from these measurement data, an important property that can be utilized is that wafers affected by 

different major variation sources can exhibit completely different spatial patterns. Therefore, if we can 

capture the spatial signature of each wafer with an accurate model, and further automatically partition all 

the wafers into different groups based on such spatial signature, in which each group exhibits a similar 

spatial signature, it would provide important insight to help process engineers with the yield improvement 

effort. Especially, process engineers can prioritize the yield improvement goals and focus on the 

mechanism related to large groups with strong spatial signature, so that reducing the variation sources that 

correspond to such spatial signature will have a significant impact on the improvement of overall yield. 

In summary, we discussed two applications that analyze measurement data to derive important 
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information for yield improvement throughout the product lifecycle. In this thesis, our goal is to derive 

efficient algorithms for these two applications. It can be seen that for both applications, an accurate model 

for spatial variation is a key component. Therefore, in the next sub-section, we will first briefly review the 

previous works on spatial variation modeling and motivate the need for a new modeling technique. We will 

then summarize the main contributions of this thesis in Section 1.4. 

 

1.3 Spatial Variation Modeling 

In order to develop efficient solutions for the two applications discussed in the previous sub-section, 

a key problem that must be solved is to develop an accurate model for spatial variation. Many modeling 

techniques have been proposed in the literature based on the spatial correlated property of systematic 

variation sources, and they can be divided into two categories. In this sub-section, we will first review these 

two categories of techniques, and then motivate the need for a new spatial variation modeling technique for 

our applications. 

The first category of models represents spatially correlated variation as correlated random variables 

and the correlation is modeled as a function of distance. The earliest work in this category is the Pelgrom 

model [3], which states that the variance of multiple process parameters is dependent on the squared 

distance between transistors, as a result of the spatially correlated systematic variation. For example, it 

models the threshold voltage mismatch of a transistor as: 
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where AVT0
 and SVT0 are technology-dependent constants, W and L are the width and length of a transistor 

respectively, and D is the distance between instances of devices. Several recent works [4][5][96][97] 

further explicitly models the spatial variation as a stationary random field, where the correlation between 

any two points (xi, yi) and (xj, yj) is a function of their distance: 
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where f denotes the performance of interest,  is the correlation coefficient and  
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is the Euclidean distance between two points. The difference between these works is mainly the different 

correlation functions used. Specifically, the correlation function in [96] is a linear function of distance, and 

a piecewise linear function is used in [97]. Three correlation functions: exponential, Gaussian and linear 

functions are used in [4] and the actual choice for a particular process/design is determined empirically. 

Finally, a general family of valid correlation functions was proposed in [5], which allows more flexibility 

on the shape of correlation function. These models do not fit the need of our applications because of the 

following two reasons. First, they do not explicitly decompose the spatially correlated variation with the 

random variation in the measurement data, and therefore cannot be applied for variation decomposition. 

Second, all these methods follow the assumption of (1.2) which consider the spatial correlation only as a 

function of the distance between measurements. This assumption is too simplistic to fully capture the 

spatially correlated systematic variation in manufacturing process. 

 The second category of models represents spatially correlated variation as an analytical function of 

the spatial coordinate (x, y). For example, a linear function is used in [7] to model the spatially correlated 

variation of RO delay: 
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Several other works further add quadratic terms to model the spatially correlated variation [6][35]: 
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And the following full quadratic model is applied to model the spatially correlated variation in [34], [98] 

and [99]: 
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These models allow the decomposition of spatially correlated variation and random variation by explicitly 

extracting the spatially correlated variation with the model. Moreover, the model coefficients such as a0-a5 

in (1.6) provide efficient representation of the spatial signature of wafers, which could be further utilized 

for the wafer spatial signature clustering application.  

 From the above comparison of models, the second category of models is more suitable for our 

applications. However, the most significant challenge in applying these models is that the simple linear and 

quadratic functions in (1.4)-(1.6) are only capable of modeling a limited amount of systematic variation 

sources and may not be sufficient for modern processes. For example, as will be shown in Section 2.1, the 
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difference between edge dies and other parts of a wafer is becoming an increasing difficult problem, which 

cannot be modeled by the functions in (1.4)-(1.6). More complex models are needed in order to capture 

more systematic sources such as the edge effect, but overly complicated models will lead to the over-fitting 

problem [24]. Once over-fitting occurs, it will model random variations as complex spatial patterns, which 

greatly increases the modeling error. Therefore, we need to re-visit this problem and develop an accurate 

model for spatial variation that addresses these issues. 

 

1.4 Thesis Contributions 

In this thesis, we propose accurate and efficient statistical techniques to solve the aforementioned 

variation decomposition and wafer spatial signature clustering problems. These techniques facilitate 

accurate identification of the important variation sources throughout the product lifecycle, which is vital to 

rapidly improving yield. The major technical contributions of this thesis are: 

 We propose to model spatial variation based on sparse regression. We demonstrate that spatially 

correlated variation can typically be modeled with a small number of pre-determined “templates” (e.g., 

linear and quadratic functions). However, the most appropriate templates to model the spatially 

correlated variation may vary for different process or design, and directly applying all possible 

templates will lead to severe over-fitting problem. To apply the proposed sparse regression technique, 

only a dictionary of templates is needed, which includes all possible patterns of spatially correlated 

systematic variation. The optimal templates to model the spatially correlated variation of a given 

wafer/die will be automatically selected by sparse regression to significantly reduce over-fitting. 

 We construct two dictionaries that can capture more spatially correlated systematic variation sources 

than the traditional quadratic modeling approach. We have studied a number of common physical 

variation sources and constructed a physical dictionary based on them. Furthermore, we construct the 

Discrete Cosine Transform (DCT) [23] dictionary based on unique sparse structure of spatially 

correlated variation in frequency domain. 

 We develop a robust solver for the sparse regression problem to accurately select the templates and 

remove measurement outliers.  
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 We develop a number of efficient numerical algorithms that significantly reduce the computational 

cost with large problems when the DCT dictionary is applied. 

 We propose a method to solve the variation decomposition problem based on the proposed robust 

sparse regression technique, the physical and DCT dictionaries and the linear mixed model [29]. The 

method is tested on a large number of synthetic and silicon data sets to demonstrate its efficacy. 

 We propose a method for the wafer spatial signature clustering problem by using robust sparse 

regression to extract the spatial signature of wafers and complete-link hierarchical clustering algorithm 

to perform clustering, and we develop a modified L-method to accurately determine the number of 

clusters. The efficacy of the proposed method is demonstrated on a large number of synthetic and 

silicon data sets. 

 

1.5 Thesis Organization 

 

Figure 1-5. Overview of the thesis organization. 

The overall structure of the thesis is shown in Figure 1-5. Chapter 2-Chapter 4 focus on variation 

decomposition, and the spatial variation modeling technique is motivated and developed based on this 
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application. Chapter 5 proposes a method for wafer spatial signature clustering and the spatial variation 

modeling technique in Chapter 2-Chapter 4 is re-used as an important component. Chapter 6 concludes this 

thesis. We briefly summarize the contents of Chapter 2-Chapter 6 below: 

In Chapter 2, we first present the mathematical formulation for the variation decomposition 

problem, in which an important goal is to identify the systematic spatially correlated component for wafer-

level and within-die variation. Towards this goal, we first develop a physical basis function dictionary 

based on our study of several common physical variation sources, which captures more spatially correlated 

systematic variation sources than the traditional quadratic modeling approach, and then propose the DCT 

dictionary to discover spatially correlated systematic patterns not modeled by the physical dictionary. 

Moreover, we proposed to apply sparse regression to significantly reduce the over-fitting problem posed by 

a large basis function dictionary. A large number of synthetic examples are constructed to demonstrate the 

efficacy of the proposed algorithm and models. 

The existence of outliers is an important problem that widely exists in silicon measurement data. If 

outliers are not appropriately considered, they will introduce substantial error to variation decomposition. 

In Chapter 3, we extend the sparse regression algorithm introduced in Chapter 2 to a robust sparse 

regression algorithm. By solving robust sparse regression, basis functions will be accurately selected in the 

presence of outliers, and outliers will be automatically detected and removed, before the data is provided to 

the linear mixed model to perform variation decomposition. Experiments on synthetic and silicon 

measurement data demonstrate that the proposed robust sparse regression algorithm provides superior 

accuracy compared to the traditional IQR method for outlier detection. We further performed variation 

decomposition on several silicon data sets and demonstrated the effectiveness of the proposed variation 

decomposition flow based on robust sparse regression. 

The computational cost for sparse regression with DCT basis functions can become extremely large 

for problems with large size, which limits the applicability of the variation decomposition methodology 

introduced in Chapter 2-Chapter 3. Therefore, in Chapter 4, we propose several efficient methods to make 

the computational cost of sparse regression tractable for large-scale problems. The key idea of these 

methods is to utilize fast DCT/IDCT computation to speed up the matrix-vector product computation. From 

the experimental results on a large problem with contact resistance measurement data, we observe nearly 
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200 speedup compared to the traditional direct implementation. 

In Chapter 5, we propose an accurate method to solve the wafer spatial signature clustering problem. 

The proposed method contains three key components: first, a robust feature extraction method is developed 

to automatically capture the spatial signatures of wafers by a small number of features based on the robust 

sparse regression technique developed in Chapter 2-4; second, a complete-link hierarchical clustering 

algorithm is selected to perform clustering on the features; finally, a modified L-method is developed to 

select the number of clusters from the hierarchical clustering result. The effectiveness of the proposed 

method is demonstrated by a number of synthetic and silicon data sets.  

Chapter 6 concludes the thesis with a high-level summary of the work, and discusses several future 

potential directions of research related to this work. 
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Chapter 2 Variation Decomposition via Sparse Regression 

Variation Decomposition via Sparse Regression 

2.1 Motivation 

As was discussed in Section 1.2.2, an important goal in variation characterization is to identify 

important variation sources that contribute significantly to the overall variation. Since modern 

manufacturing processes typically consist of hundreds of complex process steps, this goal is extremely 

difficult to achieve. To narrow down the sources of variation, an important first step is to decompose the 

variation from a geometrical perspective into: lot-to-lot variation, wafer-to-wafer variation, wafer-level 

variation and within-die variation, where different geometrical levels can indicate different physical 

sources of variation. Therefore, the overall variation can be mathematically represented by the summation 

of four components: 

 
     jklikljlkllkji

b    (2.1) 

where blkji indicates the overall variation, τl is the l-th lot variation, θk(l) is the k-th wafer variation within the 

l-th lot, γj(kl) is the j-th die variation within the k-th die and l-th wafer, and finally εi(jkl) is the i-th within-die   

variation within the j-th die, the k-th wafer, and the l-th lot. 

To further narrow down the sources of variation for a number of wafers with similar spatial pattern, 

wafer-level and within-die systematic variation can be modeled by extracting the spatially correlated 

variation, which is represented by linear combination of a set of pre-defined basis functions: 
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where the wafer-level spatially correlated variation is represented by λ1 basis functions {Awafer,m(xdie, j, ydie, j), 
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m = 1, 2, …, λ1}, where (xdie, j, ydie, j) is the location of the j-th die on the wafer, and the remaining 

component γ
r
j(kl) represents the random component of wafer-level variation. Similarly, the within-die 

spatially correlated variation is represented by λ2 basis functions {Adie,m(xsite, i, ysite, i), m = 1, 2, …, λ2}, 

where (xsite, i, ysite, i) is the location of the i-th measurement site on the die, and the remaining component 

ε
r
i(jkl) represents the random component of within-die variation. Each basis function can be viewed as a 

particular “template” to model the spatially correlated variation, and may be related to a small subset of 

process steps. This is a generalized definition compared to the simple linear and quadratic functions in 

(1.4)-(1.6). For example, the full quadratic model (1.6) can be expressed by six basis functions: 

{1, x,  y,  x
2
,  y

2
,  xy}. Once the decomposition in (2.2) and (2.3) is achieved, additional steps can be taken 

to further analyze the physical sources related to the spatially correlated variation. This can be achieved by 

two means: first, if the basis functions carry significant physical meaning, we can narrow down the process 

steps by first locating the important basis functions in (2.2) and (2.3), i.e. the basis functions that explain a 

significant portion of variance, and then investigate the variation sources that are related to them. Second, 

the extracted spatially correlated variation will present a unique spatial pattern, and therefore it is possible 

to search for the important variation source by comparing this spatial pattern with those produced by 

various process steps/equipments [57].  

By combining Equations (2.1), (2.2) and (2.3), we obtain the following representation of the overall 

variation: 
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where the overall variation is decomposed into six components: lot-to-lot variation, wafer-to-wafer 

variation, wafer-level spatially correlated variation, wafer-level random variation, within-die spatially 

correlated variation and within-die random variation. Eq. (2.4) is referred to as a linear mixed model [29] in 

statistics. This model can be estimated using the Restricted Maximum Likelihood (REML) method [29], 

yielding the coefficients {αm, m = 1, 2, …, λ1} and {βm, m = 1, 2, …, λ2} for wafer-level and within-die 

spatially correlated variation, and the following variances: variance for lot-to-lot variation σ
2

lot, variance for 

wafer-to-wafer variation σ
2

wafer, variance for wafer-level random variation σ
2
die,r, and variance for within-

die random variation σ
2
site,r. In order to estimate the contributions of spatially correlated variations in terms 
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of variance, we also estimate the variance for spatially correlated wafer-level and within-die variation by 

the following sample variance estimation: 
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Ndie is the number of dies on the wafer, and Nsite is the number of measurement sites in a die. Once these 

variance values are estimated, the contribution of a particular component is estimated by dividing its 

variance value with the sum of variance for all components. Note that in practice, due to the limitation of 

measurements, we may only be able to estimate part of these variance values. For example, in early-stage 

yield learning, there may be only one wafer and only a single performance value is obtained from each die, 

we are only able to extract the wafer-level spatially correlated and random components. In this case, the 

contribution of wafer-level spatially correlated variation will be calculated by σ
2
die,s/( σ

2
die,s+ σ

2
die,r), and the 

contribution of wafer-level random variation will be calculated by σ
2
die,r/( σ

2
die,s+ σ

2
die,r). 

 An important problem in applying the linear mixed model (2.4) is that the appropriate basis 

functions must be selected to model the spatially correlated wafer-level and within-die variation. 

Traditionally, only a small number of simple basis functions are employed, such as linear basis functions [7] 

and quadratic basis functions [6][34][35][98][99]. These simple basis functions are only capable of 

modeling a limited amount of variation sources and are not sufficient for modern processes. For example, 

an important problem for modern processes is that edge dies on a wafer can have significantly lower yield 

compared to other parts of the wafer. This problem has been identified as an important yield-limiting factor 

in ITRS 2005 [58] and remains important in all subsequent ITRS editions [59]-[61].  With process scaling, 

as CD tolerances become tighter, the systematic differences encountered at the wafer’s edge are playing a 

larger role in the yield equation [62]. Moreover, as wafer size has grown, so has the number of dies residing 
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near the edge. For example, the outer 20mm of a 300mm wafer can contain up to 25% of the dies on a 

wafer [62]. It is expected that the challenges for extreme edge dies will be further increased by the 

transition to 450mm wafers [63]. As will be shown in Section 2.2, more basis functions are needed in order 

to capture more systematic sources such as those related to the aforementioned edge effect.  

 As the number of possible basis functions increases, a large dictionary of basis functions can be 

formed, and the underlying physical sources for a particular process or design may be modeled by only a 

subset of all basis functions from the dictionary. In this case, as will be shown in the numerical results in 

Section 2.5, if all basis functions are directly applied, it will result in the over-fitting problem [24]. Once 

over-fitting occurs, the amount of spatially correlated variation can be overestimated. Also, it may generate 

overly complicated spatial pattern which is difficult to analyze. Therefore, in this chapter, we further 

propose to apply a sparse regression technique to accurately select the actual subset of basis functions for a 

particular process/design from the dictionary, in order to combat such over-fitting problem.  

 The remainder of the chapter is organized as follows. In Section 2.2 we present dictionaries that can 

be used to model spatially correlated variation. Then, we formulate basis selection as a sparse regression 

problem in Section 2.3. The numerical solver for sparse regression will be presented in Section 2.4. The 

efficacy of sparse regression is demonstrated by several examples in Section 2.5. Finally, we summarize 

our findings in Section 2.6. 

 

2.2 Dictionaries of Basis Functions 

For both wafer-level variation and within-die variation, we need to construct a dictionary of basis 

functions in order to capture spatial patterns for a large number of physical effects. In this section, we 

propose two possible dictionaries of basis functions. The first dictionary includes basis functions based on 

actual physical effects. Different basis functions within this dictionary can correspond to different physical 

variation sources. Therefore, by observing the actual basis functions selected and the amount of variation 

explained by basis functions that correspond to different physical sources, additional insights can be 

provided to further narrow down the major physical sources of variation. The second dictionary is 

constructed by the basis functions from Discrete Cosine Transform (DCT). This dictionary is based on 

different signatures of spatially correlated variation and random variation in the frequency domain. 



 22 

Specifically, spatially correlated variation typically carries a unique sparse structure within the coefficients, 

and therefore it can be extracted by identifying this structure. The basis functions themselves do not have 

clear physical meaning, but it can be used to complement the first dictionary, if the physical effect of an 

actual process/design is not accurately captured within the first dictionary.  

 

2.2.1 Physical Dictionary 

For basis functions to model wafer-level variation, each basis function is a function of the die's 

location on the wafer: f(xdie, ydie). For basis functions to model within-die variation, each basis function is a 

function of the measurement site's location on the die: f(xsite, ysite). In the remainder of this chapter, for the 

sake of simplicity in writing the expressions, we will simply use x and y to designate the spatial location. 

The actual physical meaning of x and y will be explained in the context. In the following, we will describe a 

number of basis functions based on actual physical effects of wafer-level and within-die variation 

respectively, which form the physical basis function dictionary. Note that the physical basis function 

dictionary does not need to be restricted to the functions to be introduced below. In practice, with improved 

understanding on the manufacturing process, more basis functions can be constructed and added to the 

physical dictionary.  

 

2.2.1.1 Wafer-level Variation 

We first consider basis functions of wafer-level variation. First of all, we include the full quadratic 

model in the wafer-level physical dictionary, which contains the following six basis functions: 
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 (2.14) 

It has been shown that a large number of physical effects can be modeled using a quadratic model of 
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x and y, such as post-exposure baking (PEB) temperature related CD variation [30]-[32], etching 

temperature related CD variation [30]-[33], overlay error [35], and deposition rate variation of chemical 

vapor deposition (CVD) [37]. A quadratic wafer-level pattern on silicon wafers has also been observed by a 

number of test structure measurements including electrical linewidth metrology (ELM) measurements of 

gate length [6], ring oscillator frequency [30] and NMOS/PMOS transistor leakage current [30]. An 

example of the quadratic model is shown in Figure 2-1, where the gate CD measurements on a wafer after 

removing within-die spatially correlated variation can be modeled using a quadratic function of x and y [6]. 

 

                                   (a)                                                                                   (b) 

Figure 2-1. (a) Wafer-level CD measurement map and (b) Spatially correlated variation extracted using a 

quadratic model [6]. 

 In addition to effects that can be modeled using a quadratic function, it is observed that edge dies of 

a wafer are often substantially different from other parts of the wafer [35][62][63]. Process condition near 

wafer edge is usually less well-controlled, which is partly because the density of patterns near wafer edge is 

substantially different compared to the rest of the wafer. The etching process is known to often generate the 

edge effect [38]-[40] [44]. Also, rapid thermal annealing is sensitive to pattern density within millimeter-

scale interaction distance [41][42], and therefore it can produce significant edge effect [44]-[46]. 
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                                               (a)                                                                  (b) 

Figure 2-2. (a) Depth 1 edge of a wafer and (b) Depth 2 edge of a wafer, where edge dies are marked in red. 

 In order to model the edge effect, indicator functions can be applied. In general, indicator functions 

have the following form: 

 
 

 



 


otherwise

Eyx
yxf

0

,1
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where E is a pre-defined subset of dies that belong to the edge region of the wafer. For example, an edge 

basis function can be defined according to Figure 2-2 (a), where a die is considered to be an edge die if one 

or more of its neighbors is not a valid die on the wafer. In reality, the edge effect may not affect only a 

single layer of dies on the immediate edge of the wafer, but may affect multiple layers of dies. To this end, 

we define the edge dies corresponding to Figure 2-2 (a) as the depth 1 edge of a wafer, and define edge dies 

with larger depth recursively: a die belongs to the depth i edge of a wafer, if itself or one of its neighbors 

belong to depth i-1 edge of a wafer. An example of depth 2 edge of the same wafer is shown in  

Figure 2-2 (b). In the physical dictionary, edge basis functions with different depth can be included, and the 

actual basis function that best matches a particular process can be automatically selected by the sparse 

regression algorithm in Section 2.3-2.4.  
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                                               (a)                                                                  (b) 

Figure 2-3. (a) Depth 1 edge and (b) Depth 2 edge of a wafer divided into 4 regions. 

The basis functions in Figure 2-2 can accurately model the edge effect if it uniformly affects all edge 

dies on a wafer. However, strong non-uniformity often presents in wafer measurement data: we may only 

observe edge effect in a portion of edge dies, and edge effect at different regions of a wafer can be 

different. In order to more accurately capture edge effect under such non-uniformity, we further partition 

the edge dies of a wafer into multiple regions, and construct a separate basis function for each region of the 

wafer. Again, in the dictionary, we can allow different configurations for performing the partition, and the 

actual basis functions that best describes a particular process will be automatically selected by the sparse 

regression algorithm in Section 2.3-2.4. For example, one method of performing the partition is shown in 

Figure 2-3, where the wafer edge is divided into 4 regions in the top-left, top-right, bottom-left and bottom-

right directions. For each depth, this will generate 4 basis functions. For K different depth settings, a total 

of 4K basis functions can be generated. An alternative partitioning of the basis functions is shown in Figure 

2-4, where the wafer is partitioned into top, bottom, left and right regions, yield another 4K basis functions. 

In practice, all basis functions in Figure 2-2, Figure 2-3 and Figure 2-4 can be included in the physical 

dictionary. One or more of these basis functions can be automatically selected by the sparse regression 

algorithm for a particular process. 
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                                               (a)                                                                  (b) 

Figure 2-4. (a) Depth 1 edge and (b) Depth 2 edge of a wafer divided into 4 regions with different 

partitioning. 

Other than the quadratic and edge effects, it has been observed that the center region of a wafer can 

be significantly different from other parts of the wafer. Physically, it can arise due to a number of sources, 

such as resist spinning and ion implantation [57]. Similarly, we can construct basis functions in the form of 

indicator functions to capture the center effect: 
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where C is a pre-defined subset of dies that belong to the center region of the wafer. In practice, it is 

difficult to uniquely define what dies belong to the center region in advance. Therefore, multiple basis 

functions corresponding to different center region definitions can be included in the physical dictionary. To 

construct the center basis functions, we start from a small region in the center of the wafer, and then 

gradually expand the center region in the x- and y- direction. Namely, in the first basis function, we define 

the center region as the spatial locations (x, y) that satisfy the following criterion: 
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where P is the number of dies along the x-direction, and Q is the number of dies along the y-direction. 

Figure 2-5 (a) shows an example of the first center basis function on a 139 wafer, where the center region 

is defined as a 33 region located in the exact center of the wafer. Next, we construct three more basis 

functions by symmetrically expanding the first basis function in the x-direction, y-direction, and both 

directions respectively. Figure 2-5 (b)-(d) show the three resulting basis functions expanded from  

Figure 2-5 (a). More basis functions can be expanded from Figure 2-5 (d) for larger wafers. For a particular 

process, if center effect exists, the most suitable basis function will be automatically selected from these 

candidates by the sparse regression algorithm.  
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                                               (c)                                                                (d) 

Figure 2-5. Four different center region definitions of the same wafer. 

2.2.1.2 Within-die Variation 

Process variation within the same die can be layout dependent. Therefore, if the measurements 

collected within die are not from test structures of the same layout, layout dependent variation can be 

estimated by constructing basis functions that account for the layout differences. One possible method of 
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modeling layout dependent variation is again by using indicator functions: 
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where Li is a set of measurements collected from test structures with layout style i. Suppose that there are N 

different layout styles for the within-chip test structures, N different basis functions can be used to model 

the systematic difference in performance caused by different layout styles. In practice, if layout-dependent 

variation is considered to be more important than other spatial variation sources, the layout-dependent 

variation can be extracted by these basis functions and removed from the measurement data before 

applying variation decomposition. Otherwise, these basis functions can be simply added to the within-die 

physical dictionary and the amount of variation due to layout-dependent effects will be automatically 

determined within the variation decomposition process.  

 After the layout dependent variation is considered, devices within the same die across different 

locations can also present spatially correlated variations due to a number of variation sources, such as 

exposure dose variation, lens aberrations, etc. These variations can often be modeled using a quadratic 

function [34]. For example, it is shown in [6] that within-die gate CD variation can be modeled using a 

quadratic function of x and y. It is further analyzed in [47] that the variation in the along-slit direction is 

typically larger than the along-scan direction, and is usually symmetric in nature due to the symmetry of the 

components in the exposure tool. Therefore, second-order terms are often needed to model within-die 

variation. In our physical dictionary, the basis functions of a full quadratic model (2.9)-(2.14) are included 

in the physical dictionary for within-die variation. Note that although the full quadratic model only contains 

6 basis functions, in practice it is possible for the number of within-die measurement sites to be very small. 

In this case, it is still beneficial to apply the sparse regression algorithm to combat the over-fitting problem. 
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                                           (a)                                                                       (b) 

Figure 2-6. (a) Within-die CD measurement map and (b) Spatially correlated variation extracted using a 

quadratic model [6]. 

In Section 2.2.1.1 and 2.2.1.2, we have developed physical basis functions for wafer-level and 

within-die variation based on several physical variation sources. In practice, more physical basis functions 

can be defined and included in the physical dictionary, as we gain understanding on more physical variation 

sources. 

 

2.2.2 DCT Dictionary 

We would like to model the spatially correlated variation using physical basis functions as much as 

possible, because they provide direct insight about the source of variation. However, in practice, because 

the manufacturing process contains a huge number of process steps and we do not have complete 

understanding for all of them, it is impossible to model all possible variation sources using physical basis 

functions. In this sub-section, we introduce another dictionary of discrete cosine transform (DCT) basis 

functions borrowed from image processing literature to complement the physical dictionary. We will first 

construct the DCT dictionary based on DCT transform, and then explain why this dictionary can be used to 

decompose spatially correlated and random variation. 

Let b(x, y) be a two-dimensional function representing the spatial variation of interest, where x and y 

indicate spatial coordinates of either wafer-level or within-die variation. In practice, the sampling points to 
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measure the spatial variation b(x, y) are often collected on a regular grid. In this case, without loss of 

generality, we can label the x and y in b(x, y) as integer numbers: x  {1, 2, ..., P} and y  {1, 2, ..., Q}. 

The discrete cosine transform (DCT) is a two-dimensional orthogonal linear transform that maps the spatial 

variation {b(x, y); x = 1, 2, ..., P, y = 1, 2, ..., Q} to the frequency domain [23]: 
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where 
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In (2.20), {D(u, v); u = 1, 2, ..., P, v = 1, 2, ..., Q} represents the DCT coefficients (i.e., the 

frequency-domain components) of the spatial variation function b(x, y). Equivalently, the function {b(x, y); 

x = 1, 2, ..., P, y = 1, 2, ..., Q} can be represented as the linear combinations of {D(u, v); u = 1, 2, ..., P, v = 

1, 2, ..., Q} by inverse discrete cosine transform (IDCT): 
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Based on (2.23), we construct the DCT dictionary by including the following PQ basis functions: 
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 Next, we will explain why decomposition of spatially correlated variation and random variation can 

be achieved by using the DCT dictionary. We first express this decomposition problem using the following 

equation: 

 
     yxryxsyxb ,,,   (2.25) 

where s(x, y) stands for the spatially correlated variation and r(x, y) stands for the random variation. Since 

the DCT transform (2.20) is a linear transform [23], the variation decomposition (2.25) can be equivalently 

performed in the frequency domain: 
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where {S(u, v); u = 1, 2, ..., P, v = 1, 2, ..., Q} and {R(u, v); u = 1, 2, ..., P, v = 1, 2, ..., Q} denote the DCT 

coefficients of the spatially correlated variation s(x, y) and the uncorrelated random variation r(x, y) defined 

in (2.25).  Once S(u, v) and R(u, v) are found, s(x, y) and r(x, y) can be determined by IDCT, similar to the 

case in (2.23). 

 An important property of the DCT coefficients is that if the spatial variation exhibits a strong spatial 

pattern, the DCT coefficients are sparse. For example, Figure 2-7 (a) shows a wafer map of 117 ring 

oscillators distributed over different spatial locations. Since ring oscillators use a large number of stages to 

average out the random variation [48], the wafer-level variation should be dominated by spatially correlated 

variation. A strong spatial pattern can be intuitively seen from Figure 2-7 (a), and as a result, its DCT 

coefficients in Figure 2-7 (b) only contain a small number of coefficients with large magnitude, while other 

coefficients are close to zero. This unique property of sparseness has been observed in many image 

processing tasks and serves as the key component in the compression algorithm in JPEG [67]. Also, it has 

motivated the compressed sensing research for image recovery using a minimum number of samples [8]-

[14]. 
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                                           (a)                                                                       (b) 

Figure 2-7. (a) Measured ring oscillator (RO) period values (normalized by a randomly selected constant) 

of 117 ROs from the same wafer. (b) Discrete cosine transform (DCT) coefficients (magnitude) of the 

normalized RO period measurement show a unique sparse pattern. 

Based on this sparsity property of spatially correlated variation in DCT domain, there exist a small 

number of (say, λ where λ << PQ) dominant DCT coefficients to satisfy: 
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where Ω denotes the set of the indices of the dominant DCT coefficients for S(u, v). Eq. (2.27) simply 

implies that the total energy of all DCT coefficients {S(u, v); u = 1, 2, ..., P, v = 1, 2, ..., Q} are almost 

equal to the energy of the dominant DCT coefficients {S(u, v); (u, v)  Ω}.  

On the other hand, the uncorrelated random variation can be characterized as white noise [23] and 

evenly distributed among all frequencies. Therefore, given the set of indices Ω, the following equation 

holds: 
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Because of the inequality λ << PQ, we have λ/PQ << 1 in (2.28). If the value of λ is sufficiently small (i.e., 

the DCT coefficients of spatially correlated variation are sufficiently sparse), such that 
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the following inequality holds: 
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 Based on these assumptions, if the set of dominant DCT coefficients can be identified, an accurate 

approximation of the DCT coefficients S(u, v) (corresponding to spatially correlated variation) can be 

expressed as: 
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In other words, we simply approximate S(u, v) by the dominant DCT coefficients {D(u, v); (u, v)  

Ω}.Comparing (2.26)and (2.31), it can be easily proven that the approximation error of (2.31) is given by: 
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Given the assumptions in (2.27)-(2.30), the error terms in (2.32) are almost negligible. Applying the DCT 

dictionary requires knowing the set Ω of the indices of the dominant DCT coefficients. This set can be 

identified using the sparse regression method, which will be introduced in the next sub-section. 

 It should be noted that other dictionaries of basis functions that offer sparsity for spatially correlated 
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variation have been proposed in the image processing literature, such as the wavelet basis functions. Both 

DCT and wavelet basis functions have been widely applied in image compression because for almost any 

real-world image, only a small number of DCT/wavelet coefficients are needed to accurately represent it. 

Especially, they are employed in the JPEG [67] and JPEG2000 [68] standards respectively. While wavelet 

basis functions show superior sparsity to DCT for many image examples [69][70], we found that DCT 

typically outperforms wavelet when representing spatial process variation measurement data. The 

fundamental reason is because wavelet basis functions are localized in the spatial domain while DCT basis 

functions are global in spatial domain. In other words, most wavelet basis functions are only constructed 

from measurements in a relatively small region of the wafer/die, while any DCT basis function is 

constructed from all measurements on the wafer/die. An important difference of images with spatial 

process variation is that images typically have very short correlation distance, i.e. the color of a pixel is 

typically only strongly correlated with other pixels within a small neighborhood. On the other hand, many 

physical sources of process variation will impact the whole wafer, such as temperature gradients in 

chemical vapor deposition [37], post exposure baking [30]-[32] and etching [30]-[33]. To model these 

variations with long correlation distance, the DCT basis functions will be more effective. 
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Figure 2-8.Comparison of DCT and wavelet basis functions on explaining variance of spatial variation 

based on ring oscillator period measurement data.  

To demonstrate the superiority of DCT over wavelet basis functions, we compare the sparsity of 

these two dictionaries by comparing their ability to explain the variance of spatial variation on the silicon 

measurement data example in Figure 2-7 (a).  To obtain the percentage of explained variance in Figure 2-8, 

we approximate the spatial variation in Figure 2-7 (a) with a list of different λ values (number of dominant 
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basis functions) and calculate the percentage of explained variance according to the following equation 

based on the definition of coefficient of determination in statistics [71]: 
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where B stands for all the measurement data in Figure 2-7 (a), and  

 
BBe   (2.34) 

stands for the residual after subtracting the spatial variation Bλ approximated by λ dominant basis functions. 

The wavelet dictionary selected in Figure 2-8 is the level 3 Haar wavelets [72]. Using other wavelets does 

not significantly change the results in Figure 2-8. From Figure 2-8, it can be seen that the percentage of 

explained variance grows quickly with the first 5-10 basis functions selected in both DCT and wavelet 

dictionaries, which show a large portion of variation can indeed be represented by a small number of basis 

functions for both dictionaries. With the same number of basis functions, DCT explains more variance than 

wavelets, which shows that DCT offers better sparsity than wavelets. Similar results can be observed for 

other silicon measurement data. 

 While spatially correlated variation can be modeled by a small number of dominant basis functions 

from the DCT dictionary, the dominant DCT basis functions themselves do not carry significant physical 

meaning. Therefore, unlike the physical dictionary, it is not possible to narrow down the potential variation 

sources based on which DCT basis functions are selected. However, since applying the DCT dictionary 

relies on little assumptions of the underlying process, as will be shown in Section 2.3, it can be used to 

complement the physical dictionary and identify important systematic patterns that are missed by the 

physical dictionary. The resulting spatial pattern generated from the DCT dictionary can still be used to 

help identify the variation sources by comparing it against the spatial patterns produced by various process 

steps/equipments. 

 

2.3 Basis Selection via Sparse Regression  

In the previous sub-sections, we learned that an important problem in variation decomposition is to 

apply the best basis functions to model wafer-level and within-die spatially correlated variation. In order to 

achieve good coverage for a large variety of variation sources, we have developed two dictionaries that 
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contain a large number of possible basis functions which can be used to model the spatially correlated 

variation. However, as will be shown in the experiments in Section 2.5, directly applying all basis functions 

in a dictionary can lead to significant over-estimation of spatially correlated variation due to over-fitting. 

Therefore, for a particular process or design, the actual basis functions need to be selected from the 

dictionaries to achieve accurate modeling and reduce over-fitting. In this sub-section, we will address this 

basis selection problem by applying sparse regression. The numerical solver for sparse regression will be 

discussed in the next sub-section. 

It has been shown in (2.25) that for any wafer or die measured, the spatial variation b(x, y) can be 

represented as the summation of spatially correlated variation s(x, y) and random variation r(x, y). In 

practice, measurements for the spatial variation can be collected from multiple wafers and/or dies, so that 

we can represent their spatial variation using a set of two-dimensional functions: {b(l)(x, y); l = 1,2,…L}, 

where L denotes the total number of wafers/dies. Each spatial variation function contains two components: 
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where s(l)(x, y) stands for the spatially correlated variation and r(l)(x, y) stands for the uncorrelated random 

variation for wafer/die l, respectively.  

 We first model the spatially correlated variation using basis functions from the physical dictionary. 

The physical dictionary is prioritized over the DCT dictionary, because its basis functions carry significant 

physical meaning that can be utilized to further analyze the physical variation sources. To this end, we 

represent s(l)(x, y) as a linear combination of all basis functions from the physical dictionary: 
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where the spatially correlated variation is represented by all Mphys basis functions {Aphys,j(x, y); j = 1, 2, …, 

Mphys} in the physical dictionary through coefficients {ηphys(l),j; j = 1, 2, …, Mphys}. Since we wish to identify 

the subset of basis functions that are relevant to a particular process/product, the coefficients are further 

required to be sparse. In other words, lots of the coefficients must be 0 in (2.36). 

 To solve the model in (2.36), the performance of interest is measured at a number of spatial 

locations. In this work, for the sake of simplicity, we directly regard these measurements as samples for the 

spatial variation {b(l)(xi, yi); i = 1, 2, …, N(l)}. Although the measurements differ from the variation by an 
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average or nominal value, for the purpose of variation decomposition, shifting the measurements by a 

constant does not alter the results for basis function selection or variation percentages, so that we will not 

explicitly distinguish measurements with variation. We would like to estimate the sparse coefficients 

{ηphys(l),j; j = 1, 2, …, Mphys} from such measurement data. Therefore, we formulate the following sparse 

regression problem: 
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where B(l) = [b(l)(x1, y1)  b(l)(x2, y2) … b(l)(xN(l)
, yN(l)

)]
T
 is a vector of spatial variation measurements, ηphys(l) = 

[ηphys(l),1 ηphys(l),2 … ηphys(l),Mphys
]

T
 is a vector of coefficients for physical basis functions, and Aphys(l) is matrix 

where Aphys(l),ij represents the value of the j-th physical basis function at the i-th measurement location. The 

symbol ||||2 stands for the L2-norm (i.e., the square root of the summation of the squares of all elements) of 

a vector, and ||||0 stands for the L0-norm (i.e., the number of non-zeros) of a vector. The cost function 

indicates that we would like to fit the measurement data with least-squares error. On the other hand, the 

constraint controls the sparsity of η(l), which means out of all possible Mphys candidates in the dictionary, 

there exists a small subset of λphys basis functions that are applied to model the spatially correlated variation. 

Therefore, the meaning of (2.37) is to select the best λphys basis functions to model the spatially correlated 

variation. The number of basis functions λphys explores the trade-off between two types of errors: an overly 

small λphys will not adequately fit the spatially correlated variation, while an overly large λphys will fit a 

significant portion of uncorrelated random variation as spatially correlated. The numerical solver for the 

problem, as well as the cross-validation method to determine λphys, will be discussed in Section 2.4. 

The optimization (2.37) is solved to select the basis functions for wafer-level and within-die 

spatially correlated variations respectively, and then the linear mixed model (2.4) is formulated using these 

selected basis functions and solved using the REML method. The extracted wafer-level spatially correlated 

variation in (2.4) will be a linear combination of quadratic, edge and center effect basis functions: 
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Similar to (2.5)-(2.8), we are able to estimate the sample variance for quadratic, edge and center effects 

respectively as σ
2
quad, σ

2
edge and σ

2
center. Next, we are able to similarly calculate the contribution of each 
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effect. For example, the contribution of quadratic effect in wafer-level spatially correlated variation is  

σ
2

quad / (σ
2

quad + σ
2
edge+ σ

2
center). Since quadratic, edge and center effects can correspond to different 

physical variation sources, this further decomposition will allow process engineers to further prioritize the 

investigation of process steps that cause the wafer-level systematic variation. 

 As discussed in Section 2.2, it may not be sufficient to model the spatially correlated variation using 

only the physical basis functions, since not all physical effects can be modeled by the physical dictionary. 

In this case, the DCT dictionary can be used to complement the physical dictionary to check if there is any 

significant spatial pattern that has been missed by the physical basis functions. In order to achieve this, we 

further represent s(l)(x, y) as a linear combination of selected physical basis functions and all DCT basis 

functions: 
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where Ωphys represents the subset of physical basis functions selected by solving (2.37). In addition, the 

spatially correlated variation is further represented by all PQ basis functions {Adct,j(x, y); j = 1, 2, …, PQ} 

in the DCT dictionary through coefficients {ηdct(l),j; j = 1, 2, …, PQ}. Again, the DCT coefficients are 

further required to be sparse, leading to the following sparse regression problem: 
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where Aphys(l),Ωphys
 is a sub-matrix of Aphys(l) containing the columns that belong to Ωphys and ηphys(l),Ωphys is a 

vector of the corresponding coefficients for physical basis functions; ηdct(l) = [ηdct(l),1 ηdct(l),2 … ηdct(l),PQ]
T
 is a 

vector of coefficients for all DCT basis functions, and Aphys(l) is matrix where Aphys(l),ij represents the value of 

the j-th DCT basis function at the i-th measurement location. Eq. (2.40) selects the best λdct additional basis 

functions that can be applied to model the spatially correlated variation. The linear mixed model (2.4) is 

again formulated using the basis functions selected by (2.40) for wafer-level and within-die variation and 

solved using the REML method. In the next sub-section, we will present numerical solvers that can be 

applied to solve the sparse regression problems (2.37) and (2.40), as well as to automatically determine the 

value of λphys and λdct. 
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2.4 Numerical Solver for Sparse Regression 

We notice that these two optimization problems (2.37) and (2.40) are extremely similar in nature. 

Therefore, we first define a general problem of sparse regression, and show that (2.37) and (2.40) are two 

specific cases of the general problem. We will then present efficient numerical solvers from the statistics 

literature for this general problem.  

We define the general sparse regression problem as follows: 
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where Ω0 represents a set of basis functions that are pre-selected, and nnz() stands for the number of non-

zeros within a set. It can be easily seen that (2.37) is a special case of (2.41) where: 
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Similarly, (2.40) is a special case of (2.41), where 
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Therefore, both sparse regression problems (2.37) and (2.40) can be solved if an efficient solver for the 

general problem (2.41) can be derived. In the following, we will present the numerical solver for the 

general problem in three steps. We will first introduce the numerical solver for (2.41) when L = 1 (i.e. there 

is only one wafer/die), then extend the solver to simultaneously solve multiple wafers/dies. We will finally 

discuss the cross-validation method to select the optimal value of λ. 
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2.4.1 Orthogonal Matching Pursuit (OMP) 

We first discuss the numerical solver for a simplified problem of (2.41) when L = 1 (i.e. there is only 

one wafer/die), Ω0 = {}, and λ is given in advance: 
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 Even with these simplification, (2.50) remains an NP-hard problem and therefore is extremely 

difficult to solve. Several efficient solvers for the problem (2.50) have been discussed in the compressed 

sensing literature, including L1-norm relaxation [8]-[10], orthogonal matching pursuit (OMP) [11]-[14], 

Bayesian method [15], iteratively reweighted L2-norm method [16], etc. The stepwise regression method 

[104] from statistics can also be applied to solve (2.50). Of all these methods, L1-norm relaxation and OMP 

are popular choices, because theoretical studies have shown that their accuracy degrades gracefully with 

increasing amount of random variation [9][14]. We select OMP as the numerical solver for the sparse 

regression problem. An important reason for choosing OMP is its simplicity. As will be shown in Chapter 3 

and Chapter 4, this simplicity of OMP allows us to easily adapt the algorithm for several practical needs, 

such as outlier detection and fast computation with the DCT dictionary. Moreover, a comparison of OMP 

and L1-norm relaxation in circuit performance modeling examples have been recently carried out in [17], 

which shows that the computational cost of OMP and L1-norm relaxation are similar in practice, with the 

accuracy of OMP slightly superior in most cases. In the following, we will introduce the OMP algorithm to 

solve (2.50), and then extend the algorithm to handle non-empty Ω0. 

The key idea of OMP is to use the inner product to identify a small number of important basis 

functions. Namely, we re-write the matrix A by its column vectors: 
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where each column corresponds to a different basis function. The inner product between B and a basis 

function Aj is then defined as: 
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where N is the number of samples, bi is the i-th element of B and Aij is the i-th element of Aj. Theoretically, 

the inner product <B, Aj> is equivalent to the actual coefficient ηj when solving the linear equation Aη=B, 
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when the columns of A are orthogonal and normalized: 
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For our basis function dictionaries, DCT basis functions are orthogonal and normalized when there is no 

missing data at any spatial location, and remain approximately so when there exist some missing data. 

Although the physical basis functions do not guarantee any orthogonality, they can be normalized (i.e. 

rescale each column vector to unit length) prior to applying the sparse regression algorithm. Overall 

speaking, even though the ideal conditions may not be fully satisfied in practice, the inner product <B, Aj> 

still remains an important metric to measure the significance of the basis vector Aj. A large inner product 

between B and Aj implies that the basis function j is an important component to approximate B.  

 Given the sparse regression problem (2.50), OMP iteratively uses the inner product to select the 

important basis functions. In the first step, the basis function that results in the largest magnitude of inner 

product is selected: 
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Once this basis function is selected, a least-squares problem is solved for the coefficient that corresponds to 

the basis function s1: 
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The solution of (2.55) is the best representation of the spatial variation B using the basis vector As1. Since 

(2.55) is an over-determined equation, it will result in a residual e, representing the spatial variation that 

cannot be represented by As1: 
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 In the next iteration, OMP further identifies the next important basis function by the largest 

magnitude of inner product with the residual: 
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Once the second basis function is selected, another least-squares problem is solved to obtain the best 

approximation of the spatial variation B using the basis function s1 and s2: 
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Note that in (2.58), all the coefficients are re-evaluated to minimize the total sum of squared residual, so 

that ηs1 can be changed from the solution in (2.55). This is because the basis functions are not necessarily 

orthogonal, so that re-evaluation is needed to improve the accuracy. If more basis functions need to be 

selected, the OMP algorithm will repeatedly select the best basis function according to maximum inner 

product with the residual similar to (2.57), then re-evaluate all coefficients similar to (2.58), until λ basis 

functions are selected. 
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                                           (a)                                                                       (b) 

Figure 2-9. (a) First step of the OMP algorithm on a 2-D example. (b) Second step of the OMP algorithm 

on a 2-D example. 

 To intuitively understand the OMP steps (2.54)-(2.58), we use a 2-D example in Figure 2-9 to 

explain its basic idea. In this example, we would like to approximate the vector B using two out of three 

basis vectors:  A1, A2 and A3. Figure 2-9 (a) shows the first step of the OMP algorithm which corresponds to 

(2.54)-(2.56). In this example, since A1 has the largest correlation with B, A1 is first selected to approximate 

B. The corresponding coefficient η1 is determined by least-squares fitting, and the residual e is orthogonal 

to the basis vector A1. Figure 2-9 (b) shows the second step of the OMP algorithm where the basis vector A2 

is selected because it has the strongest correlation with e, and the coefficients η1 and η2 are re-evaluated 

using least squares. The OMP algorithm stops here since two basis functions have been selected. 

 It is straightforward to extend the OMP algorithm to allow a set of basis functions that are pre-

selected. In this case, we aim to solve the following generalized problem: 
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where Ω0 may be non-empty. If the size of Ω0 is a non-zero value λ0, we can apply the OMP idea by 

conceptually considering λ0 steps have been performed to the simplified problem (2.50), and the basis 

functions selected are in the set Ω0. In this case, the coefficients that correspond to the selected basis 

functions can be estimated by: 
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and the residual can be subsequently estimated by: 
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The OMP iterations can then be “resumed” from the residual in (2.61). The flow of the extended OMP 

algorithm is summarized in Algorithm 1. 

Algorithm 1: Extended OMP 

1. Start from the optimization problem in (2.59) with a given integer λ. 

2. If Ω0 = {} 

Initialize the residual e = B; 

     Else 

 Initialize the residual e by (2.60)-(2.61). 

3. Initialize the set Ω = Ω0, and the iteration index p = 1. 

4. Select the new basis vector As according to the following criterion: 
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5. Update Ω by Ω = Ω∪{s}. 

6. Solve the least-squares fitting: 
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7. Calculate the residual: 
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8. If p < λ, p = p + 1 and go to Step 4. 

9. For any i  Ω, set i = 0. 

 

2.4.2 Simultaneous Orthogonal Matching Pursuit (S-OMP) 

We further derive the numerical solver for the following generalized problem when there exist 

multiple wafers/dies:  
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This can be viewed as L sparse regression problems with single wafer/die as in (2.59). Therefore, a 

naïve method to solve (2.65) is to solve these L problems independently using Algorithm 1.  Because of 

random variation, each problem may result in a different subset of basis functions Ω(l). Since we would like 

to identify the systematic variation sources for these wafers/dies, we require these L problems to result in a 

common subset of basis functions: 
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In order to achieve this goal, we further borrow the Simultaneous Orthogonal Matching Pursuit (S-OMP) 

algorithm [14] from statistics literature to solve a common set of basis functions from (2.65). 

 With (2.66) in mind, we re-visit the OMP algorithm (i.e., Algorithm 1) where a set of dominant 

basis functions are selected to approximate the spatially correlated variation. At each iteration of Algorithm 

1, a single basis function is chosen according to the inner product in (2.62). For S-OMP, since the index set 

of dominant coefficients is shared for L different wafers/dies as shown in (2.66), we use the linear 

combination of multiple inner products as a quantitative criterion for basis vector selection: 
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Eq. (2.67) is expected to be more accurate than applying (2.62) to any individual wafer/die, since it is less 

sensitive to the random noise caused by uncorrelated random variation and/or measurement error. In other 

words, by adding the inner products over L wafers/dies, the impact of random noise is reduced and the 
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spatial pattern associated with systematic variation can be accurately detected.  
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Figure 2-10. A 2-D example of using S-OMP to select the correct basis vector from two choices. 

To intuitively explain (2.67), Figure 2-10 shows a 2-D example where a vector S indicating the 

underlying spatially correlated variation is shared by two data sets in Figure 2-10 (a) and Figure 2-10 (b). 

Because of random variation, the observed spatial variation is different from S. The observed variation is 

denoted B
(1)

 and B
(2)

 in the two data sets respectively.  Given B
(1)

 and B
(2)

, we would like to select one out 

of two basis vectors, A1 and A2, that best models the spatially correlated variation S. If (2.62) is applied to 

these two data sets independently, we will get the following result: 

 2

)1(

1

)1( ,, ABAB   (2.68) 

 2

)2(

1

)2( ,, ABAB   (2.69) 

where (2.69) leads to the incorrect conclusion that A2 is preferred over A1 because of significant random 

variation. On the other hand, applying (2.67) yields: 

 2

)2(

2

)1(

1

)2(

1

)1( ,,,, ABABABAB   (2.70) 

which leads to the correct conclusion that A1 should be selected. This is because the systematic variation is 

shared across multiple data sets and the random variation can cancel out during the adding process. 

Therefore, (2.67) will more stably detect the correct basis functions compared to any individual data set. 

After applying (2.67) to select the basis function in each iteration, least-squares fitting is applied to each 

wafer/die to solve the coefficients that correspond to the selected basis functions, which is identical to the 

Algorithm 1. The extension of S-OMP to allow a set of pre-selected basis functions can be performed 
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following the same idea as Algorithm 1. 

Algorithm 2 summarizes the major steps of the aforementioned extended S-OMP algorithm. Note 

that Algorithm 2 can be viewed as a generalized version of Algorithm 1. If there is only one wafer/die (i.e., 

L = 1), Algorithm 2 is exactly equivalent to Algorithm 1. 

Algorithm 2: Extended S-OMP 

1. Start from the optimization problem in (2.65) with a given integer λ. 

2. If Ω0 = {} 

Initialize the residuals e(l) = B(l); 

     Else 

 Solve the following L least-squares fitting problems: 

       ),...,2,1(minimize

2

2
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,
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0),(

LlBA
i

lilil
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


 (2.71) 

 and initialize the residuals: 

 
         LlABe
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,...,2,1
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

 . (2.72) 

3. Initialize the set Ω = Ω0, and the iteration index p = 1. 

4. Select the new basis vector s according to (2.67). 

5. Update Ω by Ω = Ω∪{s}. 

6. Solve the following L least-squares fitting problems: 

       ),...,2,1(minimize

2

2
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,),(
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lilil
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. (2.73) 

7. Calculate the following L residuals: 

 
         LlABe

i

ililll
,...,2,1

,,
 



 . (2.74) 

8. If p < λ, p = p + 1 and go to Step 4. 

9. For any i  Ω, set (l),i = 0. 
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2.4.3 Cross-Validation 

The extended S-OMP algorithm (i.e., Algorithm 2) relies on a user defined parameter λ to control the 

number of basis functions that should be selected. In practice, λ is not known in advance. The appropriate 

value of λ must be determined by considering the following two important issues. First, if λ is too small, 

Algorithm 2 cannot select a sufficient number of basis functions to represent the spatially correlated 

variation, thereby leading to large modeling error. On the other hand, if λ is too large, Algorithm 2 can 

incorrectly select too many coefficients and some of these coefficients are associated with uncorrelated 

random variation, instead of spatially correlated variation. It, again, results in large modeling error due to 

over-fitting. In order to achieve the best accuracy, we must accurately estimate the modeling error for 

different λ values and then find the optimal λ with minimum error. 

In practice, it is extremely difficult to directly estimate the modeling error, since the amount of 

spatially correlated variation is not known in advance. We cannot simply measure the modeling error from 

all sampling data, since it will always monotonically decrease with larger number of basis functions, 

leading to the over-fitting problem. However, comparison of modeling error can be made based on the 

prediction error: we intentionally leave out a small random portion of measurements as a testing set, and 

use the other measurements to estimate the spatially correlated variation. The estimated spatially correlated 

variation for the testing set is compared against its actual measurements. The idea behind this approach is, 

since spatially correlated variation is the only predictable component within the total variation, the optimal 

prediction accuracy will be achieved when the spatially correlated variation is best modeled.  

In this paper, we adopt the cross-validation method [24] to estimate the modeling error for our 

variation decomposition application. An F-fold cross-validation partitions the entire data set into F groups. 

Modeling error is estimated according to the cost function in (2.65) from F independent runs. In each run, 

one of the F groups is used to estimate the modeling error and all other groups are used to calculate the 

model coefficients. Note that the training data for coefficient estimation and testing data for error 

estimation are not overlapped. Hence, over-fitting can be easily detected. In addition, different groups 

should be selected for error estimation in different runs. As such, each run results in an error value εf (f = 

1,2,...,F) that is measured from a unique group of data points. The final modeling error is computed as the 

average of {εf; f = 1, 2,...,F}, i.e., ε = (ε1 + ε2 + ... + εF)/F. 
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2.5 Numerical Results 

In this section, we demonstrate the efficacy of our proposed variation decomposition algorithm 

using several synthetic examples. We only show synthetic examples in this chapter because real-world 

silicon measurement data often contains outliers. If these outliers are not appropriately considered, they 

will introduce substantial error in the variation decomposition results. We will introduce techniques for 

detecting and removing these outliers in the next chapter and then show the results on the silicon data. 

 

2.5.1 Quadratic Basis Effects 

We first consider several wafer-level examples where the spatially correlated variation can be 

modeled by using quadratic basis functions. Figure 2-11 shows a synthetic wafer where the systematic 

variation is created by the following function: 

 
  221, yxyxs   (2.75) 

where x and y are coordinates on the wafer with range normalized to [-1 1]. The systematic wafer map is 

shown in Figure 2-11 (a). The synthetic data is created by adding a small amount of random variation 

distributed as N(0, 0.01), which is shown in Figure 2-11 (b). After adding the random variation, the 

systematic variation contributes to 89.6% of the total variance. 
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                                           (a)                                                                       (b) 

Figure 2-11. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-12. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

Figure 2-12 compares spatially correlated variation extracted by three methods. Figure 2-12 (a) 

shows the spatially correlated variation extracted by the proposed method with the physical dictionary, 

where the basis functions are determined by sparse regression with the physical dictionary shown in (2.9)-

(2.14) and Figure 2-2-Figure 2-5, and then applied in REML. The proposed method identifies 5 basis 

functions from the dictionary, and the estimated spatially correlated variation is 90.3%. Within the spatially 

correlated variation, the estimated percentages of quadratic, edge and center effects are 99.4%, 0.2% and 

0.5% respectively. Although sparse regression does not completely remove over-fitting, the estimated 

spatially correlated variation is extremely close to the true amount of systematic variation, and the spatially 

correlated variation is almost entirely contributed by quadratic basis. Figure 2-12 (b) shows the spatially 

correlated variation extracted by directly applying REML with the 6 quadratic basis functions in (2.9)-

(2.14). Since the systematic variation is created using quadratic basis functions, we expect the results in 

Figure 2-12 (b) to be accurate. The estimated spatially correlated variation is 90.2%, which shows similar 

accuracy with the proposed method. Figure 2-12 (c) shows the spatially correlated variation extracted by 

directly applying REML with the physical dictionary without sparse regression. After removing basis 

functions that are linearly dependent on other basis functions, there are 24 independent basis functions in 

total. The estimated spatially correlated variation is 92.4%, and the estimated percentages of quadratic, 

edge and center effects are 96.3%, 2.6% and 1.1% respectively. The results are less accurate than Figure 2-

12 (a) because of over-fitting, but the advantage of sparse regression is not significant. The importance of 
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sparse regression will be much clearer in the following examples where the random variation is large or the 

number of samples is fewer. 

We further consider the same systematic variation but the synthetic data is created by adding a 

larger amount of random variation distributed as N(0, 0.09), shown in Figure 2-13 (b). After adding the 

random variation, the systematic variation contributes to 59.5% of the total variance. Figure 2-14 compares 

spatially correlated variation extracted by three methods. Figure 2-14 (a) shows the spatially correlated 

variation extracted by the proposed method with the physical dictionary. The proposed method identifies 8 

basis functions from the dictionary, and the estimated spatially correlated variation is 60.4%. The estimated 

percentages of quadratic, edge and center effects are 98.5%, 0.4% and 1.1% respectively. Figure 2-14 (b) 

shows the spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially 

correlated variation is 60.5%.  Therefore, the proposed method shows similar accuracy compared to 

directly applying the quadratic basis functions. Figure 2-14 (c) shows the spatially correlated variation 

extracted by the physical dictionary without sparse regression. It can be intuitively seen from  

Figure 2-14 (c) that the extracted spatial pattern has significant over-fitting. In this case, the estimated 

spatially correlated variation is 72.3%, and the estimated percentages of quadratic, edge and center effects 

are 65.2%, 32.5% and 2.3% respectively. Therefore, without sparse regression, the amount of spatially 

correlated variation is greatly over-estimated, and the results show significant edge effect which does not 

exist in the actual systematic variation. 
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                                           (a)                                                                   (b) 

Figure 2-13. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-14. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 
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                                           (a)                                                                   (b) 

Figure 2-15. (a) Systematic variation of the synthetic wafer. (b) Synthetic data with checkerboard sampling. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-16. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 
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In the previous example, we showed that with significant random variation, directly applying the 

large physical dictionary and cause significant over-fitting, which greatly reduces the accuracy of variation 

decomposition. Therefore, sparse regression is needed to reduce the over-fitting. In reality, there can exist 

more significant risk of over-fitting if fewer sampling points are collected. This can happen because of 

missing data, or intentionally skipping some test sites to reduce test cost. Figure 2-15 (b) shows a scenario 

where the measurements in Figure 2-13 (b) are further sampled in a “checkerboard” style, resulting in about 

half the number of sampling points compared to performing full sampling. Figure 2-16 compares spatially 

correlated variation extracted by three methods. Figure 2-16 (a) shows the spatially correlated variation 

extracted by the proposed method with the physical dictionary. The proposed method identifies 6 basis 

functions from the dictionary, and the estimated spatially correlated variation is 60.4%. The estimated 

percentages of quadratic, edge and center effects are 99.9%, 0.0% and 0.0% respectively. Figure 2-14 (b) 

shows the spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially 

correlated variation is 60.6%.  Therefore, the proposed method shows similar accuracy compared to 

directly applying the quadratic basis functions. Figure 2-14 (c) shows the spatially correlated variation 

extracted by directly applying 23 independent basis functions from the physical dictionary without sparse 

regression. The resulting spatial wafer map shows even more over-fitting compared to Figure 2-14 (c), and 

the estimated spatially correlated variation is 83.0%. The estimated percentages of quadratic, edge and 

center effects are 49.1%, 50.6% and 0.3% respectively, which lead to the incorrect conclusion that the 

spatially correlated variation is dominated by edge effect. Therefore, it is necessary to apply sparse 

regression to reduce over-fitting. 

Figure 2-17 shows another synthetic wafer where the systematic variation is created by the 

following function: 

 
  221, yxyxyxs  . (2.76) 

where x and y are coordinates on the wafer with range normalized to [-1 1]. The systematic wafer map is 

shown in Figure 2-17 (a). The synthetic data is created by adding a small amount of random variation 

distributed as N(0, 0.02), which is shown in Figure 2-11 (b). After adding the random variation, the 

systematic variation contributes to 97.2% of the total variance. 
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                                           (a)                                                                       (b) 

Figure 2-17. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-18. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

Figure 2-18 (a) shows the spatially correlated variation extracted by the proposed method with the 

physical dictionary. The proposed method identifies 8 basis functions from the dictionary, and the 

estimated spatially correlated variation is 97.3%. The estimated percentages of quadratic, edge and center 

effects are 100%, 0.0% and 0.0% respectively. Figure 2-18 (b) shows the spatially correlated variation 

extracted by the 6 quadratic basis functions. The estimated spatially correlated variation is also 97.3%.  

Figure 2-18 (c) shows the spatially correlated variation extracted by directly applying 24 independent basis 

functions from the physical dictionary without sparse regression. The estimated spatially correlated 

variation is 97.7%, and the estimated percentages of quadratic, edge and center effects are 98.6%, 1.0% and 

0.5% respectively. In this case, all three methods can capture the systematic variation with good accuracy. 
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                                           (a)                                                                       (b) 

Figure 2-19. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 

We further add a larger amount of random variation distributed as N(0, 0.2) to the same systematic 

variation shown in Figure 2-17 (b). After adding the random variation, the systematic variation contributes 

to 79.6% of the total variance. Figure 2-20 compares spatially correlated variation extracted by three 

methods. Figure 2-20 (a) shows the spatially correlated variation extracted by the proposed method with the 

physical dictionary. The proposed method identifies 8 basis functions from the dictionary, and the 

estimated spatially correlated variation is 81.6%. The estimated percentages of quadratic, edge and center 

effects are 98.5%, 0.8% and 0.7% respectively. Figure 2-20 (b) shows the spatially correlated variation 

extracted by the 6 quadratic basis functions. The estimated spatially correlated variation is 80.9%.  

Therefore, the proposed method shows similar accuracy compared to directly applying the quadratic basis 

functions. Figure 2-14 (c) shows the spatially correlated variation extracted by directly applying the 24 

independent basis functions from the physical dictionary without sparse regression. Significant over-fitting 

can be seen from Figure 2-14 (c), and the estimated spatially correlated variation is 85.4%. The estimated 

percentages of quadratic, edge and center effects are 84.5%, 14.4% and 1.1% respectively.  
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                       (a)                                                  (b)                                                 (c) 

Figure 2-20. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

Table 2-1.Summary of results with quadratic effects. 

Example Golden Proposed physical Physical w/o SR Quadratic 

Radial,  

small variation 

89.6% 

Q: 100% 

90.3% 

Q: 99.4% 

92.4% 

Q: 96.3% 

90.2% E: 0.0% E: 0.2% E: 2.6% 

C: 0.0% C: 0.5% C: 1.1% 

Radial,  

large variation 

59.5% 

Q: 100% 

60.4% 

Q: 98.5% 

72.3% 

Q: 65.2% 

60.5% E: 0.0% E: 0.4% E: 32.5% 

C: 0.0% C: 1.1% C: 2.3% 

Radial,  

checkerboard 

59.5% 

Q: 100% 

60.4% 

Q: 99.9% 

83.0% 

Q: 49.1% 

60.6% E: 0.0% E: 0.0% E: 50.6% 

C: 0.0% C: 0.0% C: 0.3% 

Asymmetric, 

small variation 

97.2% 

Q: 100% 

97.3% 

Q: 100% 

97.7% 

Q: 98.6% 

97.3% E: 0.0% E: 0.0% E: 1.0% 

C: 0.0% C: 0.0% C: 0.5% 

Asymmetric, 

large variation 

79.6% 

Q: 100% 

81.6% 

Q: 98.5% 

85.4% 

Q: 84.5% 

80.9% E: 0.0% E: 0.8% E: 14.4% 

C: 0.0% C: 0.7% C: 1.1% 
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Table 2-1 summarizes the results from examples constructed by quadratic basis functions, where for 

each example we compare the extracted percentage of spatially correlated variation, as well as the detailed 

decomposition of quadratic (Q), edge (E) and center (C) effects inside the spatially correlated variation for 

different methods. The traditional quadratic model can only consider the quadratic effect so that its detailed 

decomposition will always be 100% quadratic. From these examples, we observe that the proposed method 

with physical dictionary achieves comparable accuracy with applying REML with the quadratic basis 

functions, if the systematic variation can be modeled by the quadratic function. The proposed method 

always achieves superior accuracy compared to directly applying REML with the physical dictionary 

without sparse regression because over-fitting can be significantly reduced by sparse regression. Sparse 

regression is especially needed when the amount of random variation is significant, or there exists missing 

data and/or intentionally skipped dies.  

 

2.5.2 Center/Edge Effects 

We further consider several wafer-level examples where the spatially correlated variation contains 

center and/or edge effects. We first create a systematic wafer map in Figure 2-21 (a), where the dies on the 

edge have larger performance value than other dies. The synthetic data is created by adding a small amount 

of random variation distributed as N(0, 0.01), which is shown in Figure 2-21 (b). After adding the random 

variation, the systematic variation contributes to 95.7% of the total variance. 
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                                           (a)                                                                       (b) 

Figure 2-21. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-22. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

Figure 2-22 (a) shows the spatially correlated variation extracted by the proposed method with the 

physical dictionary. The proposed method identifies 3 basis functions from the dictionary, and the 

estimated spatially correlated variation is 95.8%. The estimated percentages of quadratic, edge and center 

effects are 0.2%, 99.8% and 0.0% respectively. Figure 2-18 (b) shows the spatially correlated variation 

extracted by the 6 quadratic basis functions. The estimated spatially correlated variation is 62.8%.  It can be 

clearly seen that the proposed method achieves excellent accuracy in modeling the edge effect. On the other 

hand, using quadratic basis functions will not adequately capture the edge effect, and the extracted spatially 

correlated wafer map will contain significant artifact in the center of the wafer, which may mislead further 

effort to diagnose the source of variation. Figure 2-22 (c) shows the spatially correlated variation extracted 

by directly applying 24 independent basis functions from the physical dictionary without sparse regression. 

The estimated spatially correlated variation is 96.4%, and the estimated percentages of quadratic, edge and 

center effects are 2.4%, 97.2% and 0.5% respectively. The edge effect is captured but the result is not as 

accurate as Figure 2-22 (a) because of over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-23. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-24. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

We further add a larger amount of random variation distributed as N(0, 0.09) to the same systematic 

variation shown in Figure 2-23 (b). After adding the random variation, the systematic variation contributes 

to 72.2% of the total variance. Figure 2-24 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. The proposed method identifies 4 basis functions from the 

dictionary, and the estimated spatially correlated variation is 75.8%. The estimated percentages of 

quadratic, edge and center effects are 2.0%, 98.0% and 0.0% respectively. Figure 2-24 (b) shows the 

spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially correlated 

variation is 51.4%.  Figure 2-24 (c) shows the spatially correlated variation extracted by directly applying 

24 independent basis functions from the physical dictionary without sparse regression. The estimated 
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spatially correlated variation is 81.4%, and the estimated percentages of quadratic, edge and center effects 

are 7.1%, 92.5% and 0.4% respectively. It can be clearly seen that the proposed method achieves good 

accuracy in modeling the edge effect. Using quadratic basis functions does not adequately capture the edge 

effect and creates artifacts, while not using sparse regression causes inaccuracy due to over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-25. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 

Figure 2-25 shows another synthetic wafer where the systematic variation is created by edge effect 

on only the left half of the wafer. The systematic wafer map is shown in Figure 2-25 (a). The synthetic data 

is created by adding a small amount of random variation distributed as N(0, 0.01), which is shown in Figure 

2-25 (b). After adding the random variation, the systematic variation contributes to 94.9% of the total 

variance. Figure 2-26 (a) shows the spatially correlated variation extracted by the proposed method with the 

physical dictionary. The proposed method identifies 3 basis functions from the dictionary, and the 

estimated spatially correlated variation is 94.9%. The estimated percentages of quadratic, edge and center 

effects are 0.0%, 100.0% and 0.0% respectively. Figure 2-26 (b) shows the spatially correlated variation 

extracted by the 6 quadratic basis functions. The estimated spatially correlated variation is 50.1%. It can be 

seen that the proposed method achieves excellent accuracy. On the other hand, using quadratic basis 

functions can only capture extremely weak edge effect, and creates a strong artificial pattern in the right 

side of the wafer. Figure 2-26 (c) shows the spatially correlated variation extracted by directly applying 24 

independent basis functions from the physical dictionary without sparse regression. The estimated spatially 

correlated variation is 95.9%, and the estimated percentages of quadratic, edge and center effects are 2.8%, 
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97.0% and 0.3% respectively. The edge effect is captured but the result is not as accurate as Figure 2-24 (a) 

because of over-fitting. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-26. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

We further add a larger amount of random variation distributed as N(0, 0.09) to the same systematic 

variation shown in Figure 2-27 (b). After adding the random variation, the systematic variation contributes 

to 59.3% of the total variance. Figure 2-28 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. The proposed method identifies 3 basis functions from the 

dictionary, and the estimated spatially correlated variation is 55.7%. The estimated percentages of 

quadratic, edge and center effects are 0.0%, 100.0% and 0.0% respectively. Figure 2-28 (b) shows the 

spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially correlated 

variation is 29.9%.  Figure 2-28 (c) shows the spatially correlated variation extracted by directly applying 

24 independent basis functions from the physical dictionary without sparse regression. The estimated 

spatially correlated variation is 69.2%, and the estimated percentages of quadratic, edge and center effects 

are 16.7%, 78.9% and 4.5% respectively. It can be clearly seen that the proposed method achieves good 

accuracy in modeling the edge effect. Using quadratic basis functions does not adequately capture the edge 

effect and creates artifacts, while not using sparse regression causes inaccuracy due to over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-27. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-28. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

Figure 2-29 shows another synthetic wafer where the systematic variation is created by center effect. 

The systematic wafer map is shown in Figure 2-29 (a). The synthetic data is created by adding a small 

amount of random variation distributed as N(0, 0.01), which is shown in Figure 2-29 (b). After adding the 

random variation, the systematic variation contributes to 93.9% of the total variance. Figure 2-30 (a) shows 

the spatially correlated variation extracted by the proposed method with the physical dictionary. The 

proposed method identifies 2 basis functions from the dictionary, and the estimated spatially correlated 

variation is 93.6%. The estimated percentages of quadratic, edge and center effects are 0.0%, 0.0% and 

100.0% respectively. Figure 2-30 (b) shows the spatially correlated variation extracted by the 6 quadratic 

basis functions. The estimated spatially correlated variation is 38.4%. It can be seen that the proposed 
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method achieves excellent accuracy. On the other hand, using quadratic basis functions can only capture 

extremely weak center effect, and creates a strong artificial pattern in the edge of the wafer. Figure 2-30 (c) 

shows the spatially correlated variation extracted by directly applying 24 independent basis functions from 

the physical dictionary without sparse regression. The estimated spatially correlated variation is 94.9%, and 

the estimated percentages of quadratic, edge and center effects are 3.2%, 3.3% and 93.6% respectively. The 

edge effect is captured but the result is not as accurate as Figure 2-30 (a) because of over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-29. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-30. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 
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                                           (a)                                                                       (b) 

Figure 2-31. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-32. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

We further add a larger amount of random variation distributed as N(0, 0.09) to the same systematic 

variation shown in Figure 2-31 (b). After adding the random variation, the systematic variation contributes 

to 65.5% of the total variance. Figure 2-32 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. The proposed method identifies 2 basis functions from the 

dictionary, and the estimated spatially correlated variation is 64.0%. The estimated percentages of 

quadratic, edge and center effects are 0.0%, 0.0%, and 100.0% respectively. Figure 2-32 (b) shows the 

spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially correlated 

variation is 30.2%.  Figure 2-32 (c) shows the spatially correlated variation extracted by directly applying 

24 independent basis functions from the physical dictionary without sparse regression. The estimated 
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spatially correlated variation is 75.0%, and the estimated percentages of quadratic, edge and center effects 

are 14.5%, 27.1% and 58.3% respectively. It can be clearly seen that the proposed method achieves good 

accuracy in modeling the center effect. Using quadratic basis functions does not adequately capture the 

center effect and creates artifacts, while not using sparse regression causes inaccuracy due to over-fitting. 

We finally show another synthetic wafer where the systematic variation is created by a combination 

of quadratic, edge and center effects. The quadratic pattern is created by 

 
  221, yxyxs   (2.77) 

which forms a decreasing radial pattern from center to edge. The edge effect only occurs at the bottom edge 

of the wafer, and the center effect is similar to Figure 2-29 (a). These three components are rescaled so that 

each component contributes to one third of the variance in systematic variation. The systematic wafer map 

is shown in Figure 2-33 (a). The synthetic data is created by adding a small amount of random variation 

distributed as N(0, 0.04), which is shown in Figure 2-33 (b). After adding the random variation, the 

systematic variation contributes to 90.3% of the total variance. Figure 2-34 (a) shows the spatially 

correlated variation extracted by the proposed method with the physical dictionary. The proposed method 

identifies 11 basis functions from the dictionary, and the estimated spatially correlated variation is 90.6%. 

The estimated percentages of quadratic, edge and center effects are 36.3%, 32.1% and 31.5% respectively. 

Figure 2-30 (b) shows the spatially correlated variation extracted by the 6 quadratic basis functions. The 

estimated spatially correlated variation is 54.5%. It can be seen that the proposed method achieves excellent 

accuracy in estimating the percentage of spatially correlated variation, and the estimated percentages of 

each component are close to the actual percentage. On the other hand, using quadratic basis functions does 

not adequately capture the center and edge effects. Figure 2-34 (c) shows the spatially correlated variation 

extracted by directly applying 24 independent basis functions from the physical dictionary without sparse 

regression. The estimated spatially correlated variation is 92.6%, and the estimated percentages of 

quadratic, edge and center effects are 30.1%, 38.8% and 30.3% respectively. The result is not as accurate as 

Figure 2-34 (a) because of over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-33. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-34. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 

We further add a larger amount of random variation distributed as N(0, 0.16) to the same systematic 

variation shown in Figure 2-35 (b). After adding the random variation, the systematic variation contributes 

to 65.9% of the total variance. Figure 2-36 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. The proposed method identifies 11 basis functions from the 

dictionary, and the estimated spatially correlated variation is 70.1%. The estimated percentages of 

quadratic, edge and center effects are 32.2%, 39.6%, and 28.2% respectively. Figure 2-36 (b) shows the 

spatially correlated variation extracted by the 6 quadratic basis functions. The estimated spatially correlated 

variation is 43.2%.  Figure 2-36 (c) shows the spatially correlated variation extracted by directly applying 

24 independent basis functions from the physical dictionary without sparse regression. The estimated 
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spatially correlated variation is 74.7%, and the estimated percentages of quadratic, edge and center effects 

are 40.8%, 34.6% and 24.6% respectively. It can be clearly seen that the proposed method achieves good 

accuracy. Using quadratic basis functions does not adequately capture the edge/center effects, while not 

using sparse regression causes inaccuracy due to over-fitting. 
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                                           (a)                                                                       (b) 

Figure 2-35. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 
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                       (a)                                                  (b)                                                 (c) 

Figure 2-36. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by quadratic basis functions. (c) Spatially correlated 

variation extracted by the physical dictionary without sparse regression. 
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Table 2-2. Summary of results with edge/center effects. 

Example Golden Proposed physical Physical w/o SR Quadratic 

Full edge,  

small variation 

95.7% 

Q: 0.0% 

95.8% 

Q: 0.2% 

96.4% 

Q: 2.4% 

62.8% E: 100% E: 99.8% E: 97.2% 

C: 0.0% C: 0.0% C: 0.5% 

Full edge,  

large variation 

72.2% 

Q: 0.0% 

75.8% 

Q: 2.0% 

81.4% 

Q: 7.1% 

51.4% E: 100% E: 98.0% E: 92.5% 

C: 0.0% C: 0.0% C: 0.4% 

Partial edge,  

small variation 

94.9% 

Q: 0.0% 

94.9% 

Q: 0.0% 

95.9% 

Q: 2.8% 

50.1% E: 100% E: 100% E: 97.0% 

C: 0.0% C: 0.0% C: 0.3% 

Partial edge,  

large variation 

59.3% 

Q: 0.0% 

55.7% 

Q: 0.0% 

69.2% 

Q: 16.7% 

29.9% E: 100% E: 100% E: 78.9% 

C: 0.0% C: 0.0% C: 4.5% 

Center,  

small variation 

93.9% 

Q: 0.0% 

93.6% 

Q: 0.0% 

94.9% 

Q: 3.2% 

38.4% E: 0.0% E: 0.0% E: 3.3% 

C: 100% C: 100% C: 93.6% 

Center,  

large variation 

65.5% 

Q: 0.0% 

64.0% 

Q: 0.0% 

75.0% 

Q: 14.5% 

30.2% E: 0.0% E: 0.0% E: 27.1% 

C: 100% C: 100% C: 58.3% 

Mixed,  

small variation 

90.3% 

Q: 33.3% 

90.6% 

Q: 36.3% 

92.6% 

Q: 30.1% 

54.5% E: 33.3% E: 32.1% E: 38.8% 

C: 33.3% C: 31.5% C: 30.3% 

Mixed, 

large variation 

65.9% 

Q: 33.3% 

70.1% 

Q: 32.2% 

74.7% 

Q: 40.8% 

43.2% E: 33.3% E: 39.6% E: 34.6% 

C: 33.3% C: 28.2% C: 24.6% 
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Table 2-2 summarizes the results from examples containing edge and center basis functions. From 

these examples, we observe that the proposed method achieves good accuracy when there exist edge and 

center effects. In this case, the quadratic model will not adequately capture these effects, and may create 

undesirable artifacts that may mislead the further effort to diagnose the source of variation. The proposed 

method always achieves superior accuracy compared to directly applying the physical dictionary without 

sparse regression, which causes significant over-fitting with large random variation. 

 

2.5.3 Complex Effects 

As discussed in Section 2.3, not all physical sources of variation can be fully modeled by the 

physical dictionary. Therefore, after applying (2.37) to select the physical basis functions, we may further 

apply (2.40) which utilizes the DCT dictionary to discover any significant spatial pattern that has been 

missed by the physical dictionary. Since the DCT dictionary contains a large number of basis functions, an 

important concern is over-fitting. If there is only one wafer or die, even if cross-validation is applied, 

random variation may still accidentally match the pattern of some DCT basis functions. In this case, the 

proposed algorithm may select more basis functions than that are actually needed. This over-fitting problem 

can be significantly reduced, if there are multiple wafers/dies. We found that when there are 10 wafers with 

the same systematic pattern, for all the examples in Section 2.5.1 and 2.5.2, (2.40) will not select any 

additional basis function compared to (2.37), and therefore the variation decomposition results are exactly 

the same with applying the physical dictionary only. This result shows that applying the DCT dictionary in 

addition to the physical dictionary does not cause over-fitting with 10 wafers. 

We construct several examples to examine the ability of DCT dictionary to detect complex spatial 

patterns that are not modeled by the physical dictionary. One possible scenario is wafer-level effects caused 

non-uniformity of heat sources. In many process steps such as chemical vapor deposition (CVD), thermal 

oxidation of gate oxide, post exposure baking (PEB) and rapid thermal annealing (RTA), the wafer being 

processed is heated by heat sources above the wafer. Non-uniformity of heat sources may cause non-

uniform temperature distribution across the wafer, which eventually result in wafer-level spatially 

correlated variation. For example, Ref. [36] shows that in hot-wire CVD process where the heat source is a 

M-shaped hot wire above the wafer, the film thickness variation shows a spatial pattern which has three 
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peaks at locations where the heat source presents high density. Ref. [43] shows that in a thermal oxidation 

process of gate oxide where there are three heat sources above the wafer, the gate oxide thickness shows 

three peaks directly below the heat sources. Based on these observations, we construct a systematic wafer 

map in Figure 2-37 (a). The systematic wafer map has three peaks similar to the examples in [36] and [43]. 

We create 10 wafers of synthetic data by adding a small amount of random variation distributed as N(0, 

0.01) on each wafer. The synthetic data for one of the wafers is shown in Figure 2-37 (b). After adding the 

random variation, the systematic variation contributes to 86.1% of the total variance. Figure 2-38 (a) shows 

the spatially correlated variation extracted by the proposed method with the physical dictionary. Sparse 

regression identifies 2 basis functions from the dictionary, and the estimated spatially correlated variation is 

37.8%. Comparing Figure 2-38 (a) with Figure 2-37 (a), it can be seen that since the physical dictionary is 

not designed to model the pattern in Figure 2-37 (a), it fails to capture the underlying systematic pattern. 

Figure 2-38 (b) shows the spatially correlated variation extracted by the proposed method with the physical 

and DCT dictionaries. It selects 9 DCT basis functions in addition to the physical basis functions, and the 

estimated spatially correlated variation is 84.9%. The extracted pattern closely matches the actual 

systematic pattern, which serves as a good basis for further diagnosis of the source of variation. 
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                                           (a)                                                                       (b) 

Figure 2-37. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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                                           (a)                                                                       (b) 

Figure 2-38. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by the proposed method with the physical and DCT 

dictionaries. 
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                                           (a)                                                                       (b) 

Figure 2-39. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding large 

random variation. 

We further add a larger amount of random variation distributed as N(0, 0.04) to the same systematic 

variation shown in Figure 2-39 (b). After adding the random variation, the systematic variation contributes 

to 60.3% of the total variance. Figure 2-40 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. Sparse regression identifies 2 basis functions from the 

dictionary, and the estimated spatially correlated variation is 28.6%. Figure 2-40 (b) shows the spatially 

correlated variation extracted by the proposed method with the physical and DCT dictionaries. It selects 5 

DCT basis functions in addition to the physical basis functions, and the estimated spatially correlated 

variation is 57.0%. Similar to the previous example, the systematic pattern cannot be modeled using the 
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physical dictionary, but an accurate estimate can be found after applying the DCT dictionary. 
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                                           (a)                                                                       (b) 

Figure 2-40. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by the proposed method with the physical and DCT 

dictionaries. 

Another example that cannot be easily modeled by the physical dictionary is mask error for within-

die variation. Once possible outcome of mask error is that there can exist significant mean shift in two 

portions of a die. One example of such effect is shown in the contact resistance data in [21], which we will 

further show in detail in Section 3.4. Based on the data in [21], we construct a systematic within-die 

variation map in Figure 2-41 (a). The systematic variation map has a significant mean shift at x = 8. We 

create 10 dies of synthetic data by adding a small amount of random variation distributed as N(0, 0.01) on 

each die. The synthetic data for one of the dies is shown in Figure 2-41 (b). After adding the random 

variation, the systematic variation contributes to 95.5% of the total variance. Figure 2-42 (a) shows the 

spatially correlated variation extracted by the proposed method with the physical dictionary, which contains 

6 basis functions from the quadratic model. Sparse regression identifies 3 basis functions from the 

dictionary, and the estimated spatially correlated variation is 75.9%. Comparing Figure 2-42 (a) with  

Figure 2-41 (a), it can be seen that the physical dictionary does not clearly capture the left to right 

difference. Figure 2-42 (b) shows the spatially correlated variation extracted by the proposed method with 

the physical and DCT dictionaries. It selects 6 DCT basis functions in addition to the physical basis 

functions, and the estimated spatially correlated variation is 95.4%. The extracted pattern closely matches 

the actual systematic pattern, which serves as a good basis for further diagnosis of the source of variation. 
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                                           (a)                                                                       (b) 

Figure 2-41. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding small 

random variation. 
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                                           (a)                                                                       (b) 

Figure 2-42. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by the proposed method with the physical and DCT 

dictionaries. 

We further add a larger amount of random variation distributed as N(0, 0.09) to the same systematic 

variation shown in Figure 2-43 (b). After adding the random variation, the systematic variation contributes 

to 71.2% of the total variance.  Figure 2-44 (a) shows the spatially correlated variation extracted by the 

proposed method with the physical dictionary. Sparse regression identifies 3 basis functions from the 

dictionary, and the estimated spatially correlated variation is 56.8%. Figure 2-40 (b) shows the spatially 

correlated variation extracted by the proposed method with the physical and DCT dictionaries. It selects 5 

DCT basis functions in addition to the physical basis functions, and the estimated spatially correlated 

variation is 69.6%. Similar to the previous example, the systematic pattern cannot be modeled using the 
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physical dictionary, but an accurate estimate can be found after applying the DCT dictionary. 
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                                           (a)                                                                       (b) 

Figure 2-43. (a) Systematic variation of the synthetic wafer. (b) Synthetic data created by adding random 

variation. 
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Figure 2-44. (a) Spatially correlated variation extracted by the proposed method with the physical 

dictionary. (b) Spatially correlated variation extracted by the proposed method with the physical and DCT 

dictionaries. 
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Table 2-3.Summary of results with complex effects. 

Example Golden Proposed physical Proposed physical+DCT 

Multiple heat, small variation 86.1% 37.8% 84.9% 

Multiple heat, small variation 60.3% 28.6% 57.0% 

Mask error, small variation 95.5% 75.9% 95.4% 

Mask error, large variation 71.2% 56.8% 69.6% 

 

Table 2-3 summarizes the results from examples containing complex spatial patterns. From these 

examples, we observe that when the systematic variation pattern differs from those considered in the 

physical dictionary, applying physical dictionary may not adequately fit the systematic pattern and may 

create misleading results. In this case, if multiple wafers/dies are present, further applying the DCT 

dictionary can help discover significant patterns that have been missed by the physical dictionary.  

 

2.6 Summary 

Variation decomposition is an important tool to help identify important process steps that cause 

significant overall performance variations. For wafers with similar spatial pattern, an important goal is to 

identify the spatially correlated component for wafer-level and within-die variation, which serves as an 

important basis for further diagnosis of systematic variation sources. In this chapter, we have proposed a 

wafer-level physical basis function dictionary which models more physical effects than the traditional 

quadratic modeling approach, and further proposes to use the DCT dictionary to discover systematic 

patterns not modeled by the physical dictionary. Moreover, we propose a variation decomposition method 

which uses sparse regression to select basis functions from the physical and DCT dictionaries. By applying 

sparse regression, the over-fitting problem related to applying a large basis function dictionary can be 

significantly reduced. A large number of examples are constructed to demonstrate the efficacy of the 

proposed algorithm and models. 
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Chapter 3 Robust Regression for Variation Decomposition 

Robust Regression for Variation Decomposition 

3.1 Motivation 

In the previous chapter, we have presented a sparse regression based method for performing 

variation decomposition. The proposed method mainly contains two steps: first, the basis functions are 

selected from a dictionary by sparse regression; second, a linear mixed model is solved by REML with the 

selected basis functions to decompose variation. Both of these steps are sensitive to outliers, which 

typically exist in real measurement data. Outliers are measurement data that significantly deviate from the 

regular parametric variation range. In practice, outliers can occur because of manufacturing defects or 

measurement errors. For example, wafer probe test may produce incorrect measurement results due to 

probe misalignment [20]. 

If outliers are not appropriately considered, they will introduce substantial error when performing 

variation decomposition. Two types of errors can be introduced by outliers in the variation decomposition 

process. First, sparse regression may not select the correct basis functions to model the spatially correlated 

variation. Specifically, the selected basis functions are typically fewer than the actual basis functions. This 

is because outliers often strongly deviate from the general spatial pattern, so that the sparse regression 

algorithm may determine that the spatial pattern does not exist at all. Second, a few outliers may result in 

an extremely strong random variation component, and will result in underestimation of spatially correlated 

component. To intuitively demonstrate the errors caused by outliers, Figure 3-1 (a) shows the systematic 

variation of a synthetic wafer with quadratic, edge and center effects, which is the same as Figure 2-35 (a). 

Figure 3-1 (b) shows the measurement data, where 3 outliers are randomly added to the measurement data 

in Figure 2-35 (b). Figure 3-1 (c) shows the extracted spatially correlated variation when the basis functions 

are selected by Algorithm 2 in the previous chapter with the physical dictionary. Comparing Figure 3-1 (c) 
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with the actual systematic variation in Figure 3-1 (a), the most important difference is that the radial trend 

in Figure 3-1 (a) is completely lost in Figure 3-1 (c). This is because when performing sparse regression, no 

quadratic term is selected. The lack of quadratic terms will lead to incorrect interpretation of the spatial 

pattern. Because of this lack of fit and presence of outliers, the estimated spatially correlated variation is 

48.3% of the overall variation, which is significantly less than the actual amount of 65.9%.  
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                           (a)                                                   (b)                                                   (c) 

Figure 3-1. (a) Systematic variation of the synthetic wafer. (b) Measurement data created by adding large 

random variation and three outliers. (c) Estimated spatially correlated variation without outlier detection. 

In this chapter, we propose to extend the sparse regression algorithm introduced in Algorithm 2 to a 

robust sparse regression algorithm. By solving robust sparse regression, basis functions will be accurately 

selected in the presence of outliers, and outliers will be automatically detected and removed, before the data 

is provided to the linear mixed model to perform variation decomposition. The remainder of the chapter is 

organized as follows. In Section 3.2 we review the background on the traditional IQR method for outlier 

detection and its limitation. We present our robust sparse regression algorithm in Section 3.3. In Section 3.4, 

we will first demonstrate the efficacy of the robust sparse regression algorithm with several examples, and 

then show the variation decomposition results on several silicon data sets. Finally, we summarize our 

findings in Section 3.5. 

 

3.2 Background  

Traditionally, outlier detection is performed as a pre-processing step to all the subsequent algorithms. 

Therefore, before applying the sparse regression algorithm described in Algorithm 2, we can estimate the 

variation range of all the measurement data, and then remove the outliers that sit outside the estimated 
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range. 

The classical outlier detection method in statistics is the Interquartile Range (IQR) method [26]. 

Quartiles are defined as the three values in ascending order, [Q1 Q2 Q3], which divide the sorted data set 

into four equal parts. In other words, Q1 Q2 and Q3 correspond to the 25%, 50% and 75% points of the 

cumulative distribution function (CDF) of the data. Suppose that B represents all the measurement data 

sorted in ascending order and the total amount of measurement data is N, these three values are computed 

by the following equations: 

 5.04/1 


N
BQ  (3.1) 

 5.02/2 


N
BQ  (3.2) 

 5.04/33 


N
BQ . (3.3) 

If the index is a non-integer value, the quartile is computed by interpolation from two adjacent data points. 

For example, if N = 9, the index for Q1 is 2.75. Therefore, Q1 is computed by 

 
  4/3)9(

321
BBNQ  . (3.4) 

Next, we compute the IQR of the data: 

 13
QQIQR   (3.5) 

to estimate the variability. If the measurement data satisfy a Normal distribution, IQR is nearly equal to 

4/3σ where σ denotes the standard deviation of the distribution.  

Finally, we define the variation range of the data based on IQR computed from (3.5). For each 

measurement data, we consider it as an outlier, if its value is outside the following variation range: 

 
]3,3[

31
IQRQIQRQR   (3.6) 

where the scaling factor 3 is decided empirically by the statistics community. If the measurement data is 

normally distributed, the IQR method removes the data outside 4.7σ range.  

The key idea of the IQR method is to use robust metrics in (3.1)-(3.3) to define the variation range. 

The metrics themselves must not be easily biased by the outliers within the data. To intuitively illustrate 

this idea of the IQR method, Figure 3-2 shows an outlier detection example containing 9 regular data points 

and 1 outlier. A naïve method to detect outliers can be constructed by defining the following range: 



 77 

 
]3,3[  R  (3.7) 

where  and  are the sample mean and sample standard deviation of all measurement data, respectively. 

Both  and  can be strongly biased by a single outlier, so that outlier remains inside the interval specified 

by   3. Therefore, outlier detection cannot be performed by using simple statistics (e.g., mean and 

standard deviation), since they are extremely sensitive to the large measurement error posed by outliers. On 

the other hand, the boundary defined by is Q3+3IQR intuitively a good point to separate regular data from 

outliers. 

 

Figure 3-2. The IQR method successfully detects the outlier that strongly biases the estimation of mean and 

standard deviation. 

The aforementioned outlier detection method suffers from strong limitations when processing IC 

measurements. This is because modern IC processes suffer from a lot of variation sources which present 

themselves in lot-to-lot, wafer-to-wafer, wafer-level and within-die variations. When directly viewing all 

measurement data, the accumulation of these variation sources will result in a very large variation range. 

Therefore, even if the outcome of a particular process step is strongly distorted by defects, such distortion 

may not be significant compared to the natural variation range of all process steps, making outliers difficult 

to detect. This has been observed in a number of performance metrics in the testing literature, such as Iddq 

[49], minimum Vdd [50] and maximum frequency [51]. Therefore, an accurate outlier detection method for 

IC measurement must take into account the fact that the overall variation can be decomposed into multiple 

components, and explicitly use this information to make the outliers more distinguishable from the regular 

data, before determining the variation range of regular data. In the next sub-section, we will present a 

robust sparse regression method that is built based upon this concept. 
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3.3 Robust Sparse Regression 

In this section, we develop a new algorithm to accurately select the basis functions and remove 

outliers for IC measurements. The key motivation of our algorithm is that when removing the wafer-

level/within-die outliers, we would like to define the variation range only based on wafer-level/within-die 

random variation. By only considering one component of the overall variation, we will be able to 

significantly reduce the variation range for regular measurements, and therefore making regular data and 

outliers more easily separable.  
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                           (a)                                                   (b)                                                   (c) 

Figure 3-3. (a) Measurement data with 3 outliers. (b) Estimated spatially correlated variation. (c) Outliers 

are more easily distinguished after removing spatially correlated variation. 

We intuitively illustrate the concept of our algorithm by a wafer-level example shown in Figure 3-3. 

Figure 3-3 (a) is created by adding three outliers to the wafer map in Figure 2-17 (b), which contains only a 

small amount of random variation. It can be seen that the value of the outlier dies are not very far from 

regular data. Suppose that we are able to accurately extract the spatially correlated variation of the wafer in 

Figure 3-3 (b), and subtract this component from Figure 3-3 (a), the resulting residual is shown in  

Figure 3-3 (c). Figure 3-3 (c) corresponds to the wafer-level random variation component of the wafer in 

Figure 3-3 (a). It can be obviously seen from Figure 3-3 (c) that the outliers are much more clearly 

separable from the regular measurement data than Figure 3-3 (a).  

While the aforementioned flow improves the accuracy of outlier detection by estimating and 

removing the spatially correlated variation component, the most important challenge is how to accurately 

estimate such spatially correlated variation in the presence of outliers. Since Algorithm 2 in the previous 

chapter is sensitive to outliers, it will only be accurate if the outliers have been removed. This forms a 
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circular dependency with the need to use the sparse regression result to detect outliers. In order to escape 

from this dependency, we would like to revise the sparse regression algorithm to make it robust to outliers.  

We develop our algorithm by first studying the fundamental reason why Algorithm 2 is sensitive to 

outliers. We re-write the matrix A(l) in the sparse regression problem (2.65) into a row matrix form: 
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where each row corresponds to the value of all basis functions for a particular performance measurement. 

For each measurement, by solving (2.65), we can obtain a residual: 
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where b(l),i is the i-th element of the vector B(l). Therefore, we can re-write the sparse regression problem 

(2.65) as 
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where 
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ee
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In robust statistics, when the cost function of an estimate can be represented as the summation of  

functions, where  is a function of a single sampling point and the estimate, such an estimate is called an 

M-estimate [52]. For regression problems,  is typically a function of the residual, such as the L2 function 

in (3.11). It has been well studied in the robust statistics literature that if the  function is not robust, the 

regression problem will be sensitive to outliers. The  function in (3.11) is not a robust function. To 

understand this concept, we plot the function (3.11) in Figure 3-4 (a). It can be seen that as the residual 

moves away from zero, the objective function increases rapidly. Therefore, if there exist any strong 

outliers, even if they are few in number, they can significantly influence the cost function in (3.10) and 

therefore completely bias the result.  
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Figure 3-4. (a) the L2-norm  function. (b) the bisquare  function. 

Based on the M-estimate theory in statistics, we develop a robust regression method by replacing the 

non-robust  function in (3.11) by a robust function. A large number of functions that are robust to outliers 

have been proposed in the statistical literature [26] [52]. It has been shown that the choice of the function is 

not critical in many practical situations, and many choices will give similar results that offer great 

improvements over classical estimates [52]. In this work, we adopt a robust  function named bisquare 

function shown in Figure 3-4 (b). The bisquare function is similar in shape to the L2-norm  function, but 

its value stops to grow after a certain threshold. Therefore, intuitively it would prevent a small number of 

outliers from significantly changing the result. Mathematically, the bisquare  function is defined as: 
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where k is a tuning constant specifying the cut-off threshold in Figure 3-4 (b). The following tuning 

constant is often used [53]: 
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where stdi(e(l),i) means standard deviation of the residuals {e(l),i; i = 1, 2, …, N(l)}. This cut-off threshold is 

similar to the threshold in (3.6) based on 3∙IQR.  Traditionally, the following equation is used to estimate 

the standard deviation: 
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where meanj(e(l),j) means standard deviation of the residuals {e(l),j; j = 1, 2, …, N(l)}. However, similar with 

the cost function in (3.10), Eq. (3.14) can be significantly influenced by large e(l),i  values. Therefore, to 

robustly estimate the standard deviation, we adopt the following equation [26]: 
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Eq. (3.15) is a consistent estimator of the standard deviation when {e(l),j; j = 1, 2, …, N(l)} is normally 

distributed. Compared with the traditional sample standard deviation (3.14), Eq. (3.15) uses metrics such as 

median and absolute value to replace the mean and square value to ensure robustness. 

 Based on the above equations, we formulate the robust sparse regression problem as: 
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where the definition of BS is in (3.12), (3.13) and (3.15). Compared with the original sparse regression 

problem (3.10), Eq. (3.16) replaces the quadratic cost function by a robust cost function. Since the new cost 

function is a non-convex function, additional approximations are required. A practical method to solve this 

optimization problem with non-convex cost function is the iteratively reweighted least squares (IRLS) 

method [53]. To derive the IRLS method, we differentiate the cost function with respect to the coefficients 

and set the partial derivative to 0: 
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where ψBS is the derivative of BS. We further define the weight function as 
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and re-write (3.16) as: 
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The IRLS method is an iterative method where in each iteration, wBS(e(l), i) is estimated from the residual in 

the previous iteration. The initial estimate can be obtained by solving the traditional sparse regression 

problem (3.10). Therefore, when solving the optimization, wBS(e(l), i) is treated as a fixed value wBS(l), i: 
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It can be easily proved that the solution from (3.20) is equivalent to setting the derivative of the following 

cost function to 0: 
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By changing the cost function to (3.21), the following optimization can be formulated: 
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Compared to (3.10), Eq. (3.22) reweights each sampling point according to the following weight function: 
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where k(l) is defined in (3.13) and (3.15). To intuitively understand such reweighting, we plot the weight 

function wBS(e) in Figure 3-5, where the unit of the x-axis is the standard deviation of residual. It can be 

seen from Figure 3-5 that the weight of a sampling point will decrease as its residual moves away from 0. 

When the residual exceeds the cut-off threshold in (3.13), the corresponding weight will reduce to 0, 

meaning that the corresponding sampling point will not be used in the next iteration. 
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Figure 3-5. The bi-square weight function. 

Eq. (3.22) can be re-written into the following form: 
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where WBS(l) is an diagonal matrix with WBS(l),ii = wBS(l), i. Eq. (3.24) still satisfies the general form of sparse 

regression in (2.65), and therefore can be solved by Algorithm 2. We summarize the main steps of the 

robust sparse regression in Algorithm 3: 

Algorithm 3: Robust Sparse Regression Based on Spatial Correlation 

1. Apply Algorithm 2 to solve the coefficients {η(l); l = 1,2,…,L}from (3.10). 

2. Calculate the weight for each measurement by (3.23). 

3. Apply Algorithm 2 to solve the coefficients {η(l); l = 1,2,…,L}from (3.24). 

4. If the change of coefficients {η(l); l = 1,2,…,L} is sufficiently small compared to the previous iteration, 

stop. Otherwise go to step 2. 

  Algorithm 3 selects the basis functions in the presence of outliers by repeatedly re-weighting the 

sampling points and solving the sparse regression problem with Algorithm 2. Its computational cost is 

about the time of performing Algorithm 2 multiplied by the number of iterations. We observe that in most 

cases Algorithm 3 will converge within 10 iterations. Therefore, it consumes about 2-10 time compared to 

Algorithm 2. While performing Algorithm 3, measurement data for which the residual exceeds the cut-off 

threshold in (3.13) will be automatically removed. These data are identified as outliers and removed before 

solving the linear mixed model. 

 

3.4 Numerical Results 

In this section, we first use several synthetic and real examples to demonstrate that our proposed 

robust sparse regression method provides superior accuracy in determining the correct basis functions and 

remove outliers compared to the traditional outlier detection method. We will then show the variation 

decomposition results on several silicon data sets. 

 

3.4.1 Comparison of Outlier Detection Methods 

We first consider a synthetic wafer constructed based on the measurement data in Figure 2-17. 
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Figure 3-6 (a) shows the systematic variation of the synthetic wafer. Figure 3-6 (b) shows the measurement 

data after adding small random variation, where the systematic variation contributes to 97.2% of the total 

variance. Based on Figure 3-6 (b), we further randomly add 3 outliers at 3 random locations in  

Figure 3-6 (c). For each location, the outlier is created by adding 3∙IQR of the wafer to its original value, 

where IQR is defined in (3.5). 
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                           (a)                                                   (b)                                                   (c) 

Figure 3-6. (a) Systematic variation of the synthetic wafer. (b) Measurement data created by adding random 

variation. (c) Measurement data after adding 3 outliers. 

We compare the variation decomposition results from three methods. All the three methods use 

sparse regression to determine the basis functions from the physical dictionary, and then solve the linear 

mixed model with these basis functions by applying REML. The first method does not apply any outlier 

detection method, and the extracted spatially correlated variation is shown in  

Figure 3-7 (a). The second method applies the traditional IQR outlier detection method in Section 3.2 

before applying sparse regression, and the extracted spatially correlated variation is shown in  

Figure 3-7 (b). The third method is our proposed method in this chapter with physical basis functions, 

which applies the robust sparse regression method in Section 3.3 to determine the basis functions and 

remove outliers, and the extracted spatially correlated variation is shown in Figure 3-7 (c). The estimated 

spatially correlated variation for the first method is 45.5%, which significantly underestimates the spatially 

correlated variation. The estimated percentages of quadratic, edge and center effects are 81.8%, 18.2%, and 

0.0% respectively. Examining Figure 3-7 (a), it can be seen that it fails to select the quadratic basis 

functions that are present in the systematic variation in Figure 3-7 (a). It also determines that there is strong 

edge effect at the lower-left corner, which does not exist in the systematic variation. In this example, none 

of the 3 outliers are detected by the IQR method. This is because these locations have relatively small 



 85 

values in the systematic variation map Figure 3-6 (a), which cancels out a significant portion of the outlier 

effect. Since no outlier is detected, Figure 3-7 (b) is exactly the same as Figure 3-7 (a). The robust sparse 

regression method correctly detects the 3 outliers, the estimated spatially correlated variation is 97.2%, and 

the estimated percentages of quadratic, edge and center effects are 100%, 0.0%, and 0.0% respectively. 

These results exactly match the systematic variation and demonstrate that the robust sparse regression 

method achieves significantly better accuracy.  
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                       (a)                                                  (b)                                                 (c) 

Figure 3-7. (a) Spatially correlated variation extracted by applying sparse regression with the physical 

dictionary, without outlier detection. (b) Spatially correlated variation extracted by applying sparse 

regression with the physical dictionary, with traditional IQR outlier detection. (c) Spatially correlated 

variation extracted by the proposed method with the physical dictionary. 
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                           (a)                                                   (b)                                                   (c) 

Figure 3-8. (a) Systematic variation of the synthetic wafer. (b) Measurement data created by adding random 

variation. (c) Measurement data after adding 3 outliers. 

We further consider a synthetic wafer constructed based on the measurement data in Figure 2-35. 

Figure 3-8 (a) shows the systematic variation of the synthetic wafer. Figure 3-8 (b) shows the measurement 

data after adding random variation, where the systematic variation contributes to 65.9% of the total 
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variance. Based on Figure 3-8 (b), we further randomly add 3 outliers at 3 random locations in Figure 3-8 

(c). For each location, the outlier is created by adding 3IQR of the wafer to its original value, where IQR is 

defined in (3.5). We again compare the variation decomposition results from three methods in Figure 3-9.  

Figure 3-9 (a) shows the extracted spatially correlated variation by the first method. The estimated spatially 

correlated variation method is 48.3%, which significantly underestimates the spatially correlated variation. 

The estimated percentages of quadratic, edge and center effects are 0.0%, 32.0%, and 68.0% respectively. 

Examining Figure 3-9 (a), it can be seen that it does not contain the radial pattern produced by quadratic 

basis functions in Figure 3-8 (a). The traditional IQR method detects only one outlier in this example 

located in the center of the wafer, and the extracted spatially correlated variation after removing this outlier 

is shown in Figure 3-9 (b). The estimated spatially correlated variation method is 49.0%, which still 

significantly underestimates the spatially correlated variation. The estimated percentages of quadratic, edge 

and center effects are 0.0%, 39.4%, and 60.6% respectively. Examining Figure 3-9 (b), it can be seen that it 

still does not select the quadratic basis functions and therefore does not fit the radial pattern. This is the 

main reason why no significant improvement can be seen compared to the first method. The robust sparse 

regression method correctly detects the 3 outliers, the estimated spatially correlated variation is 71.5%, and 

the estimated percentages of quadratic, edge and center effects are 32.7%, 39.1%, and 28.1% respectively. 

These results closely match the systematic variation. Therefore, it again demonstrates that significant 

accuracy improvement can be achieved by adopting the robust sparse regression method. 
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                       (a)                                                  (b)                                                 (c) 

Figure 3-9. (a) Spatially correlated variation extracted by applying sparse regression with the physical 

dictionary, without outlier detection. (b) Spatially correlated variation extracted by applying sparse 

regression with the physical dictionary, with traditional IQR outlier detection. (c) Spatially correlated 

variation extracted by the proposed method with the physical dictionary. 
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We further consider an example from silicon measurement data in Figure 3-10. The measurement 

data are collected from 201 wafers from 14 lots at an advanced technology node. Each wafer contains 117 

ring oscillators (ROs) distributed over different spatial locations. As will be discussed in more detail in 

Section 3.4.2, the spatially correlated variation is not adequately fit by physical basis functions only and 

both physical and DCT basis functions need to be applied. The extracted spatially correlated variation is 

shown in Figure 3-10 (a), and manual inspection reveals that all wafers closely match the spatial pattern in 

Figure 3-10 (a). Next, we consider the results by performing variation decomposition on one of the wafers 

in Figure 3-10 (b), which contains a significant number of outliers. 
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                                                       (a)                                                   (b) 

Figure 3-10. (a) Spatially correlated variation extracted from 201 wafers of ring oscillator period 

measurements (normalized). (b) Measurement data from one wafer with outliers.  

We compare the variation decomposition results from three methods in Figure 3-11.  

Figure 3-11 (a) shows the extracted spatially correlated variation by the first method. The estimated 

spatially correlated variation method is 29.7%. The traditional IQR outlier detection method detects only 2 

outliers, and the extracted spatially correlated variation after removing these outliers is shown in  

Figure 3-11 (b). The estimated spatially correlated variation method is 33.2%. It can be clearly seen that 

these two methods greatly underestimates the spatially correlated variation, and the extracted pattern is 

significantly different from the spatial pattern in Figure 3-10 (a). Robust sparse regression detects 7 outliers 

in this example, and the extracted spatially correlated variation by the proposed method in shown in  

Figure 3-11 (c). The 7 outliers intuitively match the 7 dies that are significantly different from overall 

spatial pattern. The estimated spatially correlated variation is 93.9%. Examining Figure 3-11 (c), it can be 

seen that it more accurately matches Figure 3-10 (a) comparing to the other two methods. 
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                       (a)                                                  (b)                                                 (c) 

Figure 3-11. (a) Spatially correlated variation extracted by applying sparse regression with the physical and 

DCT dictionaries, without outlier detection. (b) Spatially correlated variation extracted by applying sparse 

regression with the physical and DCT dictionaries, with traditional IQR outlier detection. (c) Spatially 

correlated variation extracted by the proposed method with the physical and DCT dictionaries. 

From the above examples, we find that outliers in measurement data can cause incorrect choice of 

basis functions in sparse regression, and significant underestimation of spatially correlated variation in 

variation decomposition. The proposed robust sparse regression method achieves superior accuracy in basis 

function selection and outlier detection compared to the traditional method in Section 3.2 in several 

synthetic and silicon examples.  

 

3.4.2 Results on Silicon Measurement Data 

From the previous experiments, we observe that by applying robust sparse regression, we are able to 

accurately find the basis functions and detect the outliers in the measurement data. We will then perform 

variation decomposition on several sets of silicon measurement data and present the results. 
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Figure 3-12. Idsat measurement data (normalized) from one of the 15 wafers.  
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Table 3-1. Variation components of the first Idsat measurement data set. 

Method Wafer-to-wafer Wafer-level spatially correlated Wafer-level random 

Quadratic 6.7% 55.4% 37.9% 

Proposed physical 5.8% 64.9% 29.3% 

Proposed physical+DCT 6.3% 67.4% 26.2% 

 

We first consider transistor drain saturation current (Idsat) measurements taken from 15 wafers from a 

commercial CMOS process. Figure 3-12 shows one of the wafers. Intuitively, the measurement data 

contains significant random variation. Table 3-1 compares the variation components estimated by three 

methods. The first method directly performs REML with quadratic basis functions; the second method is 

our proposed method in this chapter with the physical dictionary, and third method is our proposed method 

in this chapter with the physical and DCT dictionaries. Figure 3-13 compares the spatially correlated 

variation extracted by three methods. Figure 3-13 (a) shows the spatially correlated variation extracted by 

applying the quadratic basis functions. Figure 3-13 (b) shows the spatially correlated variation extracted by 

robust sparse regression with the physical dictionary, where for wafer-level spatially correlated variation, 

the estimated percentages of quadratic, edge and center effects are 55.2%, 43.6%, and 1.2% respectively. 

Compared to using the quadratic basis functions, applying robust sparse regression with physical dictionary 

explains a significantly larger amount of variation as wafer-level spatially correlated variation. Moreover, it 

reveals that the spatially correlated variation mainly comes from quadratic and edge effect. The edge effect 

is non-trivial and contributes to nearly half of the spatially correlated variation. From Figure 3-13 (b), it can 

be also intuitively seen that a much more obvious edge effect pattern in the bottom is modeled compared to 

Figure 3-13 (a). These observations tell us that reducing the bottom edge effect is an important task when 

improving the overall yield. This conclusion would not be easily reached if the quadratic basis functions are 

simply applied. Figure 3-13 (c) shows the spatially correlated variation extracted by applying robust sparse 

regression with the physical and dictionaries. After adding the DCT basis functions, we do not observe 

significant larger amount of wafer-level spatially correlated variation, and Figure 3-13 (c) does not clearly 

show any meaningful additional pattern compared to Figure 3-13 (b). Therefore, we believe that the 

physical dictionary in sufficient in modeling the spatially correlated variation in this example. 
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                       (a)                                                  (b)                                                 (c) 

Figure 3-13. (a) Spatially correlated variation extracted by quadratic basis functions. (b) Spatially 

correlated variation extracted by the proposed method with the physical dictionary. (c) Spatially correlated 

variation extracted by the proposed method with the physical and DCT dictionaries. 
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Figure 3-14. Idsat measurement data (normalized) from one of the 8 wafers.  
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                       (a)                                                  (b)                                                 (c) 

Figure 3-15. (a) Spatially correlated variation extracted by quadratic basis functions. (b) Spatially 

correlated variation extracted by the proposed method with the physical dictionary. (c) Spatially correlated 

variation extracted by the proposed method with the physical and DCT dictionaries. 



 91 

Table 3-2.Variation components of the second Idsat measurement data set. 

Method Wafer-to-wafer Wafer-level spatially correlated Wafer-level random 

Quadratic 30.2% 45.2% 24.6% 

Proposed physical 28.2% 53.8% 17.9% 

Proposed physical+DCT 30.3% 54.8% 14.9% 

 

We further consider Idsat measurements taken from another 8 wafers with a different spatial signature 

from the same commercial CMOS process. Figure 3-14 shows one of the wafers. Intuitively, the 

measurement data also contains significant random variation. Table 3-2 compares the variation components 

estimated by three methods, and Figure 3-15 compares the spatially correlated variation extracted by three 

methods. Figure 3-15 (a) shows the spatially correlated variation extracted by applying the quadratic basis 

functions. Figure 3-15 (b) shows the spatially correlated variation extracted by robust sparse regression 

with the physical dictionary. For wafer-level spatially correlated variation, the estimated percentages of 

quadratic, edge and center effects are 25.5%, 56.3%, and 18.1% respectively. Compared to using the 

quadratic basis functions, applying robust sparse regression with physical dictionary explains a 

significantly larger amount of variation as wafer-level spatially correlated variation. Moreover, it reveals 

that quadratic, edge and center effect all significantly contribute to the overall variation. The edge effect is 

the dominant source of spatially correlated variation for these wafers, and the center effect is also non-

trivial. From Figure 3-15 (b), it can be also intuitively seen that much more obvious edge and center effect 

patterns are modeled compared to Figure 3-15 (a). These observations tell us that reducing the edge and 

center effects are important tasks when improving the overall yield. This conclusion would not be easily 

reached if the quadratic basis functions are simply applied. Figure 3-15 (c) shows the spatially correlated 

variation extracted by applying robust sparse regression with the physical and dictionaries. After adding the 

DCT basis functions, we do not observe significant larger amount of wafer-level spatially correlated 

variation, and Figure 3-15 (c) does not clearly show any meaningful additional pattern compared to  

Figure 3-15 (b). Therefore, we believe that the physical dictionary in sufficient in modeling the spatially 

correlated variation in this example. 
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Figure 3-16. Ring oscillator (RO) period measurement data (normalized) from one of the 201 wafers.  

Table 3-3. Variation components of the RO period measurement data set. 

Method Lot-to-lot Wafer-to-wafer 

Wafer-level  

spatially correlated 

Wafer-level 

random 

Quadratic 17.0% 25.4% 26.7% 30.9% 

Proposed physical 17.1% 25.3% 33.5% 24.2% 

Proposed physical+DCT 17.9% 26.3% 44.8% 11.0% 

 

We further consider ring oscillator (RO) period measurement data collected from 201 wafers from 

14 lots at an advanced technology node. Each wafer contains 117 ROs distributed over different spatial 

locations. Since ring oscillators use a large number of stages to average out the random variation [48], the 

wafer-level variation should be dominated by spatially correlated variation. Figure 3-16 shows one of the 

wafers, and it can be intuitively seen the measurement data already presents a strong spatial pattern.  

Table 3-3 compares the variation components estimated by three methods, and Figure 3-17 compares the 

spatially correlated variation extracted by three methods. Figure 3-17 (a) shows the spatially correlated 

variation extracted by applying the quadratic basis functions, where only a weak pattern of spatially 

correlated variation is modeled. From Table 3-3, it can be seen that the wafer-level spatially correlated 

variation is less than the wafer-level random variation, which is against our intuition that random variation 

is small. Figure 3-17 (b) shows the spatially correlated variation extracted by robust sparse regression with 

the physical dictionary. For wafer-level spatially correlated variation, the estimated percentages of 

quadratic, edge and center effects are 72.4%, 23.4%, and 4.2% respectively. Compared to using the 
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quadratic basis functions, robust sparse regression with physical dictionary explains a significantly larger 

amount of variation as wafer-level spatially correlated variation. Figure 3-17 (c) shows the spatially 

correlated variation extracted by robust sparse regression with the physical and DCT dictionaries. After 

adding the DCT basis functions, we see that a significantly larger portion of variation is explained as 

spatially correlated variation. Manual inspection reveals that all the wafers indeed present a similar pattern 

to Figure 3-17 (c). Therefore, in this example, the robust sparse regression results with the physical and 

DCT dictionaries are the most reasonable variation decomposition results. To find the true systematic 

sources that cause the wafer-level spatial variation, more inspection beyond the common variation sources 

that cause the quadratic, center and edge patterns is needed. 
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                       (a)                                                  (b)                                                 (c) 

Figure 3-17. (a) Spatially correlated variation extracted by quadratic basis functions. (b) Spatially 

correlated variation extracted by the proposed method with the physical dictionary (c) Spatially correlated 

variation extracted by the proposed method with the physical and DCT dictionaries. 

 

                                                   (a)                                                             (b) 

Figure 3-18. (a) Contact resistance measurement data (normalized) from one of the 24 dies. (b) Spatial 

distribution of different contact layout patterns in the test chips. 
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                       (a)                                                   (b)                                                 (c) 

Figure 3-19. (a) Spatially correlated variation extracted by the physical dictionary with layout basis 

functions. (b) Spatially correlated variation extracted by the physical and DCT dictionaries. (c) The 

spatially correlated variation represented by the quadratic and DCT basis functions. 

Table 3-4.Variation components of the contact resistance measurement data set. 

Method Wafer-level Within-die spatially correlated Within-die random 

Proposed physical 51.5% 30.9% 17.6% 

Proposed physical+DCT 51.5% 31.5% 17.0% 

 

We finally consider the contact plug resistance measurement data collected from 24 test chips in a 

90 nm CMOS process. Each chip contains 36,864 test structures (i.e., contacts) arranged as a 144256 

array, as described in [21]. Among these 24 test chips, three of them contain missing data due to external 

measurement error. The number of failed measurements are 2936, 864 and 8 for these three chips, 

respectively. In the test chips, contacts with 55 different layout patterns are regularly distributed over the 

entire chip. The spatial distribution of different layout patterns is shown in Figure 3-18 (b). Figure 3-18 (a) 

shows the measured contact plug resistance (normalized) from one of the 24 test chips. Studying  

Figure 3-18 (a), we would notice that there is a unique spatial pattern due to layout dependency. However, 

the spatial pattern is not clearly visible because of the large-scale uncorrelated random variation found in 

this example. 

We first extract the spatially correlated variation by performing robust sparse regression with the 

physical dictionary. In this example, since we know that the difference of layout patterns must be an 

important component in the spatial variation, we construct the following indicator basis functions that 



 95 

correspond to different layout patterns: 
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where Li is a set of measurements collected from test structures with layout style i. These 55 layout basis 

functions are added to the physical dictionary and pre-selected in the sparse regression process. The 

extracted spatially correlated variation is shown in Figure 3-19 (a). For within-die spatially correlated 

variation, the estimated percentages of quadratic and layout effects are 2.7% and 97.3% respectively. 

Therefore, layout-dependent variation is indeed the dominant variation source that causes the spatially 

correlated variation. To examine whether there exists any significant variation sources not modeled by 

quadratic basis functions, we further perform sparse regression after adding the DCT dictionary. Because of 

the high computational cost, we do not perform robust sparse regression but simply remove the outliers 

detected with the physical basis functions. The computational cost issue will be discussed in detail in the 

next chapter. Figure 3-19 (b) shows the spatially correlated variation extracted by sparse regression with 

the layout, physical and DCT dictionaries. The variation percentages are not significantly different from the 

previous experiments, which show that there do not exist significantly large additional variation sources. 

However, comparing Figure 3-19 (b) with Figure 3-19 (a), we notice that there is a subtle left-to-right 

transition at around x = 100. This transition is more obvious if we plot only the quadratic and DCT 

components in Figure 3-19 (c). This transition can be caused by mask error, which is a common variation 

source for within-die variation. Although this component is not significant in this example, it demonstrates 

that this type of variation can be revealed by the DCT dictionary. 

 

3.5 Summary 

The existence of outliers is an important problem that widely exists in silicon measurement data. If 

outliers are not appropriately considered, they will introduce substantial error to variation decomposition. 

In this chapter, we extend the sparse regression algorithm introduced in Algorithm 2 to a robust sparse 

regression algorithm. By solving robust sparse regression, basis functions will be accurately selected in the 

presence of outliers, and outliers will be automatically detected and removed, before the data is provided to 

the linear mixed model to perform variation decomposition. Experiments on synthetic and silicon 
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measurement data demonstrate that the proposed algorithm provides superior accuracy compared to the 

traditional IQR method for outlier detection. We further performed variation decomposition on several 

silicon data sets and demonstrated the effectiveness of the proposed variation decomposition flow based on 

robust sparse regression. 
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Chapter 4 Fast Implementation for Sparse Regression 

Fast Implementation for Sparse Regression 

4.1 Introduction 

In order to perform variation decomposition, we need to perform the robust sparse regression 

algorithm described in Algorithm 3 to select the basis functions and detect outliers. Algorithm 3 repeatedly 

solves the following sparse regression problem: 
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where WBS(l) is a diagonal matrix. In order to solve (4.1), it can be re-written into the following equation: 
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The sparse regression problem (4.2) is solved by Algorithm 2, and therefore the overall 

computational cost is proportional to the cost of performing Algorithm 2. As will be shown in Section 4.2-

4.3, the computational cost of a straightforward implementation of Algorithm 2 is quadratically dependent 

on the size of the dictionary. When only the physical dictionary is applied, this computational cost is 

typically small because the both the wafer-level and within-die physical dictionaries defined in Section 

2.2.1.1 and 2.2.1.2 contain only a small number of basis functions. However, Algorithm 2 can be extremely 

computationally expensive for large-scale problems when the DCT dictionary is used. According to its 

definition in (2.24), the total number of basis functions in the DCT dictionary is PQ, which is equal to the 
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total number of points in the two-dimensional grid of interest. This number can become large for both 

wafer-level and within-die measurement data, since a wafer with small die size can easily contain 

thousands of dies and a test chip can contain thousands or even millions of test structures. As a result, as 

will be shown in Section 4.4, when extracting the spatially correlated variation for contact resistance 

measurement data in Figure 3-19 (b) using physical and DCT basis functions, a straightforward 

implementation of Algorithm 2 will cost more than one year, making it impractical to be applied. Therefore, 

a number of implementation details must be carefully considered in order to make Algorithm 2 

computationally efficient for large-scale problems.  

Based on the above observation, in this chapter, we will we derive several efficient numerical 

algorithms to address the computational cost issue when the both physical and DCT basis functions are 

applied. Namely, according to the definition in Section 2.3, we assume that λ
0
 physical basis functions have 

been pre-selected, and we would like to further select a subset of basis functions from PQ DCT basis 

functions. It can be easily observed from Algorithm 2 that the computational cost is dominated by two steps: 

the inner product computation in Step 4 and the least-squares fitting in Step 6. In Section 4.2, we first 

derive an efficient numerical algorithm to calculate the inner product values. We will then discuss the 

numerical algorithm for least-squares fitting in Section 4.3.  

 

4.2 Inner Product Calculation 

In Algorithm 2, in order to appropriately select the basis vectors by (2.67), we will need to compute 

the following inner product values: 

       LlPQjAe
jlwl

,...,2,1;,...,2,1,,
0,

   (4.5) 

where  

 )()()( lllw
AWA   (4.6) 

λ
0
 + PQ is the total number of basis functions, and L is the number of wafers/dies. A straightforward 

implementation first computes Aw(l) by (4.6), and the computational cost is in the order of  

O(LPQ(λ
0
 + PQ)). Then, if the inner product values are simply calculated by vector-vector multiplications 

in (4.5), the computational cost is again in the order of O(LPQ(λ
0
 + PQ)). Note that the computational cost 
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quadratically increases with the DCT dictionary size PQ. Hence, the aforementioned implementation can 

quickly become computationally intractable, as the problem size increases. 

For this reason, an efficient numerical algorithm for inner product computation is needed in order to 

reduce the computational cost. Towards this goal, we first re-write the inner product <e(l), Aw(l),j> as: 

        l
T

jlwjlwl
eAAe 

,,
, . (4.7) 

For each l  {1, 2, …, L}, we need to calculate (4.7) for each basis vector, i.e., j  {1,2,…, λ
0
 + PQ}. The 

results can be expressed by the following matrix-vector multiplication: 

 

   

   

   

   l

T

lw

Mlwl

lwl

lwl

eA

Ae

Ae

Ae























,

2,

1,

,

,

,


. (4.8) 

In other words, by calculating the matrix-vector multiplication in (4.8), we are able to obtain the inner 

product values for all λ
0
 + PQ basis vectors.  

 Since direct computation of Aw(l) by (4.6) is expensive, we first re-write (4.8) by substituting (4.6) 

into (4.8): 

      ll

T

ll

T

lw
eWAeA 

)()(
. (4.9) 

We notice that the following operation can be easily performed with linear complexity: 

    lllw
eWe 

)(
. (4.10) 

Therefore, we can further re-write (4.9) into the following equation: 

      lw

T

ll

T

lw
eAeA 

)(
 (4.11) 

where is ew(l) computed by (4.10). Calculating (4.7) with (4.11) prevents the quadratic computational cost 

related to the computation of (4.6). Note that this implementation also saves the computational cost, even if 

A(l) only contains physical basis functions. 

 Next, we need to efficiently compute the matrix-vector product in (4.11). When both physical and 

DCT dictionaries are applied, we can re-write A(l) into the following: 

    
)()(0 ldctll

AAA


  (4.12) 

where AΩ0(l) are the columns of A(l)  that correspond to the λ
0
 pre-selected physical basis functions, and Adct(l) 
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are the columns of A(l)  that correspond to all PQ DCT basis functions. Therefore, we further re-write (4.11) 

as: 

 

 

 


















lw

T

ldct

lw

T

l

eA

eA

)(

)(0

. (4.13) 

Since the number of all DCT basis functions should be much larger than the number of pre-selected 

physical basis functions, the key bottleneck for computing (4.13) is the second term A
T

dct(l)∙ew(l). We observe 

that if the measurement of the l-th wafer/die does not contain any missing data, the matrix Adct(l) represents 

the IDCT matrix and it is a full-rank square matrix, as defined in (2.23). In this case, since DCT/IDCT is an 

orthogonal transform [23], A
T

dct(l) = A
-1

dct(l) is exactly the DCT matrix. Namely, calculating the matrix-vector 

product A
T

dct(l)∙ ew(l) is equivalent to performing DCT on ew(l). Similar to fast Fourier transform (FFT), there 

exist a number of fast algorithms for DCT/IDCT. The computational cost of these fast algorithms is in the 

order of O(PQlog(PQ)) [23]. Therefore, by using a fast DCT algorithm, the computational cost for Step 4 

of Algorithm 2 is reduced from O(LPQ(λ
0
 + PQ)) to O(LPQ(λ

0
 + log(PQ))). This will bring significant 

speedup, since λ
0
 should be much smaller than PQ. 

                             

Figure 4-1. Contact resistance measurement data (normalized) from one of the 24 dies that contain 

significant amount of missing data.  

The aforementioned fast DCT algorithm is applicable, if and only if there is no missing data. In this 

case, the number of available data N(l) is the same as the number of DCT basis functions PQ, and hence, the 

matrix A(l) is the full-rank square IDCT matrix, which we denote as A*. However, in practice, a number of 

missing data often exist in silicon measurement data. For example, Figure 4-1 shows contact resistance 

measurement data from one of the test chips, in which a significant number of data are missing due to 
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measurement error. A number of missing data can also be artificially introduced by the cross-validation 

process in Section 2.4.3. If missing data exist, we can construct an augmented vector e
*

w(l)  R
PQ

 where the 

elements corresponding to missing data are simply filled with zeros. Mathematically, the augmented vector 

e
*

w(l) can be represented as: 

    
 










0

* lw

llw

e
Ze  (4.14) 

where Z(l) is a permutation matrix to map ew(l) and the zero vector to the appropriate elements in e
*

w(l). 

Applying DCT to the augmented vector e
*

w(l) yields: 

  
 










0
)(

*** lw

l

T

lw

T
e

ZAeA  (4.15) 

where A
*
 represents the IDCT matrix and, hence, A

*T
 is the DCT matrix. Remember that the matrix Adct(l) 

contains N(l) rows taken from the IDCT matrix A
*
. Hence, the matrix A

*T
Z(l) in (4.15) can be re-written as: 

       T

ldct

T

ldctl

T AAZA ~
*   (4.16) 

where the matrix Adct(  ) contains the PQ  N(l) rows of A
*
 that are not included in Adct(l) due to missing data. 

Substituting (4.16) into (4.15), we have: 

         
   lw

T

ldct

lwT

ldct

T

ldctlw

T eA
e

AAeA 









0
~

** . (4.17) 

Note that the DCT results in (4.17) are exactly equal to the second matrix-vector product in (4.13). It, 

in turn, demonstrates that by filling the missing data with zeros, we can efficiently calculate the inner 

product values by using a fast DCT algorithm. In this case, the computational cost for Step 4 of  

Algorithm 2 is again reduced from O(LPQ(λ
0
 + PQ)) to O(LPQ(λ

0
 + log(PQ))). 

In addition to the reduction in computational cost, the aforementioned fast algorithm based on DCT 

can also efficiently reduce the memory consumption. Note that the direct matrix-vector multiplication in 

(4.11) requires to explicitly form a dense matrix A(l) with about PQ(λ
0
 + PQ) entries. While it is possible to 

calculate each inner product in (4.11) one by one without forming the matrix A(l), such an approach leads to 

large computational time since each column of A(l) must be repeatedly formed during the iterations of 

Algorithm 2. For these reasons, the direct approach based on matrix-vector multiplication or vector-vector 

multiplication is expensive in either memory consumption or computational time. On the other hand, our 
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proposed method only needs to form the sub-matrix AΩ0(l)  with PQ∙λ
0 entries. A fast DCT algorithm can be 

applied to e
*

w(l) without explicitly building the DCT matrix Adct(l) in memory, thereby significantly reducing 

the memory consumption for large-scale problems. 

 

4.3 Least Squares Fitting 

In addition to inner product computation, least-squares fitting is another computationally expensive 

operation that is required by Step 6 of Algorithm 2. The goal is to solve the following optimization problem: 

       ),...,2,1(minimize

2

2

,,)(
,),(

LlBAW
i

lwilill
iil








 (4.18) 

where Ω contains the indices of selected basis vectors. In this sub-section, we will develop an efficient 

numerical algorithm to reduce the computational cost of (4.18).  

We first re-write (4.18) for the l-th wafer/die at the p-th iteration step: 

    
         

2

2
,,)(

,

minimize
lplpll

BAW
pl

 


 (4.19) 

where the matrix A(l),(p) contains λ
0
+p column vectors selected from A(l) and the vector η(l),(p) contains the 

coefficients corresponding to these selected basis vectors. Similarly, we can re-write A(l),(p) into the 

following: 

    
)(),()()(, 0 pldctlpl

AAA


  (4.20) 

where the matrix Adct(l),(p) contains p column vectors selected from Adct(l). The relation between Adct(l),(p) and 

Adct(l) can be further expressed as: 

             
pldctpldctpldct

AAZA ~,,
  (4.21) 

where Z(p) is a permutation matrix, and the matrix Adct(l),(  ) contains the DCT basis vectors that are not 

included in Adct (l),(p). 

The least-squares solution η(l),(p) of (4.19) satisfies the following normal equation [27]: 

                   
)(,)(,,)(,)( lw

T

pllplpll

T

pll
BAWAWAW   .  (4.22) 

Traditionally, the solution η(l),(p) of (4.22) is solved by QR decomposition [27]. In order to perform QR 

decomposition, we first need to explicitly perform the multiplication of W(l) and A(l),(p): 
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        pllplw
AWA

,)(,
 .  (4.23) 

Next, QR decomposition is performed on the matrix Aw(l),(p): 

            plwplwplw
RQA

,,,
  (4.24) 

where Qw(l),(p) is an N(l)-by-(λ
0
+p) matrix with orthonormal columns and R(l),(p) is a (λ

0
+p)-by-(λ

0
+p) upper 

triangular matrix. Substituting (4.23) and (4.24) into (4.22) yields: 

             )(,,, lw

T

plwplplw
BQR  .  (4.25) 

In (4.25), since Rw(l),(p) is upper triangular, η(l),(p) can be solved by back substitution. The computational cost 

of the aforementioned least-squares fitting is dominated by the QR decomposition step and it is in the order 

of O(N(l)∙(λ0
+p)

2
). 

The traditional least-squares solver based on QR decomposition is not computationally efficient for 

large-scale problems. Similar to the previous sub-section, we would like to utilize the fact that matrix-

vector products can be efficiently computed by fast DCT/IDCT algorithms. Therefore, we need an iterative 

solver for the least-squares problem (4.19). A naïve method to solve (4.19) with an iterative solver is to 

apply the conjugate gradient method to the normal equation (4.22), but it is known to be numerically 

unstable [54]. An improved iterative solver for (4.19) is referred to as the LSQR method [22]. Unlike the 

conjugate gradient method based on (4.22), LSQR aims to directly solve (4.19) in order to improve 

numerical stability. LSQR relies on bi-diagonalization of the matrix Aw(l),(p). During its iterations, LSQR 

generates a sequence of solutions to approximate η(l),(p). These solutions are exactly identical to the results 

calculated by the conjugate gradient method for the normal equation in (4.22). The details of LSQR can be 

found in [22]. 

When applying LSQR, it is not necessary to explicitly form the matrix Aw(l),(p). Instead, in each 

iteration, only two matrix-vector multiplications need to be performed, Aw(l),(p)∙α and A
T

w(l),(p)∙β, where α is a 

(λ
0
+p)-by-1 vector and β is an N(l)-by-1 vector. These matrix-vector multiplications can be efficiently 

calculated by applying a fast numerical algorithm based on fast DCT/IDCT transform. In what follows, we 

will show the mathematical formulation of our proposed fast algorithm. 

First, we notice that to efficiently compute Aw(l),(p)∙α, it is not necessary to compute (4.23), since 
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          
pllplw

AWA
,)(,

.  (4.26) 

Therefore, we only need to efficiently compute A(l),(p)∙α, and Aw(l),(p)∙α will then be calculated by simply 

performing a vector-vector product. Next, we re-write A(l),(p)∙α into the following equation: 

      
dctpldctl

dct

pldctlpl
AAAAA 




 
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where αΩ0
 is an λ

0
-by-1 vector and αdct is a p-by-1 vector. Of these two matrix-vector multiplications,  

AΩ0(l)∙αΩ0
 has to be computed using the traditional matrix vector product, but we are able to efficiently 

compute Adct(l),(p)∙αdct. To efficiently compute Adct(l),(p)∙αdct, we construct an augmented vector α
*
dct  R

PQ
: 

   









0

* dct

pdct
Z


  (4.28) 

where Z(p) is the permutation matrix defined in (4.21). If we conceptually consider αdct as a vector of 

selected DCT coefficients, then α
*

dct represents all DCT coefficients with the unselected DCT coefficients 

filled by 0. We then apply IDCT to the augmented vector α
*
dct: 

   









0

*** dct

pdct
ZAA


  (4.29) 

where A
*
 denotes the IDCT matrix as defined in (4.15). On the other hand, we can derive the following 

equation from (4.16): 
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Substituting (4.30) into (4.29) yields: 
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In (4.31), Adct(l)Z(p) can be represented as two sub-matrices as shown in (4.21). If we similarly re-write 

Adct(  )Z(p) as two sub-matrices: 

            
 

pldctpldctpldct
AAZA ~,

~
,

~~  .  (4.32) 

Eq. (4.31) becomes: 
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Since Z(l) is a permutation matrix, Eq. (4.33) is equivalent to: 
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Eq. (4.34) reveals an important fact that the matrix-vector multiplication Adct(l),(p)∙αdct can be 

efficiently computed by applying IDCT to the augmented vector α
*
dct. The value of Adct(l),(p)∙αdct is 

determined by selecting the appropriate elements from the IDCT result A
*
∙ α

*
dct. If a fast IDCT algorithm is 

applied [23], the computational cost of this matrix-vector calculation is in the order of O(PQlog(PQ)). 

Therefore, the computational cost of the matrix-vector product Aw(l),(p)∙α is O(PQ(λ
0
+ log(PQ))).  

 Next, we consider the other matrix-vector multiplication A
 T

w(l),(p)∙β that is required by the LSQR 

algorithm. Similar to the computation in (4.9)-(4.11), we first re-write A
T

w(l),(p)∙β  by substituting (4.23) into 

it: 

        
)(),(, l
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pl

T

plw
WAA . (4.35) 

We first simply perform the following operation with linear complexity: 
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Then, we can further re-write A
T

w(l),(p)∙β into the following equation: 
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Next, we re-write A
T

(l),(p)∙ βw into the following equation based on (4.20): 
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Of these two matrix-vector multiplications, A
T

Ω0(l)∙βw has to be computed using the traditional matrix vector 

product, but we are able to efficiently compute A
T

dct(l),(p)∙βw. Similarly, we first construct an augmented 

vector β
*

w  R
PQ

: 

   







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* w
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
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where Z(l) is the permutation matrix defined in (4.14). Similar to (4.14), if we conceptually consider βw as a 
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vector of available measurement, then β
*

w represents all measurements with the missing measurements 

filled by 0. We then apply DCT to the augmented vector β
*

w: 

   
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
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
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where A
*T

 is the DCT matrix as defined in (4.15). Substituting (4.30) into (4.40) yields: 
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Based on (4.21), Eq. (4.41) can be further re-written as: 
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Hence, the matrix-vector multiplication A
T

dct(l),(p) ∙βw can be calculated by applying DCT to the augmented 

vector β
*

w. The value of A
T

dct(l),(p) ∙βw is determined by selecting the appropriate elements from the DCT 

result A
*T

∙β
*

w. The computational cost is in the order of O(PQlog(PQ)). Therefore, the computational cost 

of the matrix-vector product A
T

w(l),(p)∙β is also O(PQ(λ
0
+ log(PQ))). 

Finally, it is worth mentioning that similar to other iterative solvers, a good initial guess should be 

provided to LSQR to achieve fast convergence. If the initial guess is close to the actual solution, LSQR can 

reach convergence in a few iterations [22]. In this paper, LSQR is required at each iteration step of the 

Algorithm 2. When Algorithm 2 is applied, the solution from the previous iteration step can serve as a good 

initial guess for the current iteration step. By adopting such a heuristic, LSQR typically converges in only 

2-3 iterations in our tested examples. 

 

4.4 Numerical Results 

The aforementioned fast implementation of sparse regression solver will be extremely useful if the 

wafer/die collects data from a very dense grid. For example, when the die size is small, a modern wafer can 

easily contain several thousand dies. Also, a test chip can contain a very large array of test structures. In 

this sub-section, we will use the contact resistance measurement data to demonstrate the efficiency 

improvements of the proposed fast implementation on a large problem. 
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Figure 4-2. Contact resistance measurement data (normalized) from one of the 24 dies.  

The contact plug resistance measurement data are collected from 24 test chips in a 90 nm CMOS 

process. Figure 4-2 shows contact resistance measurement data collected from one of the dies, in which 

data is collected from a 144256 array. Therefore, the total number of test structures per chip is 36,864. 

Based on the definition of DCT basis functions in (2.24), the total number of DCT basis functions in the 

DCT dictionary is also 36,864. After performing sparse regression with the physical dictionary, 60 basis 

functions are selected, and the problem we examine in this experiment is to select additional basis functions 

from 36,864 candidates in the DCT dictionary. The DCT dictionary size is much larger than the number of 

pre-selected physical basis functions, which agrees with our previous discussion. 

To demonstrate the efficiency of the fast numerical algorithms proposed, we implement three 

different versions of Algorithm 2 where the inner product and the least-squares fitting are calculated by 

different methods. In the first implementation, the inner product is directly computed by (4.5) and the least-

squares fitting is directly computed by the QR decomposition in (4.23)-(4.25). In the second 

implementation, the traditional inner product calculation is replaced by the fast algorithm proposed in 

Section 4.2. Finally, in the third implementation, both the inner product and the least-squares fitting are 

calculated by the fast algorithms proposed in Section 4.2-4.3. 

For testing and comparison purposes, we first run Algorithm 2 with the aforementioned three 

implementations on only the die in Figure 4-2. Table 4-1 shows the computational time for the proposed 

variation decomposition of a single test chip. Note that the fast algorithm for inner product computation 

achieves 91 speed-up and the fast least-squares fitting further brings 2.2 speed-up. The overall speed-up 

achieved by our proposed fast algorithms is 199, compared to the traditional direct implementation. 
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Table 4-1. Computational time of sparse regression for a single chip 

Inner product Least-squares fitting CPU time (Sec.) 

Direct Direct 1.8510
6
 

Fast Direct 2.0310
4
 

Fast Fast 9.3110
3
 

 

Next, we run Algorithm 2 for all 24 test chips and Table 4-2 compares the computational time for 

two different implementations. Once Algorithm 2 is applied to all test chips, the computational time 

increases significantly. The simple implementation with direct inner product calculation and least-squares 

fitting is not computationally feasible. Hence, its result is not shown in Table 4-2. In this example, the 

proposed fast algorithm for least-squares fitting achieves 2.1 speed-up over the direct implementation. 

This is consistent with the speedup in Table 4-1. We infer that if the direct implementation is adopted in 

this example, it would take more than one year to obtain the results, which makes Algorithm 2 inapplicable. 

Therefore, by applying the fast implementation of Algorithm 2, we are able to extend its applicability to 

problems with large size. 

Table 4-2. Computational time of sparse regression for 24 chips 

Inner product Least-squares fitting CPU time (Sec.) 

Fast Direct 4.8910
5 
 

Fast Fast 2.3510
5
 

 

4.5 Summary 

The computational cost for sparse regression with DCT basis functions can become extremely large 

for problems with large size, which limits the applicability of the variation decomposition methodology 

introduced in Chapter 2-Chapter 3. In this chapter, we proposed several efficient methods to make the 

computational cost of sparse regression tractable for large-scale problems. The key idea of these methods is 

to utilize fast DCT/IDCT computation to speed up the matrix-vector product computation. From the 
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experimental results on the contact resistance data, we observe nearly 200 speedup compared to the 

traditional direct implementation. 
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Chapter 5 Wafer Spatial Signature Clustering 

Wafer Spatial Signature Clustering 

5.1 Introduction 

In Chapter 2-Chapter 4, we introduced a statistical framework for variation decomposition which 

assists the identification of major physical variation sources for wafers with similar spatial signature, so 

that the process engineers can focus on the variation sources that have a major contribution on overall 

yield. While wafers during process development and product yield ramp stages typically have similar 

spatial signature, in volume production different wafers may exhibit completely different spatial signatures. 

For example, Figure 5-1 shows normalized Idsat measurements on two different wafers, where significant 

difference in the spatial signatures can be seen. Such difference in spatial signature may suggest a number 

of underlying yield-limiting factors, such as process shift/drift, mismatch between equipments, mismatch 

between different chambers, etc. Therefore, if we can automatically partition all the wafers into different 

groups, in which each group exhibits a similar spatial signature, it would provide important insight to help 

process engineers with the yield improvement effort. Especially, process engineers can prioritize the yield 

improvement goals and focus on the mechanism related to large groups with strong spatial signature, so 

that reducing the variation sources that correspond to such spatial signature will have a significant impact 

on the improvement of overall yield. 
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                                             (a)                                                                   (b) 

Figure 5-1. Idsat measurements (normalized) on two wafers with different spatial signatures.  

The problem of automatically grouping wafers with similar spatial signatures can be defined as a 

clustering analysis problem in statistics [65]. While clustering analysis has been extensively studied in the 

statistics literature, a number of unique characteristics of the wafer spatial signature clustering problem 

must be carefully considered in order to obtain accurate clustering results: 

 Large random variation: the performance measurements collected from test structures may be 

subject to large random variation. The random variation will be more significant with 

technology scaling, where fundamental device variability is playing an increasingly important 

part in overall variation. Large random variation will obscure the spatial signature, making it 

difficult to identify the difference between different spatial signatures. 

 Missing and outlier measurements: Defects in the manufacturing process, as well as the 

measurement error may generate missing measurements, where no data can be collected from 

some test structures, or outlier measurements, where the collected data significantly deviate 

from the regular variation range. Meaningful clustering results cannot be obtained if these 

problems are not properly addressed.  

 Abnormal wafers: Because of equipment malfunction, there can be a small number of abnormal 

wafers whose spatial signature is significantly different from the vast majority of wafers [66]. 

We would like to automatically detect these abnormal wafers, rather than merging them into the 

main clusters. This poses a significant challenge to the clustering algorithm, which will be 

explained in detail in Section 5.3. 



 112 

 Unknown number of clusters: Most clustering algorithms require knowing the number of 

clusters, or have user-defined parameters related to the number of clusters. In our wafer spatial 

signature clustering application, the number of clusters cannot be known in advance. Therefore, 

additional efforts must be made to determine the number of clusters from data. 

Robust Feature Extraction

Clustering Algorithm

Cluster Selection

Measurement data

Features

Clusters with different settings 

Clustering result
 

Figure 5-2. Proposed flow to achieve wafer spatial signature clustering.  

Based on the above characteristics, we propose a wafer spatial signature clustering method based on 

the flow shown in Figure 5-2, which consists of three components. Robust feature extraction is first 

performed on the measurement data, which represents the spatial signature of each wafer by a small 

number of features. The impact of random variation will be significantly reduced in the feature space, and 

the feature extraction process must be insensitive to the missing and outlier measurements. Next, a 

clustering algorithm will be performed on the extracted features. Since the number of clusters is not known 

in advance, the clustering algorithm will not directly generate the final clustering result. Instead, a set of 

possible clustering results will be generated based on different settings of the clustering algorithm. In the 

final step, a cluster selection algorithm will be applied to adaptively choose the clustering result that best 

explains the data. 

 The remainder of the chapter is organized as follows. In Section 5.2 we present the robust feature 

extraction algorithm. Then we discuss the choice of the clustering algorithm in Section 5.3. The algorithm 

for selecting the final clustering result will be presented in Section 5.4. The efficacy of the proposed 

method is demonstrated by several examples in Section 5.5. Finally, we summarize our findings in Section 

5.6. 
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5.2 Robust Feature Extraction 

As stated in the previous sub-section, the goal of robust feature extraction is to represent the spatial 

signature of each wafer by a small number of features that reduce the impact of random variation, missing 

data and outlier measurements. Similar to the basis function selection problem in Section 2.3, suppose that 

we collected measurements from L wafers, the spatial variation of these L wafers can be represented by L 

two-dimensional functions: {b(l)(x, y); l = 1, 2, …, L}. Each spatial variation function contains two 

components: 
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where s(l)(x, y) stands for the spatially correlated variation and r(l)(x, y) stands for the uncorrelated random 

variation for wafer l, respectively. To reduce the impact of random variation, we will represent the spatial 

signature of each wafer by only using its spatially correlated component. Specifically, if the spatially 

correlated variation is modeled by the linear combination of λ basis functions: 
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we define the features of wafer l as the following vector: 
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By using the λ features in (5.3) to represent the spatial signature of wafer l, the uncorrelated variation  

r(l)(x, y) will not be considered in the subsequent clustering process, and the clustering result will be less 

sensitive to random variation. 

 In practice, we do not know in advance what spatial signatures are present in the wafers. If a pre-

determined set of basis functions are used, too few basis functions may not be enough to cover all possible 

signatures, while too many basis functions will limit the ability to remove random variation. Therefore, 

following the same idea as Chapter 2-Chapter 3, a large dictionary of possible basis functions can be 

employed, and the relevant basis functions can be automatically selected by cross-validation. Namely, we 

solve the following robust sparse regression problem to generate the features: 



 114 

 

 
),...,2,1(

..

minimize

0
)(

1

)()(,),(

)(

)( Ll

ts

Ab

l

N

i

lliilBS

l

l 









  (5.4) 

where b(l),i represents the i-th performance measurement on wafer l, and 
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contains M columns that correspond to M basis functions in the dictionary, and each row Ai,(l) correspond to 

the basis function values for the i-th performance measurement in wafer l, BS is the bi-square cost function 

defined in (3.12), (3.13) and (3.15). The index set of selected basis functions are required to be the same for 

each wafer, similar to the basis function selection problem in Section 2.3. The optimization problem (5.4) 

can be solved by the iteratively reweighting algorithm in Algorithm 3, where the optimal λ value is 

automatically determined by cross-validation described in Section 2.4.3. Note that the optimization (5.4) 

explicitly detects and removes outlier measurements by employing a robust cost function, so that the 

features can still be accurately determined in the presence of outliers. Also, the sparse regression is 

extremely insensitive to missing measurements, which is demonstrated in both compressed sensing 

literature [8]-[14] and our experiments [19]. Therefore, by applying robust sparse regression to extract the 

features, the subsequent clustering process will be shielded from the missing and outlier measurements 

problems in the raw measurement data.  

 An important problem when applying sparse regression is how to select the dictionary of basis 

functions. For the wafer spatial signature clustering application, two important factors must be taken into 

account when selecting the dictionary: sparsity and orthogonality. Sparsity means that only a small number 

of basis functions are needed to accurately represent any spatial signature. Obviously, a dictionary with 

better sparsity offers better protection against random variation. Orthogonality requires that the basis 

functions in the dictionary must not be correlated. If such correlation exists, it is possible for a small 

difference in spatial signature of measurement data to be translated into a significant difference in the 

features. This will in turn yield counter-intuitive clustering results. The physical dictionary introduced in 

Section 2.2.1 does not guarantee orthogonality, and therefore is not used in our wafer spatial signature 
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clustering application. Several dictionaries of basis functions that offer both sparsity and orthogonality have 

been proposed in the image processing literature, including discrete cosine transform (DCT) and wavelet 

basis functions. As was explained in Section 2.2.2, since we found that DCT typically provides better 

sparsity than wavelet when representing spatial process variation measurement data, we employ DCT basis 

functions described in Section 2.2.2 as the dictionary in the optimization problem (5.4). 

 

5.3 Clustering Algorithm 

After the features describing the wafer signatures are extracted, the next step is to apply a clustering 

algorithm to partition the wafers into clusters. Many clustering algorithms have been proposed in the 

statistics literature, such as k-means clustering [73], density-based clustering [74] and hierarchical 

clustering [65]. Each clustering algorithm is based on a different assumption on the data and not all 

algorithms are suitable for clustering wafer spatial variation data. We first briefly review the most 

traditional clustering method – k-means clustering [73] and explain why it is not an appropriate method for 

our wafer spatial signature clustering application. 

The k-means algorithm partitions the data into K clusters that minimizes the following cost function: 
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where ci is the index of wafers that belong to cluster i, η(l) is the feature vector of wafer l defined in (5.3) 

and μi is the centroid of cluster i, defined as: 
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where | ci | stands for the size of ci. The number of cluster K is a parameter that has to be specified by the 

user. When K is not known in advance, another algorithm must be developed to determine K from the data, 

which will be discussed in more detail in the next sub-section. 

 In order to solve the k-means problem defined in (5.6)-(5.7), the first step is to select initial cluster 

centers from K randomly selected wafers as the seeds. The algorithm then moves the cluster centers around 

in space in order to minimize (5.6). This is done iteratively by repeating two steps until a stopping criterion 

is met: reassigning wafers to the cluster with the closest centroid and recomputing each centroid based on 



 116 

the current members of its cluster by (5.7). The cost function (5.6) will monotonically decrease with the 

iterations and the k-means algorithm will stop once the value of (5.6) has converged. The k-means 

algorithm does not guarantee a global minimum for (5.6). Therefore, in practice, k-means algorithm is often 

repeatedly performed many times with different initial seeds and the clustering result with the minimum 

cost function (5.6) will be selected as the final result. More details of k-means can be found in [73] and 

[65]. 
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                                             (a)                                                               (b) 

Figure 5-3. (a) Synthetic two-dimensional data with 2 clusters and 3 outliers and (b) k-means clustering 

result with 5 clusters.  

 For our wafer spatial signature clustering application, an important problem that prevents k-means 

from achieving accurate clustering results is the existence of abnormal wafers. Unlike the outlier 

measurements discussed in the previous sub-section, abnormal wafers are a small number of wafers whose 

spatial signatures are significantly different from any of the main clusters. In the feature space, the 

abnormal wafers are typically far away from any normal wafer. An accurate clustering result will produce 

separate clusters with very small size that reflect the abnormal wafers, rather than merging them into the 

large clusters. However, this goal is often not achievable with the k-means clustering algorithm. In order to 

demonstrate this, we constructed a synthetic 2-D data set in Figure 5-3 (a). Figure 5-3 (a) contains two 

main clusters and three abnormal data points that are far away from the main clusters. Intuitively, this data 

set should be partitioned into 5 clusters represented by different colors in Figure 5-3 (a), where each 

abnormal point forms a single cluster since it is not close to any other data. The k-means clustering result is 

shown in Figure 5-3 (b), where the number of clusters is pre-specified as 5. From Figure 5-3 (b), it can be 
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seen that the k-means algorithm splits the large clusters, rather than assign separate clusters for the 

abnormal data. Comparing the k-means cost function (5.6) of Figure 5-3 (b) with Figure 5-3 (a), we find the 

cost function of Figure 5-3 (b) is indeed lower. This is because each point has equal weight in (5.6), so that 

small clusters would naturally have lower total weight. In other words, k-means favors clusters with similar 

size. Therefore, the k-means clustering algorithm is not suitable for situations where the size of clusters can 

be significantly different. 

0 1 2 3 4 5
0

1

2

3

4

5

6

X Axis

Y
 A

x
is

1 2

3

4

5

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Label

M
e
rg

e
 d

is
ta

n
c
e

  

                                             (a)                                                               (b) 

Figure 5-4. (a) Synthetic two-dimensional data with 5 points and (b) The dendrogram generated by 

hierarchical clustering.  

An alternative algorithm that does not suffer from the aforementioned problem with k-means is 

hierarchical clustering [65]. Unlike the k-means algorithm which explicitly minimizes a cost function, 

hierarchical clustering builds clusters in a greedy manner. Suppose that there are N data points in total, 

hierarchical clustering starts by assigning each an individual cluster for each point. Then, N-1 merging 

steps are performed iteratively, in which each step merges the two clusters that are closest in distance. 

Therefore, the data points that are close will be merged first, and those that are far away will not be merged 

until the end of the algorithm. To intuitively explain the idea of hierarchical clustering, we construct a 

synthetic data set with 5 points in Figure 5-4 (a). When hierarchical clustering is applied on this data set, 

the first two steps will merge data point 1 with 2, and data point 3 with 4. These two clusters will be 

merged in the third step, and data point 5 will be merged into it in the last step. The clustering result can be 

represented as a tree called the dendrogram in Figure 5-4 (b), which reflects how the data points are 
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merged. In Figure 5-4 (b), the height of each node reflects its merge distance, which means the distance of 

two clusters that are merged to form this node. Note that points that are close will be merged early, while 

distant points will not be merged until the last steps. However, hierarchical clustering does not directly 

generate the final clustering result (i.e. cluster labels for each data point). We will discuss algorithms to 

determine the cluster labels from hierarchical clustering result in the next sub-section. 

 An important component that must be assigned when performing the hierarchical clustering 

algorithm is how to define the distance between clusters. While the distance between two individual data 

points can be simply defined by their Euclidean distance: 
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the definition of distance between clusters that may contain multiple points is not unique. Different 

definitions of cluster distance have been proposed, each corresponds to a different assumption about the 

cluster structure. We need to select the distance definition whose assumption best matches our goal in 

wafer spatial signature clustering. In this work, the following definition is selected, which determines the 

distance between two clusters as the maximum of the distance between any two points in these two 

clusters: 
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The hierarchical clustering algorithm based on the distance metric in (5.9) is named complete-link 

hierarchical clustering [65]. The physical meaning of (5.9) is that a cluster will be formed only if all 

members in the clusters are completely connected, i.e. within a small distance to each other. This definition 

matches our goal in wafer spatial signature clustering: since all members in a cluster should correspond to 

the same spatial signature, we would like any two wafers to be similar. To further explain why (5.9) is the 

appropriate choice for wafer spatial signature clustering, we compare it with another most commonly used 

definition which uses the minimum distance to define the distance of two clusters: 
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The hierarchical clustering algorithm based on the distance metric in (5.10) is named single-link 

hierarchical clustering [65]. The assumption behind single-link hierarchical clustering is that two points 

should belong to the same cluster as long as there exists a path connecting these two points, such that any 
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adjacent pair of points along this path is close in distance. As a result, single-link hierarchical clustering is 

known to often generate elongated clusters, where extremely distant points are connected by a long path in 

between. While this type of cluster is suitable for many applications, it is undesirable in our wafer spatial 

signature clustering. For example, in the manufacturing process, the change in process condition may not 

occur abruptly, but instead gradually drift from one state to another. This can happen because of, for 

example, equipment aging [75]. By employing single-link hierarchical clustering, we are unable to split the 

wafers into clusters to reflect the change of process condition in this scenario. Note that several other 

clustering techniques, for example density-based clustering [74], are also based on the idea of a connecting 

path when forming clusters, and therefore are not suitable for the wafer spatial signature clustering 

application. On the other hand, complete-link hierarchical clustering will naturally break down a long string 

of data points into smaller clusters, and is therefore more suitable for this application. In Section 5.5, we 

will show several examples where the natural clusters detected by complete-link hierarchical clustering 

cannot be found by either single-link hierarchical clustering or k-means. 

 

5.4 Cluster Selection 

In the previous sub-section, we propose to apply complete-link hierarchical clustering for wafer 

spatial signature clustering. However, as was discussed previously, hierarchical clustering does not directly 

generate the clustering labels. In practice, the clustering labels may be obtained by asking the user to visit 

the dendrogram in a top-down manner and decide whether to keep each merge action. To achieve automatic 

clustering and minimize human efforts, a separate algorithm needs to be applied to automatically select the 

most intuitive cluster labels from the hierarchical clustering result.  

The traditional approach to select the clusters from the hierarchical clustering result is the 

inconsistency coefficient method [76].  The inconsistency coefficient method visits each node in the 

dendrogram and compares its merge distance with the average merge distance of nodes below it. Such 

difference is quantitatively defined by the following inconsistency coefficient: 
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where Ik represents the inconsistency coefficient of a node k, dk is the merge distance of k, μk is the average 
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merge distance of k and all nodes below k, and σk is the standard deviation of the merge distances of k and 

all nodes below k. Figure 5-5 shows an example where the inconsistency coefficient of the node connecting 

the cluster {1,2} with the cluster {3,4} is calculated by:  
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Figure 5-5. An example of inconsistency coefficient calculation.  

The fundamental idea behind the inconsistency coefficient method is that nodes that join distinct 

clusters should have a high inconsistency coefficient, while nodes that join indistinct clusters should have a 

low inconsistency coefficient. Therefore, the clusters can be generated by breaking the nodes with 

inconsistency coefficient higher than a certain threshold. However, the threshold itself still has to be 

specified by the user. This threshold value is typically empirically assigned [77][78], but its optimal value 

can vary significantly for different applications or even different data sets. Moreover, the clustering result is 

extremely sensitive to this threshold value. Therefore, it is extremely difficult to develop a fully automatic 

clustering process based on the inconsistency coefficient method. 

An alternative method to select the number of clusters that has gained popularity in recent years is 

the L-method [79]. The L-method is based on the fact that for many clustering algorithms, it is possible to 

plot an error curve where the x-axis is the number of clusters, and the y-axis is the evaluation function 

internally used by the clustering algorithm. For example, the evaluation function for k-means can be 

defined as the cost function (5.6). For hierarchical clustering, the evaluation function for having i clusters 

can be defined as the merge distance of the (N-i)-th merge, which corresponds to the clustering result by 
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performing the first N-i merges in hierarchical clustering. While the error curve generally presents a 

decreasing trend with the number of clusters, it typically has a sharp transition at the most intuitive 

clustering of the data. For example, Figure 5-6 (a) plots the error curve of complete-link hierarchical 

clustering on the first synthetic data set described in Section 5.5, where synthetic wafers are created based 

on three distinct underlying signatures with random variation. It can be easily noticed by inspection that the 

transition point is at x=3. The L-method attempts to match human intuition by defining the following 

criterion: If we find the two consecutive lines that optimally fit the error curve, the transition point of the 

two lines is determined as the transition point of the error curve. For example, Figure 5-6 (b) accurately fits 

the error curve by two lines where one line fits the data with x=1-3, and another line fits the data with  

x=4-20. We can then determine that the data can be partitioned into 3 clusters.  
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                                             (a)                                                               (b) 

Figure 5-6. (a) The error curve of complete-link hierarchical clustering on a synthetic data set. (b) The 

optimal number of clusters can be found by fitting the curve with two lines.  

In what follows, we will first describe the L-method in detail, and then discuss its limitation. 

Consider a number of clusters vs evaluation metric graph such as Figure 5-6 (a), with values on the x-axis 

up to x=B. We partition the data points at x=c into left and right sequences. The left sequence has points 

with xlc=1...c, and the right sequence has points with xrc=c+1… B, where c=2…B-1. Next, we find the 

optimal two lines that minimize the least squares error for fitting the left and right parts of the graph 

respectively: 
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where  
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ylc and yrc are the value of the evaluation metric at xlc and xrc respectively. Eq. (5.13) and (5.14) can be 

solved by least-squares fitting, yielding the following root mean squared error: 

 2

1
lclclclclc

xbay
c

RMSE   (5.17) 
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1
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cB
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where alc and blc are from the solution of (5.13), and arc and brc are from the solution of (5.14). The total 

root mean squared error at x=c is then defined as the weighted sum of the left and right errors: 

 rclcc
RMSE

B

cB
RMSE

B

c
RMSE


  (5.19) 

The optimal number of clusters is then defined by selecting the c value that minimizes the total error 

defined by (5.19): 

 
c

c

RMSEminarg . (5.20) 

In practice, the number of clusters is typically much smaller than the number of data points. 

Therefore, when directly applying the criterion (5.20) to the entire data set, a large number of values 

representing merges at extremely fine-grain clusterings (large values of x) are irrelevant and may inaccurate 

result due to highly imbalanced left and right sides. Therefore, the L-method is applied iteratively to the 

data points. Starting from solving (5.20) on the entire data set, each iteration reduces the number of data 

points included in the next iteration to: 

 
 .20,2max cB

next
  (5.21) 

where c is the optimal number of clusters determined in the current iteration, and 2∙c is a number to keep 

the left and right side balanced. The total number of data points is not permitted to drop below 20, which is 

an empirical number proposed in [79] to keep a reasonable number of points to fit the lines. The L-method 
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stops when the number of data points included has converged. 
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                                             (a)                                                               (b) 

Figure 5-7. An synthetic example where the error can be minimized by either (a) c=2. (b) c=3.  

While the L-method attempts to match human intuition in finding the transition point of the error 

curve, we noticed that its definition of the transition point is counter-intuitive. Specifically, the transition 

point can often be reasonably fit by either the left or the right curve. To explain this idea, we constructed a 

synthetic example in Figure 5-7 where 6 points can be exactly fit with two lines. It is obvious that the 

optimal solution with human inspection is c = 3. However, according to the L-method, two possible values 

of c would result in a minimum error of 0. Figure 5-7 (a) and Figure 5-7 (b) show lines fitted by the L-

method when setting c = 2 and c = 3 respectively, from which it can be clearly seen that both of these 

solutions are valid solutions of the L-method. In practice, the points cannot be perfectly fit by two lines and 

the choice of c = 2 or 3 by the L-method is arbitrary: small changes in the error curve may cause the 

number of clusters to shift from one solution to another. 

Based on the above observation, we propose to add a post-processing step to the L-method to more 

accurately determine the number of clusters. This is done by detecting if a sharper transition occurs at the 

currently selected point c or the next point c+1. The number of clusters is added by one, if the next point 

causes a sharper transition in the error curve. Specifically, we propose to use the following quantity to 

represent the transition rate at x = c: 
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where yc-1, yc and yc+1 are the value of the evaluation metric at c-1, c and c+1 respectively. Similarly, we 

define the transition rate at x = c+1 by: 
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where yc+2 is the value of the evaluation metric at c+2. Eq. (5.22) and (5.23) are essentially the second-order 

difference of the series log(y). The second-order difference is applied, because we would like to compare 

the difference from the previous point to the current point with the difference from current point to the next 

point. A large second-order difference means a significant difference between these two values, which 

indicates a strong transition in the trend of the error curve. We take the logarithm for the evaluation metric 

y, because comparing the ratio between two consecutive points is more intuitive than comparing the 

absolute difference. For example, in Figure 5-6 (b), y2-y1 is significantly different from y3-y2, yet c = 3 

remains the intuitive solution for the transition point in Figure 5-6 (b) by human inspection. We summarize 

the main steps of the modified L-method for cluster number determination in Algorithm 4: 

Algorithm 4: Modified L-method for cluster number selection 

1. Start from a vector y
B1

 representing the value of the evaluation metric when the number of clusters is  

1, 2, …, B. 

2. Find the optimal number of clusters c according to the criterion (5.20).  

3. Compare sc and sc+1 defined by (5.22) and (5.23) respectively. If sc+1 > sc, c = c + 1. 

4. Calculate the number of data points included in the next step Bnext by (5.21).   

5. If Bnext = B, stop. Otherwise, B = Bnext and go to Step 1. 

Note that the applicability of Algorithm 4 is not restricted to hierarchical clustering. Instead, it can 

be applied to select the number of clusters for any clustering algorithm for which a number of clusters vs 

evaluation metric graph can be generated. For example, it can be applied to the k-means clustering 

algorithm, where the evaluation metric is the cost function (5.6). We will show in Section 5.5 that accurate 

clustering results can also be generated by k-means with Algorithm 4 when the data does not contain any 

abnormal wafers. 

 

5.5 Numerical Results 

In the previous sub-sections, we have proposed a wafer spatial signature clustering method which 

mainly consists of three components: robust feature extraction by (5.4), complete-link hierarchical 
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clustering described in Section 5.3, and the modified L-method for cluster number selection described by 

Algorithm 4. In this sub-section, we will use several synthetic examples and silicon measurement data sets 

to demonstrate the effectiveness of the proposed method. 

 

5.5.1 Results on Synthetic Data 
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                       (a)                                                   (b)                                                   (c) 

Figure 5-8. Systematic variation of three different clusters in the synthetic example. 

We first consider several examples where the data set contains three clusters with distinct spatial 

signatures shown in Figure 5-8. Figure 5-8 (a) is created by the following quadratic function: 

 
  221, yxyxs   (5.24) 

where x and y are coordinates on the wafer with range normalized to [-1 1]. Figure 5-8 (b) contains edge 

effect at the bottom of the wafer and it is created by: 
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where E is the bottom edge region of the wafer. Figure 5-8 (c) contains center effect and it is created by: 
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where C is the center region of the wafer. For each spatial signature in Figure 5-8, we generate 20 synthetic 

wafers by randomly adding 10% random variation and Figure 5-9 (a)-(c) show randomly selected three 

wafers from each signature. This forms a synthetic data set with 60 wafers in total.  
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Figure 5-9. Three synthetic wafers belonging to different clusters. 

We apply the proposed method to cluster these 60 wafers and it produces the correct clustering 

result: the 60 wafers are partitioned into 3 clusters, each containing 20 wafers that correspond to the 

systematic variation in Figure 5-8 (a)-(c) respectively. For comparison purposes, we implement two 

alternative methods for the clustering algorithm in the wafer spatial signature clustering flow shown in 

Figure 5-2, the k-means and single-link hierarchical clustering algorithms. In this example, both k-means 

and single-link hierarchical clustering also produce the correct clustering result. However, accurate 

clustering results cannot be easily achieved if the number of clusters is selected by the traditional 

inconsistency coefficient method, which is extremely sensitive to the user-defined inconsistency coefficient. 

We find that setting inconsistency coefficient to 1.16 will produce only one cluster, while setting it to 1.15 

will produce 5 clusters, which unnecessarily divides the 3 natural clusters. Setting the coefficient below 

1.15 will result in even larger number of clusters, and no value between 1.15 and 1.16 generates the correct 

clustering result.  

To further examine the effectiveness of the proposed method against random variation, we further 

increase the percentage of random variation in the data set to 30%. Figure 5-10 (a)-(c) show three randomly 

selected wafers from each signature, from which it can be seen that the spatial signature is much less clear 

compared to Figure 5-9. In this example, the proposed method, as well as applying k-means and single-link 

hierarchical clustering still correctly find the three clusters. This result shows the robustness of the 

proposed flow against random variation. In this example, accurate result can be obtained by the 

inconsistency coefficient method when the inconsistency coefficient is set to 1.15, but setting it to 1.16 and 

1.14 will result in 1 cluster and 7 clusters respectively, which shows that this method is extremely sensitive 

to the inconsistency coefficient. 
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                       (a)                                                   (b)                                                   (c) 

Figure 5-10. Three synthetic wafers with large random variation belonging to different clusters. 

To further examine the effectiveness of the proposed methodology against outliers, we create 5 

abnormal wafers with no spatially correlated variation and very large random variation in Figure 5-11. The 

variance of the random variation is selected to match the variance of the wafer-level variation of the 

synthetic wafers with 10% random variation, which was shown in Figure 5-9. These 5 abnormal wafers are 

then added to the data set, resulting in 65 wafers in total. 
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(d)                                                   (e) 

Figure 5-11. Five abnormal wafers created by very large random variation. 

The proposed method correctly clusters these 65 wafers: 4 clusters are created, where 20 wafers 

from each spatial signature form a cluster respectively, and 5 abnormal wafers are combined into one 
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cluster. In this example, applying k-means will only detect 2 clusters: wafers with quadratic and edge 

signatures in Figure 5-8 (a)-(b) are merged into one cluster, and wafers with the center pattern are merged 

with outlier wafers to form another cluster. K-means fails to produce accurate results because of its lack of 

ability to handle abnormal wafers. Single-link hierarchical clustering generates 8 clusters, where 20 wafers 

from each spatial signature form a cluster respectively, and 5 abnormal wafers each form an individual 

cluster. The three main clusters are correctly identified, and the outliers are detected and separated from the 

three main clusters. This result also correctly identifies the clusters and abnormal wafers, which shows that 

the hierarchical clustering approach is robust to abnormal wafers. The complete-link hierarchical clustering 

result is more desirable than the single-link hierarchical clustering, because it is more concise and 

accurately detects that the abnormal wafers are in fact from the same distribution. The abnormal wafers can 

be clustered by complete-link hierarchical clustering for two reasons: First, although the 5 abnormal wafers 

in Figure 5-11 (a)-(e) look quite different, their random variation is significantly reduced by the robust 

feature extraction process in Section 5.2, so that they are much more similar in the feature space. Second, 

all of them are not far away from the spatial signature with no variation, so that they are connected from a 

complete-link point of view. In this example, the correct clusters again cannot be identified if the 

inconsistency coefficient method is applied. We find that setting inconsistency coefficient to 1.15 or above 

will produce only one cluster, while setting it to 1.14 will produce 12 clusters. No value between 1.14 and 

1.15 generates the correct clustering result. 

We further evaluate the effectiveness of the algorithms by adding 5 abnormal wafers to the data set 

with 30% random variation. The variance of the abnormal wafers is adjusted to match the variance of the 

wafer-level variation of other synthetic wafers. The results are very similar to the case with small random 

variation. K-means still only detects 2 clusters: wafers with quadratic and edge patterns are merged with 

outliers into one cluster, and wafers with the center pattern form another cluster. The clusters formed by 

single-link hierarchical clustering and the proposed method are exactly the same as the previous example. 

These results show that hierarchical clustering is in general robust to abnormal wafers, with complete-link 

hierarchical clustering produces slightly better results because it agrees better with our intuition for this 

application. The correct clusters cannot be identified if the inconsistency coefficient method is applied. We 

find that setting inconsistency coefficient to 1.15 will produce 3 clusters where the outliers are not detected, 
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while setting it to 1.14 will produce 7 clusters where the wafers with the center pattern form 4 clusters. No 

value between 1.14 and 1.15 generates the correct clustering result. 
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Figure 5-12.Systematic variation of four different clusters in the synthetic example. 

We further consider several other examples where the data set contains four clusters where the 

spatial signature is not as clearly distinct as the previous examples. The systematic variation signatures of 

these four clusters are shown in Figure 5-12. Figure 5-12 (a) is created by the following linear function: 

 
  yxyxs

l
5.05.0,   (5.27) 

where x and y are coordinates on the wafer with range normalized to [-1 1]. Figure 5-12 (b) further adds the 

following edge effect function at the bottom of the wafer to the spatial signature in Figure 5-12 (a): 
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where E is the bottom edge region of the wafer. Figure 5-12 (c) further adds the following center effect 

function to Figure 5-12 (b): 
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where C is the center region of the wafer. Figure 5-12 (d) subtracts the linear function from Figure 5-12 (c), 
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so that the wafer only contains center and edge effects. For each spatial signature in Figure 5-12, we 

generate 20 synthetic wafers by randomly adding 10% random variation and Figure 5-13 (a)-(d) show 

randomly selected four wafers from each of the four different signatures. This forms a synthetic data set 

with 80 wafers in total. 
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Figure 5-13. Four synthetic wafers belonging to different clusters. 

The proposed method accurately partitions these 80 wafers into 4 clusters, each containing 20 

wafers that correspond to the systematic variation in Figure 5-12 (a)-(d) respectively. In this example, the 

same correct result can also be obtained if k-means or single-link hierarchical clustering are applied as the 

clustering algorithm. On the other hand, no correct result can be obtained if the inconsistency coefficient 

method is applied to select the number of clusters. We find that setting inconsistency coefficient to 1.16 or 

above will produce only one cluster, while setting it to 1.15 will produce 7 clusters. No value between 1.15 

and 1.16 generates the correct clustering result. 

We further increase the percentage of random variation in the data set to 30%. Figure 5-14 (a)-(d) 

show randomly selected four wafers from each of the four different signatures, from which it can be seen 

that the difference of the spatial signature is much less clear compared to Figure 5-13. In this example, the 

proposed method again correctly finds the four clusters, and the same result can be obtained if k-means is 
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applied as the clustering algorithm. However, single-link hierarchical clustering only detects 2 clusters: 

wafers with signatures in Figure 5-12 (a)-(c) are merged into one cluster, and wafers with the signature in 

Figure 5-12 (d) form another cluster. This is because the signatures in Figure 5-12 are not significantly 

different; with large random variation, it is possible for a small number wafers from two different spatial 

signatures to become similar. Therefore, single-link hierarchical clustering may merge these wafers into the 

same cluster because they are “connected”. Complete-link hierarchical clustering requires all wafers within 

the same cluster to be connected, and is therefore less sensitive to the aforementioned problem due to large 

random variation. No correct result can be obtained if the inconsistency coefficient method is applied to 

select the number of clusters. We find that setting inconsistency coefficient to 1.16 or above will produce 

only one cluster, while setting it to 1.15 will produce 10 clusters. No value between 1.15 and 1.16 generates 

the correct clustering result. 
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Figure 5-14. Four synthetic wafers with large random variation belonging to different clusters. 

To further examine the effectiveness of the proposed method against outliers, similar to the previous 

experiments, we add 5 abnormal wafers to the data sets with 10% and 30% random variation respectively, 

resulting in 85 wafers in total. The variance of the abnormal wafers is selected to match the variance of the 

wafer-level variation of other synthetic wafers. We observe similar results to the previous experiments with 
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abnormal wafers: reasonably accurate results can be provided by the proposed method, or using single-link 

hierarchical clustering as the clustering algorithm, but k-means fails to provide accurate clustering results. 

Namely, in the 10% random variation example, applying k-means will detect 4 clusters, where the 

abnormal wafers are merged into the cluster with the systematic spatial signature in Figure 5-12 (a), and the 

other 3 clusters are detected correctly. Both single-link and the proposed method detect 8 clusters where the 

4 main clusters are accurately detected and the abnormal wafers are further divided into 4 clusters. In the 

30% random variation example, applying k-means will only detect 3 clusters, where the abnormal wafers 

are merged into the cluster with the systematic spatial signature in Figure 5-12 (a), and the wafers with the 

systematic spatial signature in Figure 5-12 (b)-(c) are further merged into one cluster. Single-link 

hierarchical clustering detects 8 clusters where the 4 main clusters are accurately detected and the abnormal 

wafers are further divided into 4 clusters. The proposed method detects 5 clusters where the 4 main clusters 

are accurately detected and the abnormal wafers are merged into one cluster, which is more accurate than 

the single-link hierarchical clustering. No correct result can be obtained if the inconsistency coefficient 

method is applied to select the number of clusters. We find that setting inconsistency coefficient to 1.16 or 

above will produce only one cluster in both cases, while setting it to 1.15 will produce 7 and 10 clusters for 

the 10% and 30% random variation example respectively. No value between 1.15 and 1.16 generates the 

correct clustering result. 

In summary, from the synthetic examples, we observed that the proposed wafer spatial signature 

clustering flow is capable of producing accurate clusters with either k-means or hierarchical clustering as 

the clustering algorithm, when the random variation is small or the different spatial signatures are relatively 

distinct, and the data does not contain abnormal wafers. When abnormal wafers exist, applying k-means 

would fail to produce accurate clusters because of its inherent lack of ability to handle abnormal wafers. 

Applying single-link hierarchical clustering may fail when there exists large random variation. In all 

examples, the proposed method with complete-link hierarchical clustering accurately detects the clusters in 

the presence of large random variation and abnormal wafers. Such accurate result cannot be obtained if the 

traditional inconsistency coefficient method is applied to select the number of clusters. 
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5.5.2 Results on Silicon Measurement Data 

From the previous experiments, we observe that the proposed wafer spatial signature clustering 

method accurately detects the clusters in various synthetic data examples. We will further demonstrate the 

effectiveness of our method and perform comparison on several sets of silicon measurement data. 

We first consider Idsat measurements obtained by single NMOS test structures from 69 wafers. We 

first apply the proposed method to cluster these wafers, and then compare the clustering result with various 

other options. In this example, complete-link hierarchical clustering generates 4 clusters, and the number of 

wafers for these 4 clusters is 34, 23, 9 and 3 respectively. Figure 5-15 shows the averaged wafer map for 

these 4 clusters, where it can be seen that these clusters contain distinct spatial signatures. Wafers in cluster 

1 do not have significant spatially correlated variation. Since this cluster also contains the largest number of 

wafers, it can be considered as the baseline cluster. Wafers in cluster 2 have strong edge effect and an 

increasing trend from top-left to bottom-right corner; wafers in cluster 3 have strong edge and center effect; 

wafers in cluster 4 have a large number of missing measurements in the bottom of the wafer.  
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Figure 5-15. Averaged wafer map (normalized) of four different clusters detected by the proposed method 

for NMOS Idsat measurement data set 1. 
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In this example, these different signatures cannot be completely detected by applying k-means or 

single-link hierarchical clustering as the clustering algorithm. K-means only detects 3 clusters and the 

number of wafers for these 3 clusters is 38, 28 and 3 respectively. Figure 5-16 shows the averaged wafer 

map for these clusters. Roughly speaking, these three clusters match cluster 1, cluster 2-3 and cluster 4 in 

the complete-link hierarchical clustering result. Therefore, k-means fails to detect the different spatial 

signatures presented by cluster 2 and 3 in Figure 5-15. If single-link hierarchical clustering is applied, 

cluster 1 and 2 in Figure 5-16 are further merged into one cluster, so that it fails to distinguish the spatial 

signature between cluster 1, 2 and 3 in Figure 5-16. The fundamental reason for the failure of single-link 

hierarchical clustering is that there does not exist a clear boundary between clusters. To intuitively explain 

this, we plot the wafer maps for three different wafers in this data set in Figure 5-17. It can be seen that 

while there is a clear difference in the spatial signature between the wafers in Figure 5-17 (a) and  

Figure 5-17 (c), there exist wafers such as the wafer in Figure 5-17 (b) whose spatial signature is similar to 

both. This may happen because of, for example, process drift. In this case, single-link hierarchical 

clustering will merge Figure 5-17 (a) and Figure 5-17 (c) into the same cluster because they are connected 

by Figure 5-17 (b). On the other hand, complete-link hierarchical clustering requires all wafers in the same 

cluster to be similar and therefore does not suffer from this problem. If the inconsistency coefficient 

method is applied to select the number of clusters, setting inconsistency coefficient to 1.16 or above will 

produce only one cluster, while setting it to 1.15 will produce 5 clusters, where cluster 2 in Figure 5-15 will 

be split into two clusters with no significant difference in spatial signature. More clusters will be 

unnecessarily created if the inconsistency coefficient is set to 1.14 or below.  
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Figure 5-16. Averaged wafer map (normalized) of three different clusters detected by k-means for NMOS 

Idsat measurement data set 1. 
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                       (a)                                                   (b)                                                   (c) 

Figure 5-17. Three different wafers in NMOS Idsat measurement data set 1. 

Next, we consider Idsat measurements obtained by single PMOS test structures from the same 69 

wafers. In this example, the proposed method generates 2 clusters, and the number of wafers for these 2 

clusters is 64 and 5 respectively. Figure 5-18 shows the averaged wafer map for these 2 clusters, where it 

can be seen that these clusters indeed contain distinct spatial signatures. Cluster 1 can be considered as a 

baseline cluster and cluster 2 contains several abnormal wafers. In this example, applying k-means or 

single-link hierarchical clustering produces consistent results with complete-link hierarchical clustering and 

no significant difference in spatial signature can be further found by manually inspecting cluster 1. 

Therefore, the proposed flow produces accurate clustering result regardless of the clustering algorithm 

employed in this example. If the inconsistency coefficient method is applied to select the number of 

clusters, setting inconsistency coefficient to 1.16 or above will produce only one cluster, while setting it to 

1.15 will produce 5 clusters, where cluster 1 in Figure 5-18 will be split into four clusters with no 

significant difference in spatial signature. More clusters will be unnecessarily created if the inconsistency 

coefficient is set to 1.14 or below. 
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(a)                                                   (b) 

Figure 5-18. Averaged wafer map (normalized) of two different clusters detected by the proposed method 

for PMOS Idsat measurement data set 1. 
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We further consider Idsat measurements obtained by single NMOS test structures from another 82 

wafers. In this data set, not all test structures are measured; instead, they are sampled in a “checkerboard” 

style to reduce the test cost. In this example, the proposed method generates 4 clusters, and the number of 

wafers for these 4 clusters is 43, 18, 20 and 1 respectively. Figure 5-19 shows the averaged wafer map for 

these 4 clusters. Inspecting Figure 5-19, it can be seen that although cluster 2 presents larger spatially 

correlated variation compared to cluster 1, overall speaking the difference in spatial signature between 

these two clusters is not significant. Therefore, they can be simply merged into one cluster and considered 

as the baseline cluster after simple manual inspection on Figure 5-19 (a) and Figure 5-19 (b). Note that 

although the clustering result does not exactly match human intuition in this example, such inspection and 

merging process requires very little human effort. Cluster 3 and cluster 4 detected by the proposed method 

indeed contain completely different spatial signature compared to cluster 1-2: wafers in cluster 3 have 

significant edge effect at the bottom-left portion of the wafer, and cluster 4 contains an abnormal wafer 

with completely different signature compared to any other wafer.  
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(c)                                                   (d) 

Figure 5-19. Averaged wafer map (normalized) of four different clusters detected by the proposed method 

for NMOS Idsat measurement data set 2. 

In this example, applying k-means or single-link hierarchical clustering as the clustering algorithm 
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would fail to detect all the distinct signatures in Figure 5-19. Namely, k-means generates 2 clusters where 

clusters 1, 2 and 4 in Figure 5-19 are merged into one cluster and cluster 3 in Figure 5-19 forms another 

cluster. While the k-means method correctly merges clusters 1 and 2 in Figure 5-19, the abnormal wafer is 

also merged into the baseline cluster and cannot be detected by simple inspection. Single-link hierarchical 

clustering generates 2 clusters where clusters 1, 2 and 3 in Figure 5-19 are merged into one cluster and 

cluster 4 in Figure 5-19 forms another cluster. Therefore, it fails to detect the wafers with edge effect. 

Therefore, the proposed method with complete-link hierarchical clustering provides the best accuracy. If 

the inconsistency coefficient method is applied to select the number of clusters, setting inconsistency 

coefficient to 1.16 or above will produce only one cluster, while setting it to 1.15 will produce 9 clusters, 

where clusters 1-3 in Figure 5-19 will all be further split into multiple clusters with no significant 

difference in spatial signature. More clusters will be unnecessarily created if the inconsistency coefficient is 

set to 1.14 or below. 
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(a)                                                   (b) 

Figure 5-20. Averaged wafer map (normalized) of two different clusters detected by the proposed method 

for PMOS Idsat measurement data set 2. 

We finally consider Idsat measurements obtained by single PMOS test structures from the same 82 

wafers. In this example, the proposed method generates 2 clusters, and the number of wafers for these 2 

clusters is 81 and 1 respectively. Figure 5-20 shows the averaged wafer map for these 2 clusters, where 

cluster 1 can be considered as the baseline cluster and cluster 2 contains an abnormal wafer. No significant 

difference in spatial signature can be further found by manually inspecting cluster 1. In this example, 

applying single-link hierarchical clustering produces the same results as the proposed method. K-means 

further splits cluster 1 into two clusters with no significant difference in spatial signature, but these two 

clusters can be merged after simple manual inspection, similar to the previous example. If the inconsistency 
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coefficient method is applied to select the number of clusters, setting inconsistency coefficient to 1.16 or 

above will produce only one cluster, while setting it to 1.15 will produce 7 clusters, where cluster 1 in 

Figure 5-20 will be split into six clusters with no significant difference in spatial signature. More clusters 

will be unnecessarily created if the inconsistency coefficient is set to 1.14 or below. 

 

5.6 Summary 

Wafer spatial signature clustering provides important insight to help process engineers prioritize the 

yield improvement goals. In this chapter, we propose to solve the wafer spatial signature clustering problem 

based on a three-step process: first, the spatial signatures of wafers are automatically captured by a small 

number of features based on robust sparse regression with the DCT dictionary; second, complete-link 

hierarchical clustering is performed on the features; finally, a modified L-method is performed on the 

hierarchical clustering result to select the clusters. The effectiveness of the proposed method is 

demonstrated by a number of synthetic and silicon data sets. One of the key decisions in the proposed 

method is to adopt a complete-link hierarchical clustering algorithm and its superiority over k-means and 

single-link hierarchical clustering is demonstrated by several synthetic and silicon examples. Moreover, 

numerical results demonstrate that the accurate clustering result cannot be obtained if the traditional 

inconsistency coefficient method is applied to select the number of clusters. 
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Chapter 6 Thesis Summary & Future Work 

Thesis Summary & Future Work 

6.1 Summary 

With the continued scaling of CMOS technology, it becomes increasingly difficult to keep process 

variations under control. At the same time, process engineers are facing increasingly stringent time-to-

market requirements for modern products. Therefore, rapidly improving the yield of today's complicated 

manufacturing process is a key challenge to ensure profitability for the IC industry. 

In this thesis, we propose accurate and efficient modeling techniques for spatial variation, which is 

becoming increasing important in the advanced technology nodes. Based on our spatial model, we propose 

accurate and efficient techniques for two applications that help process engineers identify the important 

yield-limiting factors in the manufacturing process, so that process engineers can prioritize their yield 

improvement efforts. One of these applications is variation decomposition, where the overall variation is 

decomposed into multiple different components, each corresponding to a different subset of variation 

sources. This allows process engineers to narrow down the main sources of variation for wafers with 

similar patterns, especially at the process development and product yield ramp stages. 

An important problem in variation decomposition is to accurately model and extract the wafer-level 

and within-die spatially correlated variation, and separate them from random variations. Towards this goal, 

we first develop a physical basis function dictionary based on our study of several common physical 

variation sources, which captures more spatially correlated systematic variation sources than the traditional 

quadratic modeling approach, and then further proposes the DCT dictionary to discover spatially correlated 

systematic patterns not modeled by the physical dictionary. Moreover, we propose to apply sparse 

regression to significantly reduce the over-fitting problem related to applying a large basis function 

dictionary. 

Substantial error can be introduced to variation decomposition if outliers are not appropriately 
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detected and removed. We further extend the sparse regression algorithm to a robust sparse regression 

algorithm, which provides superior accuracy compared to the traditional IQR method for outlier detection. 

By solving robust sparse regression, basis functions will be accurately selected in the presence of outliers, 

and outliers will be automatically detected and removed. Experiments on synthetic and silicon 

measurement data demonstrate the effectiveness of the proposed variation decomposition methodology 

based on robust sparse regression.  

The computational cost for sparse regression with DCT basis functions can become extremely large 

for problems with large size, which limits the applicability of the variation decomposition methodology 

based on sparse regression. We propose several efficient methods to make the computational cost of sparse 

regression tractable for large-scale problems. The key idea of these methods is to utilize fast DCT/IDCT 

computation to speed up the matrix-vector product computation. From the experimental results on a large 

problem with contact resistance measurement data, we observe nearly 200 speedup compared to the 

traditional direct implementation. 

The second application we target at is the wafer spatial signature clustering problem. The goal is to 

automatically partition a large number of wafers into different groups, in which different groups exhibit 

different spatial signatures. The results would help process engineers find important factors that prevent the 

process from stably maintaining a high yield across different lots and wafers. Our proposed method 

contains three key components: first, a robust feature extraction method is developed to automatically 

capture the spatial signatures of wafers by a small number of features by re-using the robust sparse 

regression technique developed for variation decomposition; second, a complete-link hierarchical clustering 

algorithm is selected to perform clustering on the features; finally, a modified L-method is developed to 

select the number of clusters from the hierarchical clustering result. The effectiveness of the proposed 

method is demonstrated by a number of synthetic and silicon data sets.  

 

6.2 Future Work 

There are multiple directions that can be explored to extend this work to further benefit the 

manufacturing, design and testing community.  

First, more efforts can be made to further automate the process of identifying important variation 
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sources in the spatially correlated systematic variation. This can be done via two avenues: first, we can 

encode more of our knowledge in the form of physical basis functions and add them to the physical basis 

functions dictionary. By using the physical dictionary instead of having to rely on the DCT dictionary, we 

can gain more insight into the physical variation sources. Second, as was mentioned in Section 1.2.1, in 

variation characterization there can exist a number of test structures dedicated to monitoring a single 

parameter (e.g. gate length, transistor threshold voltage, etc.). If we also accurately extract the spatially 

correlated variations related to the single-parameter test structures, and then develop an accurate method to 

automatically find those that are most strongly related to the spatially correlated variations of product 

representative test structures, it would provide important information for identifying the physical sources of 

variation. 

Second, the current spatial variation modeling technique based on sparse regression focuses on 

capturing the spatially correlated systematic variation at the within-wafer and within-die level. It may be 

possible to extend the sparse regression idea to capture some systematic variation sources at the wafer-to-

wafer level, such as process drift, chamber mismatch, etc. Similar to the idea of spatial variation modeling, 

it may be possible to represent these possible systematic variation sources as a dictionary containing a large 

number of basis functions, and then apply sparse regression to automatically select the variation sources for 

a particular process. This allows process engineers to gain more insight into the wafer-to-wafer variation, 

similar to the wafer-level and within-die variation in the current method. 

Third, the over-fitting issue in spatial variation modeling is an extremely important problem that 

deserves further investigation. In this thesis, we have used sparse regression with cross-validation to 

significantly reduce over-fitting, but from the experiments, it can be seen that over-fitting is not completely 

removed. A possible research direction is to investigate alternatives to cross-validation. For example, 

various information criteria can be applied to replace cross-validation, such as AIC and BIC [24]. 

Furthermore, the modified L-method may be applied to the trade-off curve between fitting error and 

number of basis functions to detect the number of basis functions. 

Fourth, the wafer spatial signature clustering application we study in this thesis can only be applied 

to off-line analysis, because the amount of time it takes to build the spatial model and perform clustering 

makes it impractical to be performed on-line. In practice, if we can detect abnormal wafer spatial signatures 
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on-line during statistical process control (SPC), corrective actions can be taken more promptly to prevent 

yield loss. A possible way to achieve this is to model the common spatial signatures in advance, and check 

the spatial signature of each wafer against the common spatial models.  

Fifth, in this thesis we have stated variation decomposition and wafer spatial signature clustering as 

two independent applications mainly applicable to different stages of the process lifecycle, but it may be 

possible for these two tools to work together to enable more efficient detection of variation sources. For 

example, in volume production data, after performing wafer spatial signature clustering, it is possible to 

apply variation decomposition to a particular cluster, in order to find out the primary variation sources 

related to this cluster. On the other hand, having a large lot-to-lot component in variation decomposition 

may indicate the existence of clusters. There may also exist other scenarios where these two tools can work 

together. 

Sixth, an important direction to study is how the spatial variation modeling techniques in this thesis 

can benefit the design. It may be possible to integrate the systematic spatial model extracted by the 

variation decomposition process into the device model, so that as long as the spatial location of a transistor 

is know, a large number of its variation can be determined by the spatial model so that they no longer need 

to be treated as random variables. They can greatly reduce the margin the designer has to leave for random 

variation. It would be an interesting direction to further investigate how various CAD tools for design such 

as statistical library characterization, statistical static timing analysis and statistical circuit optimization can 

be adapted to consider such spatial model. 

Finally, another direction that can be explored is to apply the wafer-level spatial variation modeling 

technique to reduce the testing cost. Our preliminary research has indicated that for many performance 

measurements such as flush delay (the time for a transition to traverse the entire scan chain) and leakage 

current, it is possible for the wafer-level variation to be dominated by spatially correlated variation. In this 

case, the model for spatially correlated variation can be accurately extracted by sampling a small number of 

dies on the wafers, and the performance for other dies can be predicted based on the model with little error 

[18][100][101]. A test cost reduction methodology was recently proposed in [102] based on this idea, 

where it has been applied to 175 wafers with more than one million chips, and each chip was tested for 51 

performance metrics. The experimental results demonstrate that the test cost of 39 out of these 51 
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performance metrics using this idea, resulting in 2.36 reduction in test time with negligible increase in 

escape rate and yield loss. However, additional data needs to be analyzed to fully understand the trade-off 

between reduced testing time and increased escape rate/yield loss by this method. Furthermore, how this 

method can be combined with other test cost reduction approaches (e.g. exploring the correlation between 

test items) is an interesting topic for future research. 
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