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Harvesting Design Knowledge From the Internet:
High-Dimensional Performance Tradeoff Modeling

for Large-Scale Analog Circuits
Jun Tao, Member, IEEE, Changhai Liao, Xuan Zeng, Member, IEEE, and Xin Li, Senior Member, IEEE

Abstract—Efficiently optimizing large-scale, complex analog
systems requires to know the performance tradeoffs for vari-
ous analog circuit blocks. In this paper, we propose a radically
new approach for analog performance tradeoff modeling. Our
key idea is to broadly search the rich design knowledge from
the Internet, and then mathematically encode the knowledge as
high-dimensional performance tradeoff curves that are referred
to as Pareto fronts in the literature. Toward this goal, sev-
eral novel numerical algorithms, such as sparse regression and
semi-infinite programming, are developed in order to construct
the high-dimensional Pareto front model while guaranteeing
its monotonicity. Our numerical examples demonstrate that
the proposed modeling technique can accurately capture the
high-dimensional Pareto fronts for large-scale analog systems
(e.g., analog-to-digital converter) while most traditional meth-
ods are limited to low-dimensional Pareto front modeling of
small circuit blocks without considering layout parasitics and
manufacturing nonidealities.

Index Terms—Analog circuit, Pareto front, performance
tradeoff.

I. INTRODUCTION

AS AN indispensable portion of modern integrated sys-
tems, analog circuit often becomes the major bottleneck

that limits system performance, product yield, and time to
market. During the past two decades, numerous optimiza-
tion algorithms have been developed to facilitate efficient
analog circuit design [1]–[4]. The objective of these algo-
rithms is to automatically determine the optimal device sizes
(e.g., transistor width) based on numerical simulations and/or
design equations. Analog optimization techniques have been
successfully incorporated into commercial computer-aided
design (CAD) tools and applied to synthesize a large number
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of analog circuit blocks such as operational amplifiers, and
voltage-controlled oscillators (VCOs).

While analog optimization has made remarkable advance at
block level, efficiently optimizing large-scale, complex analog
systems remains a challenging task. Typically, a hierarchical
approach is adopted to attack this system-level optimization
problem [5]–[17]. Namely, analog optimization is first per-
formed to extract the performance tradeoffs, referred to as
Pareto fronts, at block level. Next, system-level optimiza-
tion is further pursued based on these tradeoff models. To
make such a hierarchical optimization approach of practical
utility, Pareto front modeling is one of the key compo-
nents. While there have been a large body of techniques
proposed for Pareto front modeling in [5]–[17], they are often
limited to small-scale (i.e., small circuit blocks) and/or low-
dimensional (i.e., 2–3 performance metrics) problems covering
few circuit architectures and technology nodes only. The
capability of today’s Pareto front modeling is heavily con-
strained by the computational resource of running numerical
simulations and/or the human resource of setting up design
equations.

For instance, consider analog-to-digital converter (ADC) as
an example. To the best of our knowledge, there is no existing
technique that can extract the Pareto fronts for ADC to cover
all different performance metrics (e.g., area, power, speed, and
signal-to-noise distortion ratio (SNDR)), circuit architectures
(e.g., flash ADC, pipeline ADC, and successive approximation
ADC), and technology nodes (e.g., 22 nm, 32 nm, and 45 nm).
Such a Pareto front model, however, is extremely critical,
when a system-level designer makes important design choices
(e.g., which circuit architecture and technology node should
be chosen) to implement a given product.

The technical challenge here is not about Pareto
front modeling itself: sophisticated, high-dimensional Pareto
front models have been created in other fields such as
microeconomics [18]. Instead, the fundamental challenge is
how to collect the data that are required for Pareto front model-
ing. Traditionally, simulation- and/or equation-based optimiza-
tions have been applied to generate the data. Such an approach
relying on circuit optimization is not scalable, thereby
making large-scale, high-dimensional modeling problem
intractable.

In this paper, we rethink Pareto front modeling from
a completely different perspective. Our proposed work is
motivated by the fact that enormous design data are avail-
able on the Internet (e.g., published papers and data sheets).
For example, IEEE Xplore carries more than 25 000 papers
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with silicon measurement data published at the Journal of
Solid-State Circuits (JSSC) or the International Solid-State
Circuit Conference (ISSCC). These data include the perfor-
mance metrics for a large number of silicon-proved designs.
They contain valuable design information and, most impor-
tantly, are almost free to the public. Analog designers have
been continuously reading these online resources and learn-
ing design knowledge from the Internet. Can a CAD tool also
exploit the publically available design information and utilize
it in an analog design flow?

To explore the rich design knowledge from the Internet, two
important techniques must be developed.

1) Knowledge Search and Data Harvest: Instead of look-
ing for the online design knowledge manually, a search
engine must be developed to automatically process the
information on various Web sites and extract the design
data. In the machine learning community, text mining is
a well-established technique to systematically analyze
the structured-data from the Internet [19]. It perfectly
fits our need and several commercial off-the-shelf tools
can be directly used. Hence, we will not further discuss
the topic of automatic data search in this paper. More
details can be found from [19].

2) Knowledge Discovery and Pareto Front Modeling:
Once the big data set of circuit performance is avail-
able, we need to further extract a compact expression
(i.e., the Pareto front model) to represent the per-
formance tradeoffs. Mathematically, it requires us to
approximate the high-dimensional Pareto front by an
analytical function. In this paper, we will mainly focus
on this Pareto front modeling problem and develop
novel numerical algorithms to make it computationally
efficient.

In particular, we propose to adopt the sparse regres-
sion technique [20]–[22] to generate high-dimensional Pareto
fronts. Here, sparse regression is chosen, because the shape
of a Pareto front is not known in advance. Hence, it is
extremely difficult, if not impossible, to predetermine a set
of basis functions to approximate the Pareto front of inter-
est. Sparse regression is a statistical technique that adaptively
selects the appropriate basis functions from a large pool
of possible candidates. Such a capability of basis function
selection is especially important for high-dimensional mod-
eling where there are numerous basis functions to span the
high-dimensional performance space. For this reason, sparse
regression serves as an efficient dimension reduction technique
to make our high-dimensional Pareto front modeling problem
tractable.

Furthermore, the Pareto front of an analog circuit must be
monotonic inside the feasible performance region. To guar-
antee such monotonicity, we propose to further constrain
the gradient of the Pareto front, resulting in a semi-infinite
programming problem for Pareto front modeling. The grid dis-
cretization method [23] is then adopted to efficiently solve the
aforementioned semi-infinite programming problem and deter-
mine the Pareto front of interest. As will be demonstrated by
the numerical experiments in Section V, our proposed sparse
regression algorithm based on grid discretization can construct
high-dimensional Pareto fronts both accurately and efficiently
while maintaining their monotonicity.

Fig. 1. Simplified block diagram of a PLL includes five circuit blocks:
1) PFD; 2) CP; 3) LP; 4) VCO; and 5) FD [7].

The remainder of this paper is organized as follows.
In Section II, we first briefly review the background of
system-level optimization and Pareto front modeling for ana-
log circuits. Next, we derive our mathematical formulation for
Pareto front modeling in Section III, and then develop sev-
eral numerical algorithms to solve the modeling problem in
Section IV. The efficacy of our proposed technique is demon-
strated by several circuit examples in Section V. Finally, we
conclude in Section VI.

II. BACKGROUND

A. System-Level Optimization

To efficiently optimize large-scale analog systems, a hierar-
chical approach is often taken [7]–[14]. The basic idea is to
partition the complex system into several circuit blocks. Next,
the system-level performance specifications are mapped to
a set of block-level specifications by constraint mapping [14].
During this process, behavioral models are often built for all
circuit blocks so that the system-level performance metrics can
be efficiently evaluated by behavioral simulations [24].

Consider the phase-locked loop (PLL) in Fig. 1 as an
example, its system-level performance metrics include track-
ing range, locking time, jitter, power, etc. The PLL can be
partitioned into five circuit blocks: 1) phase frequency detec-
tor (PFD); 2) charge pump (CP); 3) loop filter (LP); 4) VCO;
and 5) frequency divider (FD) [7]. Each circuit block has
its own performance metrics. For system-level optimization,
each circuit block should be represented as a parameterized
behavioral model where the block-level performance metrics
are considered as the tunable parameters. For instance, the
performance metrics of the VCO include center frequency,
gain, jitter, power, etc. Its parameterized behavioral model
should include tunable center frequency, gain, jitter, etc. With
these parameterized behavioral models, we can efficiently
run system-level simulations and then decide the optimal
performance specifications for all circuit blocks.

B. Pareto Front Modeling

Since the aforementioned system-level optimization con-
siders the block-level performance metrics as optimiza-
tion variables, we must carefully model the block-level
performance tradeoffs before running system-level opti-
mization. For instance, there is a well-known tradeoff
between jitter and power for VCO [7]. When design-
ing a VCO, we have to increase its power in order
to reduce the jitter. These block-level performance trade-
offs define the fundamental performance limitations of
the given analog circuit. Hence, it is crucial to accu-
rately set up these block-level performance constraints for
system-level optimization. Otherwise, without taking into
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account these constraints, the system-level optimization may
converge to a set of block-level performance specifications
that are not feasible and, consequently, cannot be achieved by
circuit-level implementation.

Toward this goal, the concept of feasible region has been
adopted to define the achievable performance space for a given
analog circuit block [5]–[17]. Without loss of generality, we
use a vector p = [p1, p2, . . . , pM] ∈ �M to denote the M
performance metrics of a circuit block. The feasible region
includes all possible values of p that are achievable. Each
point inside the feasible region is referred to as a feasible
point. A Pareto front represents a set of feasible points on
the boundary of the feasible region. In other words, a Pareto
front describes the block-level performance constraint that is
required for system-level optimization.

A feasible point on the Pareto front is referred to as the
Pareto optimal point. It cannot be dominated by any other
feasible point in the feasible region. Namely, if a point pA is
Pareto optimal, there exists no other feasible point pB that is
superior over pA

pA �= pB and pA,m ≤ pB,m (m = 1, 2, . . . , M) (1)

where pA,m and pB,m denote the mth element of the vectors
pA and pB, respectively. In (1), we assume that a perfor-
mance value (say, pB,m) dominates another performance value
(say, pA,m), if pB,m is greater than pA,m. If this assumption
does not hold for a performance metric, a simple linear trans-
formation can be applied to make the notation consistent.
Considering the power of an OpAmp as an example, we
always prefer a small power value, instead of a large power
value. In this case, we can redefine -power as the performance
of interest. Since a large value of -power (i.e., a small value
of power) is preferred, the performance definition of -power
now becomes consistent with the notation in (1).

Most Pareto front modeling methods in the literature
attempt to solve the following multiobjective optimization
problem [5]–[11], [14]–[16]:

maximize
x

p(x) = [
p1(x) p2(x) · · · pM(x)

]T

subject to c(x) ≥ 0 (2)

where x includes all design variables of a circuit block
(e.g., transistor sizes of an OpAmp). The performance met-
rics p are functions of the design variables x and they can
be obtained by transistor-level simulations. The constraints
c(x) ≥ 0 in (2) are imposed to guarantee the proper oper-
ation of the circuit. For instance, all CMOS transistors in an
OpAmp must stay in the saturation region.

Both stochastic techniques [6], [11] and deterministic
methods [5], [16] have been developed to find a number of
Pareto optimal points by solving (2). Next, polynomial fit-
ting is often applied to approximate the M-D Pareto front
pM = fM( p1, p2, . . . , pM−1) [6], [7]. Unfortunately, since most
existing Pareto front modeling methods rely on multiobjective
programming based on transistor-level simulations, they share
several critical limitations.

1) Layout parasitics and manufacturing nonidealities are
often ignored by the existing methods. In practice, it
is unlikely to design an analog circuit whose presilicon

Fig. 2. Simple example of 3-D Pareto front is shown for illustration purpose.
Left: 3-D Pareto front is plotted for three performance metrics p1, p2, and p3.
There are five Pareto optimal points denoted as the black dots in this 3-D
performance space. Right: 3-D Pareto front is projected to the 2-D plane
defined by two performance metrics p1 and p2. There are only three Pareto
optimal points denoted as the red stars in this 2-D performance space.

simulation results perfectly match the postsilicon mea-
surement data, especially for radio frequency circuits
operating at extremely high frequencies. Therefore,
the Pareto fronts obtained by the conventional methods
based on presilicon transistor-level simulations may not
accurately capture the postsilicon reality in practice.

2) Transistor-level simulations are often expensive and,
hence, the conventional Pareto front modeling methods
are limited to low-dimensional problems and/or small-
scale circuits. For instance, the conventional methods
typically require more than 1000 transistor-level simula-
tions to build a 2-D Pareto front [5], [6]. It is extremely
difficult, if not impossible, to run such a large number of
simulations for a large-scale analog circuit (e.g., ADC),
since each simulation may take a few days or even
months to finish.

For these reasons, how to accurately and efficiently build
high-dimensional Pareto fronts for large-scale analog circuits
remains an open question in the literature. In what follows, we
will propose a new Pareto front modeling method to address
this grand challenge.

III. PARETO FRONT MODELING

Mathematically expressing a Pareto front is not trivial,
because it cannot be simply specified by a single nonlin-
ear function. To understand the reason, we consider the 3-D
Pareto front in Fig. 2. At the first glance, it seems that the
3-D Pareto front can be fully specified by a 2-D nonlinear
function p3 = f3( p1, p2). However, such a simple descrip-
tion is incomplete. As shown in Fig. 2 where the 3-D Pareto
front is projected onto the 2-D plane defined by two per-
formance metrics p1 and p2, there is an important tradeoff
between p1 and p2, but it is not captured by the nonlinear
function p3 = f3( p1, p2) at all. Hence, in order to fully spec-
ify the 3-D Pareto front in this example, we must use one
extra nonlinear function p2 = f2( p1) to describe the tradeoff
between p1 and p2. Furthermore, we also need to specify the
range for the performance metric p1 ∈ [p1,MIN, p1,MAX] where
p1,MIN and p1,MAX stand for the minimum and maximum pos-
sible values for p1, respectively. With these three components:
p3 = f3( p1, p2), p2 = f2( p1), and p1 ∈ [p1,MIN, p1,MAX], the
3-D Pareto front is now fully specified.
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The aforementioned discussion for 3-D Pareto front can
be extended to other high-dimensional cases. In general, an
M-D Pareto front should be specified by the following M − 1
nonlinear functions:

pM = fM( pM) = fM( p1, p2, . . . , pM−1)

pM−1 = fM−1( pM−1) = fM−1( p1, p2, . . . , pM−2)

...

p2 = f2( p2) = f2( p1) (3)

and a 1-D interval representing the range of the performance
metric p1

p1 ∈ [
p1,MIN, p1,MAX

]
(4)

where pm = [p1p2 · · · pm−1]T ∈ �m−1 for any m ∈
{2, 3, . . . , M}. The functions { fm(pm); m = 2, 3, . . . , M} must
be monotonically decreasing so that any point on the Pareto
front satisfies the condition in (1) and, hence, is Pareto optimal.

To determine a Pareto front, we must find the closed-
form expressions for the monotonic functions in (3). To this
end, we adopt the linear regression technique from the statis-
tics community [21]. Namely, we approximate each nonlinear
function by the linear combination of a set of basis functions

pm = fm( pm) ≈ gm( pm) =
Nm∑

n=1

αm,n · bm,n( pm) (5)

where {αm,n; m = 2, 3, . . . , M, n = 1, 2, . . . , Nm} denote
the model coefficients, {bm,n( pm); m = 2, 3, . . . , M, n =
1, 2, . . . , Nm} stand for the basis functions, and Nm is the
total number of basis functions to approximate fm( pm). Note
that the nonlinear functions { fm(pm); m = 2, 3, . . . , M} have
different input variables and dimensionalities, as shown in (3).

To solve the model coefficients {αm,n; n = 1, 2, . . . , Nm}
associated with the Pareto front fm( pm), we first collect a set
of Pareto optimal points {p(k)

m ; k = 1, 2, . . . , Km} where Km
is the total number of these points. Next, the model coeffi-
cients {αm,n; n = 1, 2, . . . , Nm} can be solved by the following
constrained optimization:

minimize
αm,1,...,αm,Nm

1

2
·

Km∑

k=1

[
g(k)

m − f (k)
m

]2

subject to g(k)
m ≥ f (k)

m (k = 1, 2, . . . , Km)

∂gm

∂pi
≤ 0 (i = 1, 2, . . . , m − 1) (6)

where αm = [αm,1αm,2 · · ·αm,Nm]T , and f (k)
m and g(k)

m denote
the values of the actual Pareto front fm(pm) and the approxi-
mated Pareto front gm( pm) at the kth Pareto optimal point p(k)

m
respectively.

The optimization formulation in (6) has a threefold mean-
ing. First, the difference between the Pareto optimal points and
the approximated Pareto front is quantitatively measured by
the cost function that should be minimized. Second, a Pareto
front defines the boundary of the feasible region. Hence, there
exists no feasible point which can sit above the Pareto front,
as guaranteed by the boundary constraints {g(k)

m ≥ f (k)
m ; k =

1, 2, . . . , Km} in (6). Third, since the approximated Pareto
front should be monotonically decreasing, the first-order

derivative of gm(pm) with respect to each performance
metric pi should be nonpositive, as defined by the derivative
constraints {∂gm(pm)/∂pi ≤ 0; i = 1, 2, . . . , m − 1} in (6).

Note that the number of optimization variables [i.e., αm =
(αm,1αm,2 · · · αm,Nm)T ] in (6) is finite (i.e., Nm). However, the
derivative constraints are defined over an infinite set (i.e., the
entire feasible region). Conceptually, since the derivative con-
straints must hold at any feasible point inside the feasible
region, there are an infinite number of constraints associated
with the optimization formulation in (6). Such an optimization
problem is referred to as semi-infinite programming in [23].

It is important to emphasize that a number of technical
details must be carefully considered in order to solve the model
coefficients αm = [αm,1αm,2 · · ·αm,Nm]T from the optimization
problem in (6).

1) Pareto Optimal Point Selection: In our application,
since the performance data are collected from online
resources, many data points may not be Pareto optimal.
In addition, as shown in Fig. 2, even if a feasible point
sits on the 3-D Pareto front, it may or may not sit on
the 2-D Pareto front. For the example in Fig. 2, there
are five Pareto optimal points (denoted as the black dots)
for the 3-D Pareto front, but only three of them (denoted
as the red stars) are Pareto optimal for the 2-D Pareto
front after projection. It, in turn, implies that we cannot
use the same set of Pareto optimal points in (6) to fit
all nonlinear functions { fm( pm); m = 2, 3, . . . , M}. For
these reasons, it is extremely important for us to develop
a data preprocessing technique that can automatically
determine the appropriate set of Pareto optimal points
to fit a particular nonlinear function fm( pm).

2) Basis Function Selection: Since the shape of the Pareto
front is unknown, we do not know the appropriate basis
functions in advance. If a set of wrong basis functions
are used to approximate fm( pm), the estimated Pareto
front gm( pm) may not be accurate. For this reason,
a “smart” algorithm must be developed to automati-
cally choose the appropriate basis functions for a given
Pareto front.

3) Semi-Infinite Programming: Since the estimated Pareto
front gm( pm) should be monotonically decreasing, the
semi-infinite programming in (6) should verify that the
optimal solution satisfies an infinite number of derivative
constraints over the entire feasible region. Toward this
goal, an efficient numerical algorithm must be adopted
to deal with these derivative constraints.

In what follows, we will describe a number of numerical
techniques to address these technical challenges and, conse-
quently, make the proposed Pareto front modeling applicable
to practical problems.

IV. IMPLEMENTATION DETAILS

Our proposed high-dimensional Pareto front modeling is
made of practical utility by applying a number of effi-
cient numerical algorithms. In this section, we discuss these
algorithms in detail and highlight their novelty.

A. Data Collection

As mentioned in Section II, layout parasitics and manu-
facturing nonidealities are often ignored by the conventional
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Pareto front modeling methods [5]–[17]. Consequently,
the Pareto fronts calculated by these conventional approaches
may not accurately capture the postsilicon reality. In practice,
it is almost impossible to consider all postsilicon nonidealities
by presilicon simulation. Hence, instead of fully relying on
presilicon simulation, there is a strong need to explore other
alternative approaches to collect silicon-proved performance
data for Pareto front modeling.

In this paper, we exploit the fact that a large amount of sili-
con measurement data can be found on the Internet, including
technical papers published at various conferences and jour-
nals, data sheets provided by commercial companies, etc. Even
though these performance data may not be exactly Pareto opti-
mal in theory, they represent the “best” performance metrics
that have been achieved in the literature. In addition, since
the circuit performances reported from these sources are val-
idated in silicon, they are expected to be more accurate than
the presilicon simulation results. Furthermore, large-scale ana-
log circuits or even systems have been measured in silicon
and, hence, their performance data are also publically available
from these online sources.

The aforementioned online data can be automatically col-
lected and processed by using text mining techniques [19].
Text mining attempts to derive high-quality information from
different text resources by analyzing the patterns and trends
based on statistical learning [25]. It involves information
retrieval, machine learning, computational linguistics, etc. [26].
As a well-established domain in the machine learning com-
munity, a large number of off-the-shelf text mining tools are
commercially available on the market (e.g., statistical analysis
system (SAS) [27] and IBM statistical product and service solu-
tions (SPSS) [28]) and they have been successfully applied to
a variety of practical applications (e.g., bioinformatics, national
security, and sentiment analysis). We can directly adopt these
text mining tools to collect analog performance data from the
Internet for our application of Pareto front modeling.

It is important to note that our proposed data harvesting
from the Internet are not applicable to the most advanced
manufacturing technologies. Practically speaking, once a new
manufacturing technology is available, it often takes one or
two years to design the analog circuits and then collect the
silicon measurement data. However, even with this limitation,
the proposed approach can still be applied to a broad range
of applications (e.g., biomedical circuits [29], [30], automo-
tive electronics [31], [32], and Internet of things [33], [34])
where mature manufacturing technologies are preferred due
to their high reliability and/or low cost.

B. Data Preprocessing

As mentioned at the end of Section III, many data points
collected from online resources may not be Pareto optimal.
Hence, we must carefully select the Pareto optimal points and
only use them to fit the Pareto front of interest. Note that such
a Pareto optimal point selection must be repeatedly performed
for each nonlinear function fm( pm) where m ∈ {2, 3, . . . , M},
because the Pareto optimal points are different for different
functions, as shown by the simple example in Fig. 2.

Toward this goal, we formulate an efficient data preprocess-
ing algorithm to quickly find all Pareto optimal points from

Algorithm 1 Pareto Optimal Point Selection
1. Start from a given data set � containing a number of

feasible points.
2. Initialize the set � = {}.
3. Find the Pareto optimal point p from the data set � that

has the greatest value for the first performance metric p1.
4. Remove all feasible points in � that are dominated by p.
5. Remove p from the set �, and add p to the set �.
6. If the set � is not empty, go to Step 3. Otherwise, stop

iteration and the set � contains all Pareto optimal points.

a given data set (say, �) that contains a number of feasible
points. As defined in Section III, a point p is Pareto optimal,
if and only if it is not dominated by any other feasible point.
Based on this definition, we first identify one Pareto optimal
point (say, pA) that is not dominated by any other feasible point
in the data set �. This step can be easily done by choosing
the feasible point that has the greatest value for one of the
performance metrics (say, p1). We then remove all feasible
points in � that are dominated by pA. Next, we select the
feasible point (say, pB) from � that has the second greatest
value for the performance metric p1. We know that pB is again
a Pareto optimal point because of the following two reasons.
First, pB is not dominated by pA; otherwise, pB should have
already been removed from �. Second, pB is not dominated
by any other feasible point in �, since its value for the per-
formance metric p1 is greater than any other feasible point
except pA. The aforementioned selection process is repeatedly
applied until all Pareto optimal points are found.

Algorithm 1 summarizes the simplified flow of our proposed
data preprocessing steps. Note that Algorithm 1 does not con-
sider the special case where there exist multiple feasible points
having the same greatest value for the performance metric p1.
However, it is straightforward to extend Algorithm 1 to handle
such a special case and, hence, more details are not included
in this paper.

C. Sparse Regression

In addition to Pareto optimal point selection, basis func-
tion selection is another critical issue that must be carefully
addressed. As previously discussed, we do not know the opti-
mal basis functions in advance: they strongly depend on the
Pareto front to be modeled, and may vary from technology to
technology, from circuit to circuit, and from performance to
performance. Hence, it is impossible to come up with a fixed
set of basis functions that are applicable to all cases. Instead,
the appropriate basis functions must be adaptively selected for
a particular Pareto front of interest on the fly.

In this paper, sparse regression [20]–[22] could be adopted
for automatic basis function selection. In particular, our imple-
mentation of sparse regression is based on the idea of stepwise
basis function selection [21]. It applies a greedy algorithm to
iteratively select a subset of important basis functions from
a large pool of candidates by minimizing the modeling error.
In what follows, we describe the sparse regression algorithm
in detail.

We start from a large number of possible candidates of basis
functions {bm,n(pm); n = 1, 2, . . . , Nm} (e.g., trigonometric
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Algorithm 2 Sparse Regression
1. Start from a set of possible candidates of basis func-

tions {bm,n(pm); n = 1, 2, . . . , Nm}, a number of Pareto
optimal points {p(k)

m ; k = 1, 2, . . . , Km}, and a constant
λm representing the total number of basis functions that
should be selected to approximate the nonlinear function
fm( pm) in (5).

2. Initialize the index sets � = {1, 2, . . . , Nm} and � = {}.
3. For each n ∈ �, combine bm,n(pm) with all other

basis functions {bm,l( pm); l ∈ �} to approximate fm(pm)

where the model coefficients are solved by the following
constrained optimization:

minimize
am,l,l∈{n}∪�

1

2
·

Km∑

k=1

⎡

⎣
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
− f (k)

m

⎤

⎦

2

subject to
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
≥ f (k)

m

(k = 1, 2, . . . , Km).
∑

l∈{n}∪�

αm,l · ∂bm,l( pm)

∂pi
≤ 0

(
i = 1, 2, . . . , m − 1

∀pm

)
(7)

4. Based on the model coefficients {αm,l; l ∈ {n} ∪ �}
solved from (7), calculate the modeling error for each n
∈ �. Find the optimal index (say, nOPTI) for which the
modeling error is minimal.

5. Remove nOPTI from the set �, and add nOPTI to the
set �.

6. If the cardinality of the set � (i.e., the number of ele-
ments in the set �) is less than λm, go to Step 3.
Otherwise, stop iteration and the set � contains the
indexes for the selected basis functions.

basis functions) to approximate the nonlinear function fm( pm)

in (5). Initially, without knowing which basis function is
important, we attempt to use each basis function from the
set {bm,n(pm); n = 1, 2, . . . , Nm} to approximate fm( pm).
The optimal basis function [say, bm,A( pm)] resulting in the
minimum modeling error is chosen as an important basis
function.

Next, given bm,A( pm) as a basis function that is already
selected, we further combine bm,A( pm) with each of the other
basis functions from the set {bm,n(pm); n = 1, 2, . . . , Nm,

�= A} to approximate fm( pm). Here, we are looking for the
optimal basis function [say, bm,B( pm)] that results in the
minimum modeling error, when bm,B( pm) is combined with
bm,A( pm) to approximate fm( pm). Once bm,B( pm) is found, it
is chosen as the second important basis function.

The aforementioned selection process is repeatedly applied
until a sufficient number of basis functions are selected. At
each iteration step, one basis function is chosen to minimize
the modeling error. Algorithm 2 summarizes the major steps
of the sparse regression algorithm.

There are several important clarifications that should
be made for the sparse regression technique summarized
by Algorithm 2. First, the stepwise approach taken by

Algorithm 2 is heuristic and it does not guarantee global
optimum. However, such a heuristic approach results in
a locally optimal solution that is reasonably good for many
practical applications [21]. As will be demonstrated by our
numerical examples in Section V, Algorithm 2 facilitates us
to successfully identify a small number of (e.g., 101 ∼ 102)
important basis functions from a large number of
(e.g., 102 ∼ 103) possible candidates to accurately model the
Pareto font of interest.

Second, Algorithm 2 assumes that the number of required
basis functions (i.e., λm) is given as the input. In practice, λm is
unknown and must be automatically determined by a statistical
technique that is referred to cross-validation in [21]. The key
idea is to repeatedly run Algorithm 2 for different values of
λm and calculate the modeling error associated with each λm.
In order to accurately estimate the modeling error at each run,
the set of Pareto optimal points is divided into a training set
and a testing set that are not overlapped. The training set is
used to solve the model coefficients, and the testing set is used
to validate the model (i.e., estimate the modeling error). As
such, the over-fitting problem can be easily detected. Once the
modeling error is known, the optimal value of λm is determined
by minimizing the modeling error. More details about cross-
validation can be found in [21].

Third, solving the constrained optimization in (7) is not triv-
ial, because the derivative constraints must hold over the entire
feasible region (i.e., an infinite set). Equation (7) represents
a semi-infinite programming problem and an efficient numeri-
cal algorithm must be adopted to solve it, as will be discussed
in detail in the next section.

Finally, since Algorithm 2 solves the modeling problem by
sparse regression, the candidates of basis functions must be
carefully chosen. In theory, these basis functions should satisfy
the restricted isometry property (RIP) so that the sparse model
coefficients can be accurately solved [35]–[37]. Based on this
requirement, trigonometric basis is one of the appropriate
choices, while wavelet basis or radial basis is not applica-
ble. More details about the RIP can be found in the literature
from the statistics community [35]–[37].

In addition to sparse regression, there exist a number
of other advanced regression modeling techniques in the
literature (e.g., Gaussian process model and kernel ridge
regression) [21], [25], [38]. However, most of these tech-
niques cannot easily handle the boundary constraints and/or
the derivative constraints and, hence, are not applicable to our
application of Pareto front modeling. For these reasons, we do
not discuss other regression modeling techniques in this paper.

D. Grid Discretization Method

A variety of numerical algorithms have been developed
to solve semi-infinite programming problems in the mathe-
matics community [23]. It has been shown that with several
general assumptions, the optimal solution of a semi-infinite
programming problem can be found by iteratively solving
a sequence of finite programming problems with a finite
number of constraints only.

In this paper, we will adopt the grid discretization
method [23] to solve (7). Given the performance vector
pm ∈ �m−1, we first choose a set of initial step sizes
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{h(0)
i ; i = 1, 2, . . . , m − 1}, where h(0)

i represents the step size
to discretize the performance metric pi (i.e., the ith element
of pm). Given these step sizes, the feasible region of pm is
discretized to a grid G(0)

m . Note that the size of G(0)
m exponen-

tially increases with the dimensionality of the performance
space. Hence, instead of keeping the entire grid G(0)

m , we ran-
domly select a set of points from G(0)

m to construct a reduced
grid G(0)

Rm (i.e., G(0)
Rm ⊆ G(0)

m ).
We solve the following optimization problem by forcing the

derivative constraints on the grid G(0)
Rm, instead of the entire

feasible region:

minimize
am,l,l∈{n}∪�

1

2
·

Km∑

k=1

⎡

⎣
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
− f (k)

m

⎤

⎦

2

subject to
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
≥ f (k)

m

(k = 1, 2, . . . , Km)
∑

l∈{n}∪�

αm,l · ∂bm,l( pm)

∂pi
≤ 0

(
i = 1, 2, . . . , m − 1

pm ∈ G
(0)

Rm

)
. (8)

Since the set G(0)
Rm is finite, (8) is no longer a semi-infinite

programming problem. In addition, a close examination of (8)
reveals two important observations. First, the cost function is
quadratic and convex with respect to the problem unknowns
{αm,l; l ∈ {n}∪�}. Second, all constraints are linear functions
of {αm,l; l ∈ {n} ∪ �}. For these reasons, (8) is a convex opti-
mization problem that can be solved both efficiently (i.e., with
low computational cost) and robustly (i.e., with guaranteed
global optimum) [39].

Once the model coefficients {αm,l; l ∈ {n} ∪ �} are found,
we check the derivative constraints on the entire grid G(0)

m . If
the constraints are not fully satisfied, a number of new points
from G(0)

m should be added to G(0)
Rm, and then we solve the

optimization in (8) to update the model coefficients {αm,l; l ∈
{n} ∪ �}. In other words, we will keep increasing the number
of points in G(0)

Rm and solving the model coefficients until the
derivative constraints hold for the entire grid G(0)

m .
The initial step sizes {h(0)

i ; i = 1, 2, . . . , m − 1} are often
set to a series of large values, thereby resulting in a coarse
grid G(0)

m . Even though the Pareto front solved from (8) sat-
isfies the derivative constraints on the grid G(0)

m , it may not
be monotonically decreasing over the entire feasible region.
Therefore, we must further refine the grid and enforce the
derivative constraints. To this end, we set

h(1)
i = h(0)

i

s
(i = 1, 2, . . . , m − 1) (9)

where s ≥ 2 is a positive integer. Given the updated step sizes
{h(1)

i ; i = 1, 2, . . . , m − 1}, we first generate a new grid G(1)
m ,

and then select a set of points from G(1)
m to construct the

reduced grid G(1)
Rm where G(0)

Rm ⊆ G(1)
Rm ⊆ G(1)

m .

Replacing G(0)
Rm by G(1)

Rm in (8), we solve the con-
vex optimization again and update the model coefficients
{αm,l; l ∈ {n} ∪ �}. Similar to the case of G(0)

Rm, we will keep

Algorithm 3 Grid Discretization Method

1. Start from a set of initial step sizes {h(0)
i ; i =

1, 2, . . . , m − 1}.
2. Construct the initial grid G(0)

m and the reduced grid G(0)
Rm.

Solve the optimization problem in (8) to determine the
model coefficients {αm,l; l ∈ {n} ∪ �}.

3. If the derivative constraints do not hold for the entire
grid G(0)

m , add a number of new points from G(0)
m to

G(0)
Rm, and go back to Step 2. Otherwise, go to Step 4.

4. Set the iteration index q = 1.
5. Reduce the step sizes:

h(q)
i = h(q−1)

i

s
(i = 1, 2, . . . , m − 1). (10)

6. Construct the grid G(q)
m based on (10) and construct the

reduced grid G(q)
Rm such that G(q−1)

Rm ⊆ G(q)
Rm ⊆ G(q)

m .
7. Solve the model coefficients {αm,l; l ∈ {n}∪�} from the

following optimization:

minimize
am,l,l∈{n}∪�

1

2
·

Km∑

k=1

⎡

⎣
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
− f (k)

m

⎤

⎦

2

subject to
∑

l∈{n}∪�

αm,l · bm,l

(
p(k)

m

)
≥ f (k)

m

(k = 1, 2, . . . , Km).
∑

l∈{n}∪�

αm,l · ∂bm,l( pm)

∂pi
≤ 0

(
i = 1, 2, . . . , m − 1

pm ∈ G
(q)

Rm

)
(11)

8. If the derivative constraints do not hold for the entire
grid G(q)

m , add a number of new points from G(q)
m to G(q)

m ,
and go back to Step 7. Otherwise, go to Step 9.

9. If the step sizes {h(q)
i ; i = 1, 2, . . . , m−1} are sufficiently

small, stop iteration. Otherwise, set q = q + 1 and go to
Step 5.

increasing the size of G(1)
Rm and solving the model coefficients

until the derivative constraints hold for the entire grid G(1)
m .

Next, we further reduce the step sizes and repeat the afore-
mentioned procedure until the step sizes are sufficiently small
(e.g., less than a predefined threshold). Algorithm 3 summa-
rizes the major steps of the grid discretization method to solve
the semi-infinite programming problem in (7).

We can further apply a number of heuristics to improve the
computational efficiency of Algorithm 3. First, we observe
that the model coefficients {αm,l; l ∈ {n} ∪ �} solved
from (11) are often similar between two successive itera-
tions. Hence, when solving these model coefficients for the
qth iteration, we can take the solution from the (q − 1)th
iteration as the initial guess. Second, when constructing
the reduced grid G(q)

Rm, we should first include all points
from G(q−1)

Rm such that G(q−1)
Rm ⊆ G(q)

Rm. Next, when adding

additional points from G(q)
m to G(q)

Rm, we choose the points
where the derivative constraints are greatly violated accord-
ing to the model coefficients {αm,l; l ∈ {n} ∪ �} solved
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Algorithm 4 Pareto Front Modeling

1. Start from a set of feasible points p ∈ �M (i.e., the feasi-
ble performance metrics) that are collected from online
resources.

2. For each performance metric, pm, where m ∈
{1, 2, . . . , M}, determines its lower bound pm,MIN and
upper bound pm,MAX .

3. For m = 2, 3, . . . , M
4. Apply Algorithm 1 to select the Pareto optimal points

{p(k)
m ; k = 1, 2, . . . , Km} from the feasible points.

5. Determine the optimal number of required basis func-
tions (i.e., λm) for the nonlinear function fm( pm) in (5)
by running Algorithms 2 and 3 with cross-validation.

6. Given the optimal value of λm, apply Algorithms 2 and 3
to find the optimal basis functions {bm,n( pm); n ∈ �}
and the corresponding model coefficients {αm,n; n ∈
�} based on all Pareto optimal points{p(k)

m ; k =
1, 2, . . . , Km}.

7. Use the basis functions {bm,n( pm); n ∈ �} and the
model coefficients {αm,n; n ∈ �} to construct the
nonlinear function gm( pm) in (5).

8. End For
9. The Pareto front of interest is defined by the M−1

nonlinear functions in (3) and the 1-D interval in (4).

from the (q − 1)th iteration. In practice, we find that the
aforementioned heuristics can often reduce the total number
of iterations and, hence, the overall computational cost of
Algorithm 3.

E. Summary

Algorithm 4 summarizes the overall flow of our pro-
posed high-dimensional Pareto front modeling approach by
using online resources. Starting from a set of feasible points,
Algorithm 4 first identifies the Pareto optimal points from
the given data set and then applies sparse regression with
grid discretization to fit the high-dimensional Pareto front of
interest.

Compared to the existing methods based on presilicon
transistor-level simulations, Algorithm 4 adopts a completely
different strategy for Pareto front modeling. It takes full advan-
tage of the design knowledge harvested from the Internet
(i.e., the postsilicon measurement data for analog circuits)
to learn Pareto fronts. Consequently, layout parasitics and
manufacturing nonidealities can be accurately captured while
expensive transistor-level simulations are no longer required.
Furthermore, our proposed method produces a compact
expression for high-dimensional Pareto front by formulat-
ing a sparse regression problem with consideration of both
boundary and derivative constraints. An efficient algorithm
of semi-infinite programming is adopted to robustly solve
the sparse model coefficients based on grid discretization.
While the concepts of sparse regression and semi-infinite pro-
gramming are borrowed from the literature, the novelty of
our proposed Pareto front modeling lies in the unique inte-
gration and tuning of these existing methodologies (e.g., by
adding boundary and derivative constraints) for our specific
application of interest.

(a)

(b)

(c)

Fig. 3. ADC performance data are collected for the 0.18 μm technology
node [41]. (a) SNDR ( p1) versus frequency ( p2). (b) Frequency ( p2) versus
-power (p3). (c) -Power (p3) versus -area (p4).

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficacy of our proposed
algorithm for Pareto front modeling by two circuit exam-
ples. In our experiments, trigonometric functions (i.e., sine
and cosine functions) are used to define the basis functions
in (5), where ten basis functions are set for each dimension.
Namely, to approximate an M-D Pareto front, 10M−1 basis
functions in total are considered as the possible candidates for
basis selection. All numerical experiments are performed on
a workstation with 2 GHz CPU and 25 GB memory.

A. Analog-to-Digital Converter

In this section, we model the Pareto fronts of ADC for
four different performance metrics: 1) SNDR ( p1); 2) Nyquist
sampling frequency ( p2); 3) -power (p3); and 4) -area (p4).
Note that in order to follow the definition of Pareto optimal
point in (1), we use p3 to denote -power (instead of + power)
and p4 to denote -area (instead of + area). Such choices are
made, because small power and area are preferred for an ADC
design [40].

We use the ADC performance data [41] at the 0.18 μm
technology node to construct three nonlinear functions: p2 =
f2( p1), p3 = f3( p1, p2), and p4 = f4( p1, p2, p3), as shown
in (3). Since these data points are 4-D and cannot be directly
visualized due to their high dimensionality, we show them by
using three 2-D plots in Fig. 3. Note that strong correlations
can be observed for the data points in these 2-D plots. For
instance, SNDR increases as frequency decreases, as shown
in Fig. 3(a). It, in turn, indicates the fundamental tradeoffs
between these performance metrics.
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(a)

(b)

Fig. 4. Results of Pareto front modeling are shown for SNDR ( p1) and
frequency ( p2). (a) Tradeoff between SNDR and frequency described by
the nonlinear function p2 = f2( p1) where different ADC architectures are
labeled by different colors. (b) First-order derivative dp2/dp1 of frequency
with respect to SNDR.

The performance data in [41] cover a variety of ADC
architectures (e.g., flash ADC, pipeline ADC, folding ADC,
and Sigma–Delta ADC) and are reported by the papers
published at the ISSCC or the VLSI Symposium. In this exam-
ple, even though we directly borrow the ADC performance
data from [41], there is nothing that prevents us from run-
ning a text mining tool (e.g., SAS [27]) to directly harvest the
data from the Internet.

To the best of our knowledge, most existing algorithms
for Pareto front modeling can only capture the Pareto fronts
for small analog circuits [5]–[17]. The 4-D Pareto front mod-
eling problem attacked in this example is for a large-scale
circuit (i.e., ADC) and has been considered to be extremely
challenging in the literature.

Fig. 4 shows the modeling results for the 2-D Pareto front
p2 = f2( p1) that captures the tradeoff between SNDR and
frequency. Note that the approximated 2-D Pareto front is
smooth and monotonically decreasing. Its first-order deriva-
tive dp2/dp1 is nonpositive, as specified by the given derivative
constraints. Fig. 4(a) also shows different ADC architectures
for different SNDR and frequency values, as reported by [41].
Note that the flash architecture is preferred at high frequency
while the Sigma–Delta architecture is preferred at low fre-
quency. In other words, the Pareto front in Fig. 4(a) facilitates
us to choose the appropriate ADC architecture based on the
required frequency and/or SNDR.

For testing and comparison purposes, we remove the deriva-
tive constraints from our optimization formulation in (6) and

(a)

(b)

Fig. 5. Results of Pareto front modeling without enforcing the derivative
constraints are shown for SNDR (p1) and frequency (p2). (a) Tradeoff between
SNDR and frequency described by the nonlinear function p2 = f2( p1) where
the point “A” represents the largest frequency value. (b) First-order derivative
dp2/dp1 of frequency with respect to SNDR where the derivative reaches zero
at the point “B.”

build a different 2-D Pareto front model p2 = f2( p1) as shown
in Fig. 5. Studying Fig. 5 reveals an important observation that
the nonlinear function p2 = f2( p1) is no longer monotonic,
since the derivative constraints are not enforced. The function
p2 = f2( p1) reaches its maximum at the point “A” in Fig. 5(a),
where the corresponding first-order derivative dp2/dp1 is equal
to zero as shown by the point “B” in Fig. 5(b). As a result,
a number of points on the curve p2 = f2( p1) [e.g., the point
“C” in Fig. 5(a)] are not Pareto optimal, as they are domi-
nated by the point “A.” Hence, the function p2 = f2( p1) in
Fig. 5(a) is not a valid Pareto front.

Fig. 6 shows the 3-D Pareto front p3 = f3( p1, p2) that cap-
tures the tradeoff between -power, SNDR and frequency. For
ADC circuits, it is well-known that the power consumption
increases as the SNDR or frequency increases. Hence, the first-
order derivatives dp3/dp1 and dp3/dp2 of -power with respect
to SNDR and frequency should be nonpositive in this example.
These derivative constraints are enforced in our optimization
formulation to solve the model coefficients. As a result, the
Pareto front in Fig. 6(a) is monotonically decreasing. The non-
positive derivatives dp3/dp1 and dp3/dp2 are further plotted
in Fig. 6(b) and (c).

For the 4-D Pareto front p4 = f4( p1, p2, p3) that captures
the tradeoff between -area, -power, SNDR and frequency, the
resulting nonlinear function f4(•) is 3-D and cannot be eas-
ily visualized due to its high dimensionality. For this reason,
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(a)

(b)

(c)

Fig. 6. Results of Pareto front modeling are shown for SNDR (p1), frequency
(p2), and -power (p3). (a) Tradeoff between -power, SNDR, and frequency
described by the nonlinear function p3 = f3( p1, p2). (b) First-order derivative
∂p3/∂p1 of -power with respect to SNDR. (c) First-order derivative ∂p3/∂p2
of -power with respect to frequency.

TABLE I
PARETO FRONT MODELING RESULTS FOR ADC

we plot f4(•) by using three 3-D plots as shown in Fig. 7. Due
to the page limit, we do not plot the corresponding derivatives
for f4(•) here.

To quantitatively assess the modeling error, Fig. 8 shows the
histograms of absolute modeling error at Pareto optimal points
for three nonlinear functions: p2 = f2( p1) , p3 = f3( p1, p2)

(a)

(b)

(c)

Fig. 7. Results of Pareto front modeling are shown for SNDR (p1), frequency
(p2), -power (p3), and -area (p4). (a) Tradeoff between -area, SNDR, and
frequency where power is fixed to 5.6 × 10−4 mW. (b) Tradeoff between
-area, SNDR, and -power where frequency is fixed to 8.9 MHz. (c) Tradeoff
between -area, frequency, and -power where SNDR is fixed to 62 dB.

and p4 = f4( p1, p2, p3). Note that the modeling error is less
than 0.1 for most points. In very few cases, the modeling
error may reach 0.35; however, it is still valuable for many
system-level design applications.

Table I further summarizes the modeling statistics for
2-D, 3-D, and 4-D Pareto fronts. In Table I, the root-mean-
square (RMS) error ErrorRMS is defined as

ErrorRMS =
√√√√

Km∑

k=1

( yk − ỹk)
2

/

Km (12)
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(a)

(b)

(c)

Fig. 8. Histograms of absolute modeling error at Pareto optimal points are
shown for (a) p2 = f2( p1), (b) p3 = f3( p1, p2), and (c) p4 = f4( p1, p2, p3).
Each performance metric is normalized to the interval [0 1] in our experiments.

(a)

(b)

(c)

Fig. 9. LNA performance data are collected from the Internet.
(a) -Power (p1) versus gain (p2). (b) Gain (p2) versus IIP3 (p3). (c) IIP3 (p3)
versus -NF (p4).

where yk and ỹk are the approximated and actual performance
values after being normalized to the interval [0 1] at the kth
Pareto optimal point respectively, and Km is the total number
of Pareto optimal points. Once the Pareto front models are built
by applying Algorithm 4, all Pareto optimal points chosen by
Algorithm 1 are used to evaluate the modeling error based
on (12). However, it is important to mention that the Pareto
optimal points used to approximate the nonlinear functions

(a)

(b)

Fig. 10. Results of Pareto front modeling are shown for -power (p1) and
gain (p2). (a) Tradeoff between power and gain described by the nonlinear
function p2 = f2( p1). (b) First-order derivative dp2/dp1 of gain with respect
to -power.

Fig. 11. Tradeoff between -power (p1), gain (p2), and IIP3 (p3) is described
by the nonlinear function p3 = f3( p1, p2).

p2 = f2( p1), p3 = f3( p1, p2) and p4 = f4( p1, p2, p3) are
different, as explained in Fig. 2. Hence, the summation in (12)
is performed over different data points when evaluating the
errors for 2-D, 3-D, and 4-D Pareto fronts.

Studying Table I, we would have two important observa-
tions. First, even though there are a large number of basis
functions, only a small number of Pareto optimal points are
available for us to fit the Pareto fronts. In this case, the pro-
posed sparse regression algorithm appropriately selects a small
subset of important basis functions to approximate the Pareto
fronts so that the results are not over-fitted due to the lim-
ited data set. Second, but more importantly, the RMS error
ErrorRMS is less than 0.1 for all three Pareto front models:
p2 = f2( p1), p3 = f3( p1, p2), and p4 = f4( p1, p2, p3). It,
in turn, demonstrates that our proposed algorithm accurately
captures the Pareto fronts of interest in this example.
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(a)

(b)

(c)

Fig. 12. Results of Pareto front modeling are shown for -power (p1),
gain (p2), IIP3 (p3), and -NF (p4). (a) Tradeoff between -NF, -power, and
gain where IIP3 is fixed to -1.2 dBm. (b) Tradeoff between -NF, -power,
and -IIP3 where gain is fixed to 15.25 dB. (c) Tradeoff between -NF, gain,
and IIP3 where power is fixed to 1.64 mW.

Compared to other existing approaches, the proposed Pareto
front modeling method is based upon a completely different
strategy to collect the performance data from the Internet. If
a conventional Pareto front modeling technique is used, we
need to run a large number of presilicon simulations to col-
lect the required performance data. These simulations are not
computationally affordable for large-scale ADC circuits even
if we do not take into account layout parasitics and other man-
ufacturing nonidealities. Hence, we do not show the results of
the conventional Pareto front modeling methods for the ADC
example here.

B. Low-Noise Amplifier

In this section, we aim to model the Pareto fronts of
low-noise amplifier (LNA) with the consideration of four

(a)

(b)

(c)

Fig. 13. Histograms of absolute modeling error at Pareto optimal points are
shown for (a) p2 = f2( p1), (b) p3 = f3( p1, p2), and (c) p4 = f4( p1, p2, p3).
Each performance metric is normalized to the interval [0 1] in our experiments.

TABLE II
PARETO FRONT MODELING RESULTS FOR LNA

performance metrics: 1) -power (p1); 2) gain (p2); 3) IIP3 (p3);
and 4) -NF (p4), where NF denotes the noise figure. Here, we
use p1 to denote -power and p4 to denote -NF.

The performance data, shown in Fig. 9, are collected from
the papers published at several major circuit conferences and
journals, including JSSC, ISSCC, VLSI Symposium, RFIC
Symposium, etc. These performance data cover a wide range
of technology nodes, varying from 0.8 μm to 45 nm. In order
to model the Pareto fronts of interest, we need to approximate
three nonlinear functions: p2 = f2( p1), p3 = f3( p1, p2), and
p4 = f4( p1, p2, p3), as shown in (3).

Fig. 10 shows the modeling results for the 2-D Pareto front
p2 = f2( p1) that captures the tradeoff between -power and
gain. We set up the derivative constraints to enforce that the
first-order derivative dp2/dp1 of gain with respect to -power is
nonpositive. As a result, the Pareto front p2 = f2( p1) is mono-
tonically decreasing, as shown in Fig. 10(a). The nonpositive
derivative dp2/dp1 is further plotted in Fig. 10(b).

Fig. 11 shows the 3-D Pareto front p3 = f3( p1, p2) that
captures the tradeoff between -power, gain, and IIP3. The
4-D Pareto front p4 = f4( p1, p2, p3) for modeling the trade-
off between -power, gain, IIP3, and -NF is 3-D. We plot
f4(•) by using three 3-D plots as shown in Fig. 12. Due to
the page limit, we do not plot the corresponding derivatives
for f4(•) here.
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Fig. 13 shows the histograms of absolute modeling error for
three nonlinear functions: p2 = f2( p1), p3 = f3( p1, p2), and
p4 = f4( p1, p2, p3). Table II summarizes the modeling statis-
tics for these Pareto fronts. Note that the RMS error is less than
0.15 for all Pareto front models in this example. These results
demonstrate the superior accuracy of our proposed algorithm
for Pareto front modeling. The extracted Pareto front mod-
els can be used by analog designers for efficient system-level
optimization.

VI. CONCLUSION

In this paper, we propose a novel technique to search the
design knowledge from online resources, and then encode
the knowledge as Pareto fronts. In order to accurately model
high-dimensional Pareto fronts, an efficient sparse regression
algorithm is adopted to automatically identify the important
basis functions based on a limited set of Pareto optimal sam-
ples. In addition, a grid discretization method is used to solve
the semi-infinite optimization problem in order to enforce
a monotonic Pareto front within the performance space. Our
numerical examples demonstrate that the proposed modeling
technique can accurately capture 4-D Pareto fronts for large-
scale, complex analog systems. The high-dimensional Pareto
fronts derived from our proposed work can be further used
to guide analog designers to make important decisions for
system-level optimization.

Note that the computational cost of our proposed Pareto
front modeling algorithm may quickly increase, as the dimen-
sionality (i.e., the number of performance metrics) increases.
In the case where the dimensionality is extremely high, we
must choose a set of important basis functions from numerous
(e.g., billions of) possible candidates and, hence, the numerical
algorithm described in this paper may become computation-
ally unaffordable. In our future research, we will further study
efficient heuristics to address this dimensionality issue.

Furthermore, note that the performance data collected from
the Internet could be noisy or even contain outliers. When
these performance data are used for Pareto front modeling, it
is crucial to automatically detect and remove the outliers so
that they do not bias the Pareto front models. However, due
to the inequality constraints (i.e., the boundary and derivative
constraints) posed by our Pareto front modeling procedure,
most conventional outlier detection algorithms (e.g., robust
regression [42]) cannot be directly applied. Hence, develop-
ing an efficient and robust outliner detection/removal algo-
rithm with consideration of inequality constraints is another
important research problem that must be carefully addressed
before the proposed Pareto front modeling algorithm is prac-
tically applicable. The aforementioned outlier detection and
removal problem will be further explored in our future
research.

Finally, in addition to building Pareto front models for ana-
log integrated circuits, our proposed approach can be further
applied to large-scale analog systems consisting of multiple
chips and/or external discrete components (e.g., board-level
voltage regulator implemented with discrete power electronics
and on-chip microcontroller). Applying Pareto front models to
board-level design optimization is another interesting research
topic that we plan to pursue in the future.
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